Academic literature on the topic 'Thrust Vectoring Control (TVC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thrust Vectoring Control (TVC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thrust Vectoring Control (TVC)"
Invernizzi, Davide, Marco Lovera, and Luca Zaccarian. "Dynamic Attitude Planning for Trajectory Tracking in Thrust-Vectoring UAVs." IEEE Transactions on Automatic Control 65, no. 1 (January 2020): 453–60. http://dx.doi.org/10.1109/tac.2019.2919660.
Full textJiméneze, Abel, and Daniel Icaza. "Thrust Vectoring System Control Concept." IFAC Proceedings Volumes 33, no. 6 (May 2000): 235–44. http://dx.doi.org/10.1016/s1474-6670(17)35476-9.
Full textForghany, Farzad, Mohammad Taeibe-Rahni, Abdollah Asadollahi-Ghohieh, and Afshin Banazdeh. "Numerical investigation of injection angle effects on shock vector control performance." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (October 31, 2017): 405–17. http://dx.doi.org/10.1177/0954410017733292.
Full textKuang, MinChi, and JiHong Zhu. "Hover control of a thrust-vectoring aircraft." Science China Information Sciences 58, no. 7 (June 4, 2015): 1–5. http://dx.doi.org/10.1007/s11432-015-5353-3.
Full textInvernizzi, Davide, and Marco Lovera. "Trajectory tracking control of thrust-vectoring UAVs." Automatica 95 (September 2018): 180–86. http://dx.doi.org/10.1016/j.automatica.2018.05.024.
Full textZivkovic, S., M. Milinovic, N. Gligorijevic, and M. Pavic. "Experimental research and numerical simulations of thrust vector control nozzle flow." Aeronautical Journal 120, no. 1229 (May 25, 2016): 1153–74. http://dx.doi.org/10.1017/aer.2016.48.
Full textYounes, Khaled, and Jean-Pierre Hickey. "Fluidic Thrust Shock-Vectoring Control: A Sensitivity Analysis." AIAA Journal 58, no. 4 (April 2020): 1887–90. http://dx.doi.org/10.2514/1.j058922.
Full textGal-Or, Benjamin Z. "Maximizing thrust-vectoring control power and agility metrics." Journal of Aircraft 29, no. 4 (July 1992): 647–51. http://dx.doi.org/10.2514/3.46214.
Full textZhang, Chao, Zi Yang Zhen, Dao Bo Wang, and Xin Yu Meng. "Optimal Control for Thrust Vectoring Unmanned Aerial Vehicle." Key Engineering Materials 439-440 (June 2010): 292–97. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.292.
Full textXue, Fei, Gu Yunsong, Yuchao Wang, and Han Qin. "Research on control effectiveness of fluidic thrust vectoring." Science Progress 104, no. 1 (January 2021): 003685042199813. http://dx.doi.org/10.1177/0036850421998137.
Full textDissertations / Theses on the topic "Thrust Vectoring Control (TVC)"
Bernacchia, David. "Design of thrust vectoring attitude control system for lunar lander flying testbed." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20504/.
Full textAtesoglu, Ozgur Mustafa. "High Angle Of Attack Maneuvering And Stabilization Control Of Aircraft." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608575/index.pdf.
Full textOlsson, Adam, and David Jacobsson. "How to Keep an Unbalanced Aircraft Balanced : Control Surfaces and Thrust Vectoring." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255832.
Full textFör att balansera och styra flygande farkoster måste det ofta användas någon typ av styrsystem, desto mindre stabil farkosten är utan något styrsystem desto mer avancerat system krävs. Detta projekt är ett experiment vars syfte är att försöka kontrollera en mycket instabil farkost med hjälp av styrbara roder. En design av farkosten modelleras i CAD efter en enkel överslagsräkning för att bestämma den nödvändiga kapaciteten av komponenterna. Därefter byggs en virtuell model av farkosten i Matlabs Simulink miljö som används till att testa styrsystemets kapabilitet och bestämma dess optimala inställningar. Slutligen byggs en fysisk modell för att se ifall styrsystemet är tillräckligt bra för att stabilisera farkosten under verkliga förhållanden vilket inte lyckas på grund av otillräcklig spin-kontroll. Olika lösningar på detta problem och andra möjliga förbättringar diskuteras.
Schaefermeyer, M. Ryan. "Aerodynamic Thrust Vectoring For Attitude Control Of A Vertically Thrusting Jet Engine." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1237.
Full textMuir, Ewan Andrew McPherson. "The application of robust inverse dynamics estimation to the control of a thrust vectoring fighter aircraft." Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337552.
Full textRobertson, Welsh Bradley. "On the influence of nozzle geometries on supersonic curved wall jets." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/on-the-influence-of-nozzle-geometries-on-supersonic-curved-wall-jets(bc8817e4-c812-44bc-8dfb-f5d0fdf62a72).html.
Full textSaucez, Manuel. "Résolution des qualités de vol de l'aile volante Airbus." Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0026/document.
Full textThe aim of this study is to solve the handling qualities problems of a long range blended wing body, at the conceptual design phase. That concept, also named flying wing in this report, is an aircraft which integrates the four aircraft functions (lift, control, propulsion, passengers transportation) in one single body. That configuration presents a benefit in cruise lift-over-drag ratio, as well as in noise emissions, due to the shielding effect provided by the inner wing to mask the engine noise.That configuration choice leads also to challenges. One of them is the handling qualities. The baseline studied flying wing presents initially longitudinal and lateral instabilities, as well as lack of roll manoeuvrability and difficulty to do the rotation at takeoff. In this report are proposed solutions, combining innovative control surfaces and original drivers, which are adapted to the configuration advantages. The handling qualitiesare solved in a resolution process with as few loops as possible, and the impact on the performances is minimized. The output of that process is the best control surfaces architecture and airfoils design which minimizes the impact of the handling qualities resolution on the cost of the mission
Dulke, Michael F., David Salinas, and Matthew D. Kelleher. "Heat transfer modeling of jet vane Thrust Vector Control (TVC)--Systems." Thesis, 1987. http://hdl.handle.net/10945/22822.
Full textDores, Delfim Zambujo das Collins Emmanuel G. Alvi Farruk S. "Feedback control for counterflow thrust vectoring with a turbine engine experiment design and robust control design and implementation /." Diss., 2005. http://etd.lib.fsu.edu/theses/available/etd-04082005-130006.
Full textAdvisors: Dr. Emmanuel G. Collins Jr., and Dr. Farruk S. Alvi, FAMU-FSU College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed June 15, 2005). Document formatted into pages; contains xvii, 185 pages. Includes bibliographical references.
Books on the topic "Thrust Vectoring Control (TVC)"
Nunn, R. H. TVC jet vane thermal modeling using parametric system identification. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textAsbury, Scott C. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle. Hampton, Va: Langley Research Center, 1993.
Find full textLallman, Frederick J. Preliminary design study of a lateral-directional control system using thrust vectoring. [s.l.]: National Aeronautics and Space Administration Scientific and Technical Information Branch, 1985.
Find full textMason, Mary L. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle. Hampton, Va: Langley Research Center, 1992.
Find full textNelms, R. M. Design of power electronics for TVC & EMA systems: Final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textCapone, Francis J. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.
Find full textImlay, Scott T. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows. Hampton, Va: Langley Research Center, 1986.
Find full textWing, David J. Static investigation of a multiaxis thrust-vectoring nozzle with variable internal contouring ability. Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textFoley, Robert J. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. Hampton, Va: Langley Research Center, 1991.
Find full textAsbury, Scott C. Multiaxis thrust-vectoring characteristics of a model representative of the F-18 High-Alpha Research Vehicle at angles of attack from 0 deg to 70 deg. Hampton, Va: Langley Research Center, 1995.
Find full textBook chapters on the topic "Thrust Vectoring Control (TVC)"
Adams, Richard J., James M. Buffington, Andrew G. Sparks, and Siva S. Banda. "Thrust Vectoring F-18 Design." In Advances in Industrial Control, 101–60. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2111-4_5.
Full textMiwa, Masafumi, Yuki Shigematsu, and Takashi Yamashita. "Control of Ducted Fan Flying Object Using Thrust Vectoring." In Intelligent Systems, Control and Automation: Science and Engineering, 97–107. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54276-6_7.
Full textConference papers on the topic "Thrust Vectoring Control (TVC)"
Snow, Barton H. "Thrust Vectoring Control Concepts and Issues." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901848.
Full textCollins, E. G., Y. Zhao, F. Alvi, M. I. Alidu, and P. J. Strykowski. "Feedback control for counterflow thrust vectoring." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384479.
Full textGarrison, Michael, Scott Steffan, Steve Tollefson, and Mark Reinecke. "Thrust Vector Control (TVC) System Architecture Trade Study Overview." In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5848.
Full textCORNELIUS, KENNETH, and GERALD LUCIUS. "Thrust vectoring control from underexpanded asymmetric nozzles." In 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3261.
Full textMason, Mark, and William Crowther. "Fluidic Thrust Vectoring for Low Observable Air Vehicles." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2210.
Full textCHAWLA, KALPANA, and W. VAN DALSEM. "Numerical simulation of STOL operations using thrust-vectoring." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-4254.
Full textWilliams, Reginald, and Baily Vittal. "Fluidic Thrust Vectoring and Throat Control Exhaust Nozzle." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-4060.
Full textJiang, B. W., C. H. Kuo, K. J. Peng, K. C. Peng, S. H. Hsiung, and C. M. Kuo. "Thrust Vectoring Control for Infrastructure Inspection Multirotor Vehicle." In 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2019. http://dx.doi.org/10.1109/iea.2019.8714892.
Full textWHITE, JOHN. "Attitude control of a spinning rocket via thrust vectoring." In Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2617.
Full textYong, Kenan, Hui Ye, Mou Chen, and Qingxian Wu. "Transformation model of thrust-vectoring using RBF neural network." In 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6895788.
Full textReports on the topic "Thrust Vectoring Control (TVC)"
Collins Jr, Emmanuel G. Feedback Control Design for Counterflow Thrust Vectoring. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada438337.
Full text