Academic literature on the topic 'Thundercloud'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thundercloud.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thundercloud"

1

Shi, Zheng, LuYing Li, YongBo Tan, HaiChao Wang, and ChunSun Li. "A Numerical Study of Aerosol Effects on Electrification with Different Intensity Thunderclouds." Atmosphere 10, no. 9 (August 30, 2019): 508. http://dx.doi.org/10.3390/atmos10090508.

Full text
Abstract:
Numerical simulations are performed to investigate the effect of varying CCN (cloud condensation nuclei) concentration on dynamic, microphysics, electrification, and charge structure in weak, moderate, and severe thunderstorms. The results show that the response of electrification to the increase of CCN concentration is a nonlinear relationship in different types of thunderclouds. The increase in CCN concentration leads to a significant enhancement of updraft in the weak thunderclouds, while the high CCN concentration in moderate and severe thunderclouds leads to a slight reduction in maximum updraft speed. The increase of the convection promotes the lift of more small cloud droplets, which leads to a faster and stronger production of ice crystals. The production of graupel is insensitive to the CCN concentration. The content of graupel increases from low CCN concentration to moderate CCN concentration, and slightly decreases at high CCN concentration, which arises from the profound enhancement of small ice crystals production. When the intensity of thundercloud increases, the reduction of graupel production will arise in advance as the CCN concentration increases. Charge production tends to increase as the aerosol concentration rises from low to high in weak and moderate thundercloud cases. However, the magnitude of charging rates in the severe thundercloud cases keeps roughly stable under the high CCN concentration condition, which can be attributed to the profound reduction of graupel content. The charge structure in the weak thundercloud at low CCN concentrations keeps as a dipole, while the weak thunderclouds in the other cases (the CCN concentration above 100 cm−3) change from a dipole charge structure to a tripole charge structure, and finally disappear with a dipole. In cases of moderate and severe intensity thunderclouds, the charge structure depicts a relatively complex structure that includes a multilayer charge region.
APA, Harvard, Vancouver, ISO, and other styles
2

Sin’kevich, Andrei, Bruce Boe, Sunil Pawar, Jing Yang, Ali Abshaev, Yulia Dovgaluk, Julduz Gekkieva, et al. "Investigation of Thundercloud Features in Different Regions." Remote Sensing 13, no. 16 (August 13, 2021): 3216. http://dx.doi.org/10.3390/rs13163216.

Full text
Abstract:
A comparison of thundercloud characteristics in different regions of the world was conducted. The clouds studied developed in India, China and in two regions of Russia. Several field projects were discussed. Cloud characteristics were measured by weather radars, the SEVERI instrument installed on board of the Meteosat satellite, and lightning detection systems. The statistical characteristics of the clouds were tabulated from radar scans and correlated with lightning observations. Thunderclouds in India differ significantly from those observed in other regions. The relationships among lightning strike frequency, supercooled cloud volume, and precipitation intensity were analyzed. In most cases, high correlation was observed between lightning strike frequency and supercooled volume.
APA, Harvard, Vancouver, ISO, and other styles
3

Baral, D. R., and K. N. Baral. "Electrification of Kathmandu Thundercloud: A Possible Mechanism." Tribhuvan University Journal 16 (November 16, 2010): 12–18. http://dx.doi.org/10.3126/tuj.v16i0.3786.

Full text
Abstract:
A Simple model has been developed with the plausible asumptions, and current terms that thundercloud are set up during thunderstorm activities . The electric field is then estimated for various values of RC time constant for field growth after lightning discharges as observed in the recovery curves of electric field recorded at ground level in Kathmandu Valley.Key words: Plausible asumptions; Thundercloud; Ground level ; Kathmandu ValleyTribhuvan University Journal Volume XVI, 1993Page: 12-18Uploaded date: 3 October, 2010
APA, Harvard, Vancouver, ISO, and other styles
4

Amoruso, V., and F. Lattarulo. "Thundercloud pre-stroke electrostatic modeling." Journal of Electrostatics 56, no. 2 (September 2002): 255–76. http://dx.doi.org/10.1016/s0304-3886(02)00070-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tennakone, K., and Prabath Hewageegana. "A model for Thundercloud Charge Separation." Sri Lankan Journal of Physics 13, no. 2 (April 19, 2013): 1. http://dx.doi.org/10.4038/sljp.v13i2.5432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Lin, Haojiang Wan, and Yazhou Chen. "Approximate Calculation and Feature Analysis of Electric Field in Space by Thunderclouds." International Journal of Antennas and Propagation 2021 (July 30, 2021): 1–9. http://dx.doi.org/10.1155/2021/1827619.

Full text
Abstract:
The calculation of electric field in space excited by thunderclouds is an important basis for lightning warning and protection. In numerical calculation of the electromagnetic field, it is often necessary to perform multiple loop nesting calculations on several triple integrals, which consume a lot of computing resources. In order to shorten the calculation time and improve the calculation efficiency, the electric field excited by the charged thunderclouds in space is theoretically derived with the analytical method by the thundercloud cylindrical charge pile model and based on the electrostatic field theory. The complex integrand function is approximated, so that the analytic expression of electric field in space is obtained in this paper. Through simulation and comparison, it is found that the approximate solution and the exact solution are similar in size, the change trend is the same, and the approximate analytical expression can be used for the approximate calculation of the electric field in a short range. Under certain conditions, the approximate solution can be converted into an accurate solution, which can be used for the accurate calculation of the electric field. Approximate calculation not only simplifies theoretical derivation but also improves calculation efficiency. The calculation time has been shortened from tens of hours to less than one second by using different calculation methods, which is a difference of 7 orders of magnitude. With approximate analytical expression, the electric field excited by charge pile with typical structures in thunderclouds in space is calculated and the characteristics of that are analyzed in this paper. For lightning protection of mobile targets, approximate calculation is of great significance in shortening the lightning warning time and enhancing the protection effect.
APA, Harvard, Vancouver, ISO, and other styles
7

Pasko, Victor P., Umran S. Inan, and Timothy F. Bell. "Ionospheric effects due to electrostatic thundercloud fields." Journal of Atmospheric and Solar-Terrestrial Physics 60, no. 7-9 (May 1998): 863–70. http://dx.doi.org/10.1016/s1364-6826(98)00022-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sapkota, B. K., and N. C. Varshneya. "Electrification of thundercloud by an entrainment mechanism." Meteorology and Atmospheric Physics 39, no. 3-4 (1988): 213–22. http://dx.doi.org/10.1007/bf01030299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takeuti, Tosio, Zen-Ichiro Kawasaki, Kazuki Funaki, Nobuichiro Kitagawa, and Jostein Huse. "On the Thundercloud Producing the Positive Ground Flashes." Journal of the Meteorological Society of Japan. Ser. II 63, no. 2 (1985): 354–58. http://dx.doi.org/10.2151/jmsj1965.63.2_354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Pratap, T. S. Verma, and N. C. Varshneya. "Effect of Thundercloud Motion of Its Microphysical Processes." Journal of the Meteorological Society of Japan. Ser. II 64, no. 2 (1986): 311–18. http://dx.doi.org/10.2151/jmsj1965.64.2_311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thundercloud"

1

Kably, Khalil. "Microdecharges entre hydrometeores : initialisation de l'eclair et rayonnement electromagnetique submicroseconde associe." Toulouse 3, 1988. http://www.theses.fr/1988TOU30142.

Full text
Abstract:
Des hypotheses recentes convergent toutes vers l'idee de l'existence de petites sources localisees a l'interieur du nuage orageux et responsables d'un rayonnement electromagnetique submicroseconde. Des investigations selon deux volets, le premier experimental (en laboratoire) et le second consistant en une modelisation numerique, nous ont permis aujourd'hui d'explorer les diverses possibilites et configurations de microdecharges entre hydrometeores. Ces dernieres sont tres probablement responsables, avec les phenomenes de jonction dans le canal foudre, de la majeure partie du rayonnement rapide lie a la decharge atmospherique. Elles constituent, en outre, la phase d'initialisation de toute decharge prenant naissance a l'interieur du nuage. Les experimentations ont ete menees dans le but de mesurer directement le courant mais egalement le champ electromagnetique rayonne par la microdecharge, permettant en outre, une determination indirecte du meme courant. L'analyse spectrale du champ rayonne a egalement ete effectuee. Ces mesures ont montre que la distance sur laquelle s'effectue la microdecharge joue un role considerable sur l'allure de la signature du courant ainsi que celle du champ rayonne. La modelisation tient compte de la deformation des hydrometeores (due a l'existence d'un champ electrique intense dans le nuage) de leur charge (soit la charge propre, soit celle qui apparait par influence electrostatique) ainsi que de leurs dimensions geometriques (petites ou grosses gouttes d'eau, cristaux de glace,. . . ). La phenomenologie de la microdecharge (corona, arc transitoire) est egalement prise en compte
APA, Harvard, Vancouver, ISO, and other styles
2

Gondot, Pascal. "L'electrisation des nuages orageux : etude d'un cas de centre positif de basse altitude par des moyens aeriens in situ." Clermont-Ferrand 2, 1988. http://www.theses.fr/1988CLF21091.

Full text
Abstract:
Un des objectifs de la campagne cooperative landes fronts 84 etait l'etude de l'electrisation des nuages convectifs au moyen de mesures aeroportees du champ electrique, de la charge des particules precipitantes, de la granulometrie des particules nuageuses et des parametres thermodynamiques et dynamiques. Une etude comparative de deux situations (6 juin et 28 juin 1984) a permis de constater que des nuages dont l'extension verticale du domaine de developpement des precipitations etait limitee au niveau -20**(o)c (6 juin), produisaient des particules precipitantes en majorite chargees positivement alors que dans le cas des nuages d'orages typiques du 28 juin, etendus jusqu'a la tropopause, l'electrisation negative dominait. L'etude detaillee d'un des petits cumulus du 6 juin a pu mettre en evidence l'association etroite liant le centre positif de basse altitude a la presence de graupels fortement charges positivement. Ces observations corroborent les resultats experimentaux de laboratoire sur les collisions entre graupels et cristaux en presence d'eau surfondue, en particulier en ce qui concerne la dependance en signe de la charge transferee aux graupels vis-a-vis de la temperature et a propos du role preponderant des plus gros graupels dans le phenomene d'electrisation a l'echelle du nuage
APA, Harvard, Vancouver, ISO, and other styles
3

Molinié, Gilles. "Le rôle de la précipitation dans les échanges électriques entre le nuage d'orage et le sol." Toulouse 3, 1998. http://www.theses.fr/1998TOU30258.

Full text
Abstract:
Le rôle de la précipitation dans les échanges électriques entre le nuage d'orage et le sol, est étudié pour des transferts de charge dus aux éclairs nuage-sol (cg) (1) et a la pluie (2 et 3). 1- cg et précipitation : les distributions spatiales des précipitations et des impacts des cg montrent que ces derniers sont plutôt a l'avant des cellules orageuses si elles se déplacent à une vitesse supérieure à environ 10 m s##1. Ceci pourrait être en partie du a la dynamique du nuage. La relation quantitative entre la précipitation et les cg, est étudiée à l'échelle journalière pour laquelle la quantité d'eau par cg est du même ordre de grandeur pour l'ensemble des événements, sa variabilité semble liée a l'intensité de la convention. A l'échelle de l'orage, la relation entre l'évolution de la fréquence des cg et celle de l'intensité moyenne de la précipitation est souvent conséquente mais sensiblement différente d'un événement a l'autre. La structure verticale des précipitations et la fréquence des cg sont corrélées. Nous pensons que la descente vers le sol des précipitations chargées négativement renforce le champ électrique local et ambiant et donc favorise le déclenchement des cg. 2- charge des précipitations : la mesure de paramètres électriques près du sol sous orage (campagne de mesure Lannemezan 1996) a révélé que : - la précipitation transporte en majorité de la charge négative au sol ; - l'excursion du champ électrique en polarité opposée est simultanée a la détection de précipitations au sol (neutralisation au sol de la charge portée par la précipitation) ; - la mesure simultanée de précipitation au sol et de production de charge d'espace du signe du champ électrique ambiant (possible rôle de l'éclatement des gouttes de pluie sur le sol) ; 3- évolution de la charge des gouttes de pluie entre le nuage et le sol : la modélisation des phénomènes de capture sélective d'ions, coalescence et rupture aérodynamique montre que la charge des gouttes peut être atténue typiquement de 30% de leur valeur initiale (charge d'espace constituée de petits ions, densité: 0,5 nc m##3) au cours de la traversée de l'espace nuage-sol.
APA, Harvard, Vancouver, ISO, and other styles
4

Li-JouLee and 李立柔. "Exploring the Electrical Coupling of the Thundercloud and the Lower Ionosphere via the Analysis of the ISUAL Secondary TLEs." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/43738925420457473060.

Full text
Abstract:
博士
國立成功大學
物理學系碩博士班
101
Transient luminous events (TLEs) are large-scale luminous emissions occurring in the region between thundercloud tops and the lower ionosphere, and are closely related to the underlying thunderstorm electric activities. TLEs observation are usually carried out on the ground, onboard the spacecrafts, or on space shuttles. ISUAL (Imager of Sprites and Upper Atmospheric Lightning) payload onboard the FORMOSAT-2 satellite is the first space-borne experiment with the long-term TLEs survey as its main mission goal, and has contributed substantially toward our understanding of these natural phenomena since it was launched in May 2004. In this thesis, some multi-TLE events, mainly events contain secondary sprites, secondary jets, secondary gigantic jets (secondary GJs) or GJ-induced sprites, are analyzed using the optical and electromagnetic ULF (Ultra Low Frequency) data. The possible generating scenario for each type of secondary TLEs is proposed according to their observable features. Furthermore, quasi-electrostatic field model calculations are carried out to validate the proposed generating scenarios for secondary sprites and GJ-induced sprites. From analyzing multi-sprite events, it was found that ~7% of them start with a classical sprite and then another sprite soon followed with a spatial displacement from the preceding sprite. Most of the multi-sprite events were dancing sprites with a horizontal shift between sprites. However, we also found three secondary sprites, that hadn’t been reported before and exhibit vertical displacements from preceding sprite. 〉From the analysis of spectral and ULF data, we propose that the successively occurring dancing sprites and the secondary sprites are related to the extending leaders of the cloud-to-ground lightning, which are often followed by a continuing current or even a second stroke. The dancing sprites may be induced by the subsequent leaders in the cloud extending mainly in the horizontal direction, while the secondary sprites may be triggered by the leaders extending primarily in the vertical direction. Through performing quasi-electrostatic field modeling with three different sets of input parameters, we have confirmed that the electric field in the region below the preceding sprites could be enhanced by the vertical-extending continuing current. Previous ground observations had reported that a secondary jet sometimes formed under the preceding sprite and then propagated upward from the cloud top toward the lower edge of the preceding sprite. From ISUAL observation, beside secondary jets, we find some secondary TLEs resembling secondary jets but with higher terminal altitudes (near the lower ionosphere boundary), hence these gigantic secondary jets are termed as ‘secondary gigantic jets’ (secondary GJs for short). Between July 2004 and May 2012, ISUAL recorded 27 secondary jets and 5 secondary GJs. Combining the observational features of the secondary jets/GJs, it is believed that the factors in influencing the generation of the secondary jets/GJs include the height of the local ionosphere boundary, and more importantly the abundance and the distribution of the negative charge left in the cloud. It appears that the preceding sprite mainly exert its influence on the secondary jet/GJ by perturbing the local ionosphere height. Three possible secondary GJ-induced sprites were recorded by ISUAL and shared a similar generating sequence. Each event began with a +CG-induced sprite, and a secondary GJ followed within ~30-50 ms. Then, 1 ms after the secondary GJ, a new sprite occurred near the GJ without a discernible, associated impulsive lightning signal. Cross-analysis of the spectral, image and electromagnetic data of these three events indicates that the new sprites were likely had been induced by the secondary GJs, and the high current moment of the secondary GJs appears to be a crucial factor for the induction of the new sprites. From the quasi-electrostatic modeling, it can be concluded that the secondary GJ, being a faster discharge, can produce a stronger electric field around 70-80 km than the typical type-I GJ.
APA, Harvard, Vancouver, ISO, and other styles
5

STANSBERY, EILEEN K. "COSMIC RAY IONIZATION AS A MECHANISM FOR VERTICAL LIGHTNING FROM THE TOPS OF THUNDERCLOUDS." Thesis, 1986. http://hdl.handle.net/1911/13199.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thundercloud"

1

Miller, K. L. Numerical modelling of thundercloud electrification and lighting. Manchester: UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kyrala, A. The physics of charge separation preceding lightning strokes in thunderclouds. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jarzembski, M. A. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jarzembski, M. A. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jarzembski, M. A. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds. Marshall Space Flight Center, Alabama: Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jarzembski, M. A. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chaplin, Lynne Hess. Purple Thundercloud. Vantage Pr, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adams, Ansel. Unicorn Peak, Thundercloud, Yosemite. Bulfinch, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adams, Ansel. Thundercloud, Ellery Lake, High Sierra, California, 1934. Bulfinch, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spreen, Johannes F. The Saga of Thundercloud and Dancing Star. iUniverse, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thundercloud"

1

Kasemir, H. W. "The Thundercloud." In Heinz-Wolfram Kasemir: His Collected Works, 275–96. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1002/9781118704813.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharya, Sonia, and Himadri Bhattacharyya Chakrabarty. "Studies on Radar Imageries of Thundercloud by Image Processing Technique." In Data Management, Analytics and Innovation, 365–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9949-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takeuchi, Nobunao, Ken’Ichi Narita, and Yukihiro Goto. "Forecast of Winter Thundercloud by Frequency Analysis of Athmospheric Pressure." In Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, 305–12. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1829-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, Sonia, and Himadri Bhattacharyya Chakrabarty. "A Comparative Study Between True Color and Grayscale Radar Imageries of Thundercloud." In Computers and Devices for Communication, 102–15. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8366-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dijkhuis, G. C. "Boundary Layer Model and Calculation for Horizontal Thundercloud Electrification Preceding Natural and Rocket-Triggered Lightning." In Environmental and Space Electromagnetics, 113–24. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cooray, Vernon. "Formation of Thunderclouds." In An Introduction to Lightning, 71–77. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8938-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, K., and K. Horii. "Artificially Triggered Lightning Experiments for Winter Thunderclouds." In Environmental and Space Electromagnetics, 102–12. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ren, Xiaoming, Jun Liu, and Qin Zhou. "The Induced Charge Test under Thunderclouds Simulation Background." In AsiaSim 2012, 306–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34384-1_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cooray, Vernon. "Charge Generation in Thunderclouds and Different Forms of Lightning Flashes." In An Introduction to Lightning, 79–89. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8938-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"9 Thunderclouds from Africa, 1903–1905." In Big Swords, Jesuits, and Bondelswarts, 213–67. BRILL, 2015. http://dx.doi.org/10.1163/9789004306875_011.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thundercloud"

1

Stites, Joseph, Ambareen Siraj, and Eric L. Brown. "Smart Grid Security Educational Training with ThunderCloud." In the 2013. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2528908.2528927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arevalo, Liliana, and Vernon Cooray. "Corona charge produced by thundercloud fields in grounded rods." In 2012 International Conference on Lightning Protection (ICLP). IEEE, 2012. http://dx.doi.org/10.1109/iclp.2012.6344365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shimoji, Nobuaki, and Yu Iida. "A dynamics simulation of particles in a thundercloud model." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mantang Su, Jiaqing Chen, Yu Zhang, and Jie Yang. "The influence of ice particles on microwave propagation in thundercloud." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karashtin, Anatoly N., Yury V. Shlyugaev, and Olga S. Karashtina. "High Frequency Radio Emission from a Thundercloud: A Case Study." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2020. http://dx.doi.org/10.23919/ursigass49373.2020.9232358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seminario-Garcia, Anibal, Cristina Gonzalez-Moran, and Pablo Arboleya. "Theoretical Model for the Progression of Leader Steppers in a Thundercloud." In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2018. http://dx.doi.org/10.1109/eeeic.2018.8493835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Bochen, Bolin Li, and Jianjia Huang. "Tracing movement of thundercloud based on network-distributed lightning electric field sensors." In 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). IEEE, 2017. http://dx.doi.org/10.1109/emc-b.2017.8260354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hibino, Kinya. "Observation of intense fluxes of charged particles in association with thundercloud in Tibet." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Yu, Jia-qing Chen, Man-tang Su, Yue-Qi Han, Ying-qiang Wang, and Jie Yang. "The forecasting method of thundercloud electric-field based on the data of networking atmosphere electric-field." In 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM). IEEE, 2015. http://dx.doi.org/10.1109/ceem.2015.7368628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hariharan, Balakrishnan, S. Ahmad, A. Chandra, S. R. Dugad, S. K. Gupta, Y. Hayashi, P. Jagadeesan, et al. "Measurement of the electrical properties of a thundercloud through muon imaging by the GRAPES-3 experiment." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0185.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thundercloud"

1

Borovsky, J., M. Buchwald, and D. Suszcynsky. Remote sensing of thundercloud electric fields. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/518767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography