Academic literature on the topic 'Thyroid Hormone Synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thyroid Hormone Synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thyroid Hormone Synthesis"
Cordeiro, Aline, Luana Lopes Souza, Marcelo Einicker-Lamas, and Carmen Cabanelas Pazos-Moura. "Non-classic thyroid hormone signalling involved in hepatic lipid metabolism." Journal of Endocrinology 216, no. 3 (January 7, 2013): R47—R57. http://dx.doi.org/10.1530/joe-12-0542.
Full textYu, Jing, Siyi Shen, Ying Yan, Lingxiao Liu, Rongkui Luo, Shengnan Liu, Yuting Wu, Yuying Li, Jingjing Jiang, and Hao Ying. "Iodide Excess Inhibits Thyroid Hormone Synthesis Pathway Involving XBP1-Mediated Regulation." Nutrients 15, no. 4 (February 9, 2023): 887. http://dx.doi.org/10.3390/nu15040887.
Full textKöhrle, Josef. "Selenium, Iodine and Iron–Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism." International Journal of Molecular Sciences 24, no. 4 (February 8, 2023): 3393. http://dx.doi.org/10.3390/ijms24043393.
Full textLudgate, Marian. "Extrathyroidal thyroid hormone synthesis?" Journal of Endocrinology 210, no. 1 (May 3, 2011): 3–4. http://dx.doi.org/10.1530/joe-11-0159.
Full textSousa, J. C., G. Morreale de Escobar, P. Oliveira, M. J. Saraiva, and J. A. Palha. "Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand." Journal of Endocrinology 187, no. 2 (November 2005): 257–66. http://dx.doi.org/10.1677/joe.1.06406.
Full textSevero, Juliana Soares, Jennifer Beatriz Silva Morais, Taynáh Emannuelle Coelho de Freitas, Ana Letícia Pereira Andrade, Mayara Monte Feitosa, Larissa Cristina Fontenelle, Ana Raquel Soares de Oliveira, Kyria Jayanne Clímaco Cruz, and Dilina do Nascimento Marreiro. "The Role of Zinc in Thyroid Hormones Metabolism." International Journal for Vitamin and Nutrition Research 89, no. 1-2 (July 2019): 80–88. http://dx.doi.org/10.1024/0300-9831/a000262.
Full textYaglova, Nataliya V., Sergey S. Obernikhin, Ekaterina P. Timokhina, Valentin V. Yaglov, Dibakhan A. Tsomartova, Svetlana V. Nazimova, Elina S. Tsomartova, Marina Y. Ivanova, Elizaveta V. Chereshneva, and Tatiana A. Lomanovskaya. "Bilateral Shifts in Deuterium Supply Similarly Change Physiology of the Pituitary–Thyroid Axis, but Differentially Influence Na+/I− Symporter Production." International Journal of Molecular Sciences 24, no. 7 (April 6, 2023): 6803. http://dx.doi.org/10.3390/ijms24076803.
Full textFokina, E. A., and A. O. Shpakov. "Thyroid diseases and new approaches for their treatment." Siberian Journal of Clinical and Experimental Medicine 37, no. 3 (October 20, 2022): 90–97. http://dx.doi.org/10.29001/2073-8552-2022-37-3-90-97.
Full textROOT, Allen W., Dorothy SHULMAN, Jennifer ROOT, and Frank DIAMOND. "The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats." Acta Endocrinologica 113, no. 4_Suppl (December 1986): S367—S375. http://dx.doi.org/10.1530/acta.0.112s367.
Full textGilbert, Mary E., Katherine L. O’Shaughnessy, Susan E. Thomas, Cal Riutta, Carmen R. Wood, Alicia Smith, Wendy O. Oshiro, et al. "Thyroid Disruptors: Extrathyroidal Sites of Chemical Action and Neurodevelopmental Outcome—An Examination Using Triclosan and Perfluorohexane Sulfonate." Toxicological Sciences 183, no. 1 (July 16, 2021): 195–213. http://dx.doi.org/10.1093/toxsci/kfab080.
Full textDissertations / Theses on the topic "Thyroid Hormone Synthesis"
Lundåsen, Thomas. "Studies on the hormonal regulation of bile acid synthesis /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-053-4/.
Full textUnderhill, Brian Kimball. "The influence of Leptin on metabolic expenditure and thermogenesis during thyroid hormone (T₃) suppression in the obese (OB/OB) mouse." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1767.
Full textHoste, Candice. "Caractérisation du complexe générateur d'H2O2 DUOX/DUOXA: étude de son rôle dans la biosynthèse des hormones thyroïdiennes et dans les mécanismes de défense." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209804.
Full textInitialement clonés à partir de la thyroïde dans notre laboratoire, les ADNc codant pour les protéines DUOX ont été identifiées dans d’autres tissus, comme par exemple la prostate ou l’épithélium respiratoire où DUOX1 est majoritaire. DUOX2 se retrouve également dans les glandes salivaires, dans la muqueuse rectale et tout le long du tractus digestif. D’autre part, un orthologue de DUOX, appelé Udx1, a été identifié en 2004 au niveau de la membrane ovocytaire chez l’oursin. Dans chacun de ces tissus, l’H2O2 produit par les protéines joue un rôle clef.
Le mécanisme d’activation de DUOX dans tous ces tissus n’a été identifié que récemment. En effet, pour être exprimé sous forme active à la surface cellulaire, les protéines DUOX nécessitent un facteur de maturation spécifique. Ces facteurs, appelés DUOXA1 et 2 pour « DUOX activator », suivent l’expression tissulaire de leur DUOX respectif. Nous avons montré que la région COOH-terminale de DUOXA1 est responsable de l’activité génératrice d’H2O2 de DUOX1. DUOX2 peut produire de l’H2O2 ou de l’O2.-. L’extrémité NH2-terminale de DUOXA2 est critique dans cette activité et détermine le type de dérivé oxygéné produit. Dans notre système, DUOXA2 n’est pas détecté à la surface cellulaire, sauf en cas de modification de son extrémité amino-terminale par l’addition d’un épitope. DUOXA1 peut être exprimé à la membrane plasmique mais sa présence n’est pas nécessaire au sein du complexe formé avec DUOX pour que ce dernier soit actif. Les facteurs de maturation jouent donc un rôle de protéine chaperonne, induisant la maturation et la translocation d’une protéine DUOX active à la surface cellulaire.
Dans la thyroïde, l’H2O2 produit par les protéines DUOX constitue le cofacteur de la thyroperoxydase catalysant l’oxydation de l’iode et le couplage de sa forme oxydée sur des résidus tyrosines de la thyroglobuline menant in fine à la synthèse des hormones thyroïdiennes T3 et T4 et leur relarguage dans la circulation sanguine. Plusieurs mutations dans le gène DUOX2 ont déjà été décrites chez des patients atteints de dyshormonogenèse transitoire ou permanente. Nous avons mis en évidence qu’une inactivation totale de la protéine DUOX2 était compatible avec un état hypothyroïdien peu sévère et transitoire, indiquant l’intervention probable de DUOX1 dans la synthèse des hormones thyroïdiennes. Le défaut génétique identifié est composé d’une délétion génomique partielle d’un allèle associée à une mutation faux-sens (G1518S) sur l’autre allèle du patient hypothyroïdien. Cette mutation, située dans le site catalytique de l’enzyme, mène à une abolition de l’activité de l’enzyme qui est néanmoins exprimée partiellement à la surface cellulaire.
Les messagers des DUOX ont été identifiés récemment dans les tractus digestif et respiratoire. Le rôle joué par l’H2O2 dans ces tissus semble avant tout être un rôle de défense contre les micro-organismes en mettant en jeu la lactoperoxydase oxydant le thiocyanate en composé bactéricide actif. Nous avons montré que l’H2O2 produit par DUOX exerce un effet répulsif sur les bactéries. En effet, l’invasion de cellules CHO exprimant de manière stable DUOX2 et DUOXA2 par Salmonella Typhimurium est diminuée lorsque la production d’H2O2 de ces cellules est stimulée. Cet effet répulsif constituerait un rôle primordial pour DUOX au niveau des muqueuses respiratoire et digestive.
Lors de la fertilisation, une explosion respiratoire a lieu et de l’H2O2 est produit. Cet H2O2 fourni à l’ovoperoxydase permettrait la formation d’une enveloppe rigide autour de l’ovocyte, bloquant ainsi l’entrée de spermatozoïdes surnuméraires. Ce phénomène a été largement étudié dans l’ovocyte d’oursin, dans lequel la NADPH oxydase responsable de la production d’H2O2 a été caractérisée: il s’agit de Udx1, l’orthologue de DUOX. Chez les mammifères, le phénomène existe mais le mécanisme est en grande partie inconnu. Nous avons montré que les ARNm des DUOX sont exprimés dans l’ovocyte humain ;ceci nous permet d’émettre l’hypothèse que l’inhibition de la polyspermie chez l’homme pourrait être similaire à celle de l’oursin.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Radovanovic, Milica. "Synthesis of novel thyroid hormone analogues." Thesis, 1999. https://vuir.vu.edu.au/17926/.
Full textRoy, Gouriprasanna. "Biomimetic Studies On Anti-Thyroid Drugs And Thyroid Hormone Synthesis." Thesis, 2007. https://etd.iisc.ac.in/handle/2005/514.
Full textRoy, Gouriprasanna. "Biomimetic Studies On Anti-Thyroid Drugs And Thyroid Hormone Synthesis." Thesis, 2007. http://hdl.handle.net/2005/514.
Full textHsu, Chih Wei, and 許值瑋. "Thyroid Hormone Synthesis in Ontogenetic Tilapia (Oreochromis mossambicus)." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/24092866107837281415.
Full text國立嘉義大學
水生生物科學系研究所
99
There were two aims in this study: (1) to confirm which type of thyroid hormone of tilapia was gifted from maternal origin; (2) when did thyroid hormone start to synthesize in tilapia larvae. We identified that 100 % of the yolk disappeared at 9 dph (day post hatching). We also observed whole body of T3 content was gradually lower before 11dph, but T4 contents can’t be detected at the same stage. Besides, TU can not inhibit T3 synthesis in 0- 13 dph, but inhibited effects by TU was observed during 13- 26 dph. According to the results, we suggested that the female fish transfer T3 to its filial generation, but not T4. On the other hand, the first thyroid follicular cells were found at 3 dph, and the immuno-cytochemistry (ICC) signals of TSH were located at pituitary of 9 dph tilapia. The T4 content was detected at 13 dph stage, and the type I deiodinase (D1) mRNA expression was started to increase at 15 dph. Based on these data, we confirmed that the maternal orgin provid T3 not T4 to the eggs. The thyroid hormone synthesis of tilapia was started at 9- 13 dph, and it showed a secretion peak on T4 at 19 dph.
Stoney, P. N., Gisela Helfer, D. Rodrigues, P. J. Morgan, and P. J. McCaffery. "Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes." 2015. http://hdl.handle.net/10454/10838.
Full textThyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Books on the topic "Thyroid Hormone Synthesis"
Nicola, Juan Pablo, Ari J. Wassner, and Cintia E. Citterio, eds. Inborn Errors of Synthesis and Sensitivity to Thyroid Hormone. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-371-1.
Full textCastellanos, Madeleine M. Female Sexual Biochemistry (DRAFT). Edited by Madeleine M. Castellanos. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190225889.003.0001.
Full textParker, Philip M. The 2007-2012 World Outlook for Thyroid and Anti-Thyroid Preparations of Hormones and Synthetic Substitute Pharmaceuticals. ICON Group International, Inc., 2006.
Find full textThe 2006-2011 World Outlook for Thyroid and Anti-Thyroid Preparations of Hormones and Synthetic Substitute Pharmaceuticals. Icon Group International, Inc., 2005.
Find full textParker, Philip M. The 2007-2012 Outlook for Thyroid and Anti-Thyroid Preparations of Hormones and Synthetic Substitute Pharmaceuticals in India. ICON Group International, Inc., 2006.
Find full textParker, Philip M. The 2007-2012 Outlook for Thyroid and Anti-Thyroid Preparations of Hormones and Synthetic Substitute Pharmaceuticals in Greater China. ICON Group International, Inc., 2006.
Find full textParker, Philip M. The 2007-2012 Outlook for Thyroid and Anti-Thyroid Preparations of Hormones and Synthetic Substitute Pharmaceuticals in the United States. ICON Group International, Inc., 2006.
Find full textBook chapters on the topic "Thyroid Hormone Synthesis"
Hennemann, G., and T. J. Visser. "Thyroid Hormone Synthesis, Plasma Membrane Transport and Metabolism." In Pharmacotherapeutics of the Thyroid Gland, 75–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60709-7_4.
Full textIshii, Sumiyasu, and Masanobu Yamada. "Disruption of Feedback Regulation of Thyroid Hormone Synthesis/Secretion and Brain Development." In Thyroid Hormone Disruption and Neurodevelopment, 69–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3737-0_5.
Full textKoibuchi, Noriyuki. "Molecular Mechanisms of Thyroid Hormone Synthesis and Secretion." In Endocrinology, 73–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-44675-2_5.
Full textKoibuchi, Noriyuki. "Molecular Mechanisms of Thyroid Hormone Synthesis and Secretion." In Endocrinology, 1–9. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27318-1_5-1.
Full textQuerido, A., K. Schut, and Janke Terpstra. "Hormone Synthesis in the Iodine-Deficient Thyroid Gland." In Ciba Foundation Symposium - Regulation and Mode of Action of Thyroid Hormones (Colloquia on Endocrinology, Vol. 10), 124–34. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719022.ch9.
Full textJi, Hong, Hong Wang, Ruo-Heng Zhang, and Mei-Chang Shao. "Synthesis of the DNA-binding domain of human thyroid hormone receptor segments." In Peptides, 109–11. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9069-8_27.
Full textSanchez-Franco, Franco, M. Teresa de los Frailes, and Lucinda Cacicedo. "Inhibitory Effect of Thyroid Hormone on Protein Synthesis by Fetal Rat Neurons in Primary Culture." In Frontiers in Thyroidology, 647–50. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5260-0_117.
Full textRokita, Steven E. "Synthetic Thyroid Hormone." In Iodine Chemistry and Applications, 411–20. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118909911.ch21.
Full textPingitore, Alessandro, Vincenzo Lionetti, and Francesca Forini. "Synthetic Thyroid Hormone and Thyroid Hormone Analogues for Treatment of Heart Failure." In Thyroid and Heart Failure, 225–41. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1143-4_20.
Full textVisser, Theo J. "Regulation of Thyroid Function, Synthesis, and Function of Thyroid Hormones." In Endocrinology, 3–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45013-1_1.
Full textConference papers on the topic "Thyroid Hormone Synthesis"
Castro, Guilherme V. de, Vitor Lacerda Sanches, Paulo M. Donate, Igor Polikarpov, and Mirela I. de Sairre. "Synthesis of ligands for nuclear receptors of thyroid hormones." In 15th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-15bmos-bmos2013_2013818233325.
Full textAadim, Kadhim A., Rafel H. Jassem, Ban H. Adil, Mohammad M. Farhan, and Salah M. Al-Chalabi. "Synthesis of zinc nanoparticles by laser induced plasma and its effects on levels of thyroid hormones." In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES20. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032721.
Full textGarmaeva, D. V., D. S. Adushinov, A. I. Kuznetsov, and F. S. Mirvaliyev. "Plasma concentration of thyroid hormones and corticosterone in hypothyroid rats and its correction with synthetic enkephalin." In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093895.
Full textReports on the topic "Thyroid Hormone Synthesis"
Koven, William, Gordon Grau, Benny Ron, and Tetsuya Hirano. Improving fry quality, survival and growth in commercially farmed fish by dietary stimulation of thyroid hormone production in premetamorphosing larvae. United States Department of Agriculture, 2004. http://dx.doi.org/10.32747/2004.7695856.bard.
Full text