Academic literature on the topic 'THz quantum cascade lasers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THz quantum cascade lasers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "THz quantum cascade lasers"

1

Sushil Kumar, Sushil Kumar. "Quantum cascade lasers operating from 1.4 to 4 THz (Invited Paper)." Chinese Optics Letters 9, no. 11 (2011): 110003–9. http://dx.doi.org/10.3788/col201109.110003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vitiello, Miriam Serena, and Alessandro Tredicucci. "Tunable Emission in THz Quantum Cascade Lasers." IEEE Transactions on Terahertz Science and Technology 1, no. 1 (2011): 76–84. http://dx.doi.org/10.1109/tthz.2011.2159543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scalari, G., C. Walther, M. Fischer, et al. "THz and sub-THz quantum cascade lasers." Laser & Photonics Review 3, no. 1-2 (2009): 45–66. http://dx.doi.org/10.1002/lpor.200810030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brandstetter, Martin, Alexander Benz, Christoph Deutsch, et al. "Superconducting Microdisk Cavities for THz Quantum Cascade Lasers." IEEE Transactions on Terahertz Science and Technology 2, no. 5 (2012): 550–55. http://dx.doi.org/10.1109/tthz.2012.2212321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Бабичев, А. В., А. С. Курочкин, Е. С. Колодезный та ін. "Гетероструктуры одночастотных и двухчастотных квантово-каскадных лазеров". Физика и техника полупроводников 52, № 6 (2018): 597. http://dx.doi.org/10.21883/ftp.2018.06.45922.8751.

Full text
Abstract:
AbstractThe results of development of the basic structure and technological conditions of growing heterostructures for single- and dual-frequency quantum-cascade lasers are reported. The heterostructure for a dual-frequency quantum-cascade laser includes cascades emitting at wavelengths of 9.6 and 7.6 μm. On the basis of the suggested heterostructure, it is possible to develop a quantum-cascade laser operating at a difference frequency of 8 THz. The heterostructures for the quantum-cascade laser are grown using molecularbeam epitaxy. The methods of X-ray diffraction and emission electron micro
APA, Harvard, Vancouver, ISO, and other styles
6

Hübers, Heinz-Wilhelm, Heiko Richter, Martin Wienold, Xiang Lü, Lutz Schrottke, and Holger T. Grahn. "Terahertz spectroscopy using quantum-cascade lasers." Photoniques, no. 101 (March 2020): 27–32. http://dx.doi.org/10.1051/photon/202010127.

Full text
Abstract:
Terahertz (THz) quantum-cascade lasers (QCLs) provide powerful, narrow-band, and frequencytunable radiation, which makes them ideal sources for high-resolution molecular spectroscopy. A first application of a THz QCL has been as local oscillator in a heterodyne spectrometer for astronomy on board a Boeing 747. For laboratory spectroscopy, QCLs close the so-called THz gap and enable new research topics.
APA, Harvard, Vancouver, ISO, and other styles
7

Fujita, Kazuue, Shohei Hayashi, Akio Ito, Masahiro Hitaka, and Tatsuo Dougakiuchi. "Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers." Nanophotonics 8, no. 12 (2019): 2235–41. http://dx.doi.org/10.1515/nanoph-2019-0238.

Full text
Abstract:
AbstractTerahertz quantum cascade laser sources with intra-cavity non-linear frequency mixing are the first room-temperature electrically pumped monolithic semiconductor sources that operate in the 1.2–5.9 THz spectral range. However, high performance in low-frequency range is difficult because converted terahertz waves suffer from significantly high absorption in waveguides. Here, we report a sub-terahertz electrically pumped monolithic semiconductor laser. This sub-terahertz source is based on a high-performance, long-wavelength (λ ≈ 13.7 μm) quantum cascade laser in which high-efficiency te
APA, Harvard, Vancouver, ISO, and other styles
8

Sirtori, Carlo, Stefano Barbieri, and Raffaele Colombelli. "Wave engineering with THz quantum cascade lasers." Nature Photonics 7, no. 9 (2013): 691–701. http://dx.doi.org/10.1038/nphoton.2013.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scamarcio, Gaetano, Miriam Serena Vitiello, and Vincenzo Spagnolo. "Hot Electrons in THz Quantum Cascade Lasers." Journal of Infrared, Millimeter, and Terahertz Waves 34, no. 5-6 (2013): 357–73. http://dx.doi.org/10.1007/s10762-013-9979-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SUN, J. P., G. I. HADDAD, M. DUTTA, and M. A. STROSCIO. "QUANTUM WELL INTERSUBBAND LASERS." International Journal of High Speed Electronics and Systems 09, no. 04 (1998): 867–99. http://dx.doi.org/10.1142/s0129156498000373.

Full text
Abstract:
This chapter/paper provides an overview of quantum well intersubband lasers including quantum cascade and step quantum well lasers. A simplified model of the quantum cascade laser is presented which provides a good estimate of major device parameters and illustrates the principles of operation and physical processes. Device schemes of other intersubband lasers such as step quantum wells are also presented and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "THz quantum cascade lasers"

1

Alton, Jesse. "Bound-to-continuum THz quantum cascade lasers." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pistore, Valentino. "Modelocking of THz quantum cascade lasers : dispersion control and non-linearities." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS302.pdf.

Full text
Abstract:
Les LCQ THz sont aujourd'hui considérés comme une plate-forme prometteuse pour la génération d’impulsions THz intenses et ultracourtes. En raison de leur temps de récupération du gain rapide, le verrouillage en mode passif des LCQ THz s'est jusqu'à présent révélé difficile. Au contraire, le verrouillage de mode actif avec une modulation hyperfréquence a été appliqué avec succès. La durée du pouls a cependant été difficile à réduire malgré des années de recherche. En 2017, notre groupe a généré des impulsions THz de 4ps grâce à l'application d'une structure intégrée (un GTI) visant à réduire la
APA, Harvard, Vancouver, ISO, and other styles
3

Cai, Xiaowei Ph D. Massachusetts Institute of Technology. "Efficient THz lasers and broadband amplifiers based on quantum cascade gain media." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93073.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 105-110).<br>One of the most important applications for Terahertz (THz) quantum cascade (QC) lasers is to provide compact and powerful frequency-stabilized solid-state sources as local oscillators in heterodyne receivers for astronomical studies. The first part of the thesis is dedicated to the device cavity design, fabrication and characterization of the microstrip antenna coupled third-orde
APA, Harvard, Vancouver, ISO, and other styles
4

Loghmari, Zeineb. "Lasers à cascades quantiques InAs / AISb au-delà de 10µm : émission mono-fréquence et génération du THz par différence de fréquences." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS088.

Full text
Abstract:
Des applications telles que la spectroscopie des gaz ou l’imagerie médicale nécessitent des sources de lumières émettant dans l’infrarouge moyen et lointain (10 µm&lt;λ &lt; 28 µm) ainsi que dans le THz (λ &gt; 60µm). Des composants à émission mono-fréquence, fonctionnant en régie continu (CW) et performants sont primordiales pour ce type d’applications. Les lasers à cascade quantiques (LCQs) sont les uniques sources pouvant couvrir cette large gamme de longueur d’onde grâce à leurs transitions inter-sous bandes. Toutefois les performances des LCQs dans cette gamme de longueur d’onde sont souv
APA, Harvard, Vancouver, ISO, and other styles
5

Badhwar, Shruti. "Laterally confined THz sources and graphene based THz optics." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246259.

Full text
Abstract:
The region between the infrared and microwave region in the electromagnetic spectrum, the Terahertz (THz) gap, provides an exciting opportunity for future wireless communications as this band has been under utilised. This doctoral work takes a two-pronged approach into closing the THz gap with low-dimensional materials. The first attempt addresses the need for a compact THz source that can operate at room temperature. The second approach addresses the need to build optical elements such as filters and modulators in the THz spectrum. Terahertz quantum cascade lasers (THz QCLs) are one of the mo
APA, Harvard, Vancouver, ISO, and other styles
6

Alhathlool, Raed Hussain S. "The development and applications of terahertz quantum cascade lasers." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6421/.

Full text
Abstract:
Terahertz frequency quantum cascade lasers (THz QCLs) are compact, semiconductor sources of coherent THz radiation, and have numerous potential applications in chemical sensing and industrial inspection, as well as security and biomedical imaging. In this thesis, the development of QCLs as sources of THz radiation is explored, together with their application in self-mixing (SM) imaging systems. The effect of reducing the etch depth of the THz QCL active region was explored, and its influence on QCL performance evaluated. This was aimed of improving the thermal management in QCLs, as well as op
APA, Harvard, Vancouver, ISO, and other styles
7

Evans, Craig A. "The optical and thermal properties of quantum cascade lasers." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/5079/.

Full text
Abstract:
The optical and thermal properties of quantum cascade lasers (QCLs) are investigated through the development of comprehensive theoretical models. The optical properties of various multilayer quantum cascade laser waveguides are investigated by solving Maxwell’s equations using a transfer-matrix method. The complex material refractive indices are calculated using a Drude-Lorentz model which takes into account both phonon and plasma contributions to the material properties. A Caughey-Thomas-like mobility model is used to estimate the temperature dependence of the electron mobility which is found
APA, Harvard, Vancouver, ISO, and other styles
8

Abadie, Claire. "Détecteurs et lasers THz à base d'antennes accordables en fréquence." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS145/document.

Full text
Abstract:
Les dispositifs optoélectroniques sont importants pour nombreuses applications de la vie de tous les jours : ordinateurs, téléphones, les objets connectés en général. La gamme spectrale du THz (0.1-10 THz) reste cependant un domaine industriellement peu exploité en raison de problèmes intrinsèques à la génération et détection des photons THz.De nombreuses applications relèvent pourtant du THz, dans les domaines médicaux par exemple, pour la détection des gaz à l’état de trace, ou bien pour l’imagerie d’objets opaques dans le visible.Cette thèse se focalise sur les photodétecteurs à puits quant
APA, Harvard, Vancouver, ISO, and other styles
9

Callebaut, Hans 1975. "Analysis of the electron transport properties in quantum cascade lasers." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37893.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.<br>Includes bibliographical references (p. 187-193).<br>Recently, the operating frequency range of quantum-cascade lasers (QCLs) has been extended from the mid-infrared to the far-infrared beow the Reststrahlen band (THz frequencies). Especially for THz QCLs, a detailed understanding of the dynamics of the electron transport is essential in order to extend their operation to longer wavelengths and higher temperatures. Compared to mid-infrared structures, the small subband separat
APA, Harvard, Vancouver, ISO, and other styles
10

Khanna, Suraj Parkash. "The Growth, Fabrication and Measurement of Terahertz Quantum Cascade Lasers." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491746.

Full text
Abstract:
Despite numerous potential application areas, the terahertz frequency (1-10 THz) region in the electromagnetic spectrum still remains relatively unharnessed -because of the lack of powerful, compact and coherent sources working at room temperature. This project is dedicated to developing a compact solid state semiconductor laser based on quantum cascade technology operating in the terahertz (THz) frequency range. The main emphasis has bee.!1_~.!LJh~ ._' ~~-,---,---,----------- --~--,-----~---~------~-----~- ---- .-- --_._-----.. _--~. --------- establishment and optimisation of a new molecular
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "THz quantum cascade lasers"

1

Faist, Jérôme. Quantum cascade lasers. Oxford University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Solymar, L., D. Walsh, and R. R. A. Syms. Lasers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0012.

Full text
Abstract:
Two-state and three-state systems are introduced. The properties of gaseous, solid state, and dye lasers are discussed and particular attention is devoted to semiconductor lasers. Reducing the dimensions leading to wells, wires, and dots is shown to have advantages. Quantum cascade lasers working in the THz region are discussed. The phenomena of Q switching, cavity dumping, and mode locking are explained. Parametric oscillators and optical fibre amplifiers are discussed. Masers are briefly mentioned. Laser noise is discussed. Awide variety of applications are mentioned. The curious phenomenon
APA, Harvard, Vancouver, ISO, and other styles
5

Stavrou, Vasilios N., ed. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bennett, Joseph D. Quantum Cascade Lasers: Types and Applications. Nova Science Publishers, Incorporated, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiwari, Sandip. Electromagnetic-matter interactions and devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0006.

Full text
Abstract:
This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices su
APA, Harvard, Vancouver, ISO, and other styles
10

Optimization of a Quantum Cascade Laser Operating in the Terahertz Frequency Range Using a Multiobjective Evolutionary Algorithm. Storming Media, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "THz quantum cascade lasers"

1

Szerling, A., K. Kosiel, P. Prokaryn, et al. "Crucial Aspects of the Device Processing of Quantum Cascade Lasers." In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scamarcio, G., V. Spagnolo, M. S. Vitiello, and C. Di Franco. "Experimental Investigation of Hot Carriers in THz and Mid-IR Quantum Cascade Lasers." In Nonequilibrium Carrier Dynamics in Semiconductors. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36588-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Razeghi, Manijeh, and Wenjia Zhou. "High Power, Widely Tunable, and Beam Steerable Mid-infrared Quantum Cascade Lasers." In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Capasso, F. "High Performance Quantum Cascade Lasers for the Mid-to Far-Infrared." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ashok, P., and M. Ganesh Madhan. "Numerical Analysis on the Phenomenon of Absorptive Bistability in Quantum Cascade Lasers." In Springer Proceedings in Physics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mann, Ch, Q. K. Yang, F. Fuchs, et al. "Quantum Cascade Lasers for the Mid-infrared Spectral Range: Devices and Applications." In Advances in Solid State Physics. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Y. J., L. H. Li, A. Valavanis, et al. "Development of Terahertz Frequency Quantum Cascade Lasers for the Applications as Local Oscillators." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Y. J., J. Partington, R. Chhantyal-Pun, et al. "Broadband Terahertz Gas Spectroscopy Through Multimode Self-Mixing in a Quantum Cascade Laser." In Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. Springer Netherlands, 2021. http://dx.doi.org/10.1007/978-94-024-2082-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kosiel, Kamil, Anna Szerling, Maciej Bugajski, et al. "Development of (λ ∼ 9.4μm) GaAs-Based Quantum Cascade Lasers Operating at the Room Temperature." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0769-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pearsall, Thomas P. "Quantum Cascade Lasers." In Quantum Photonics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "THz quantum cascade lasers"

1

Liu, Junqi, Yuanyuan Li, Fengqi Liu, et al. "Continuous-wave THz quantum cascade lasers." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Weidong, Yanfang Li, Junqi Liu, Fengqi Liu, and Suqing Duan. "Tapered terahertz quantum cascade lasers." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perez-Urquizo, Joel, Julien Madeo, Yanko Todorov, et al. "Patch Antenna Microcavities THz Quantum Cascade Lasers." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8873823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freeman, Joshua R., Anthony Brewer, Julien Madeo, et al. "Heterogeneous THz quantum cascade lasers: Broadband operation." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Junqi, Zhanguo Wang, Fangyuan Zhao, et al. "THz Quantum Cascade Lasers with Optimized Beam Divergence." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Junqi, Yuanyuan Li, Fengqi Liu, et al. "High-Power single-mode THz quantum cascade lasers." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Freeman, J. R., J. Maysonnave, K. Maussang, et al. "Injection seeding dynamics of THz quantum cascade lasers." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, F., K. Maussang, S. Moumdji, et al. "Terahertz pulse generation from quantum cascade lasers." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, J. K., K. Wang, R. Ramaswamy, et al. "Quantum Cascade Lasers for semiconductor heterodyne receiver." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6104950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chou, HungChi, Mehdi Anwar, Tariq Manzur, John Zeller, and Ashok K. Sood. "Nitride THz GaN quantum cascade lasers." In 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135413.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "THz quantum cascade lasers"

1

Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab, and Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/921751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holthoff, Ellen L., Logan S. Marcus, and Paul M. Pellegrino. Toward the Realization of a Compact Chemical Sensor Platform using Quantum Cascade Lasers. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada622267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gmachl, Claire. Quantum Cascade Lasers. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada429769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Qing. Far-Infrared (THz) Lasers Using Multiple Quantum Wells. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada299452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Capasso, Federico, and Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Defense Technical Information Center, 2007. http://dx.doi.org/10.21236/ada490860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada447301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harper, Warren W., Jana D. Strasburg, Pam M. Aker, and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/15010485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harper, Warren W., and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/969751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Norris, Theodore B. Ultrafast Mid-Infrared Dynamics in Quantum Cascade Lasers. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada532435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zaytsev, Sergey, and Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada434866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!