To see the other types of publications on this topic, follow the link: THz quantum cascade lasers.

Journal articles on the topic 'THz quantum cascade lasers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'THz quantum cascade lasers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sushil Kumar, Sushil Kumar. "Quantum cascade lasers operating from 1.4 to 4 THz (Invited Paper)." Chinese Optics Letters 9, no. 11 (2011): 110003–9. http://dx.doi.org/10.3788/col201109.110003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vitiello, Miriam Serena, and Alessandro Tredicucci. "Tunable Emission in THz Quantum Cascade Lasers." IEEE Transactions on Terahertz Science and Technology 1, no. 1 (2011): 76–84. http://dx.doi.org/10.1109/tthz.2011.2159543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scalari, G., C. Walther, M. Fischer, et al. "THz and sub-THz quantum cascade lasers." Laser & Photonics Review 3, no. 1-2 (2009): 45–66. http://dx.doi.org/10.1002/lpor.200810030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brandstetter, Martin, Alexander Benz, Christoph Deutsch, et al. "Superconducting Microdisk Cavities for THz Quantum Cascade Lasers." IEEE Transactions on Terahertz Science and Technology 2, no. 5 (2012): 550–55. http://dx.doi.org/10.1109/tthz.2012.2212321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Бабичев, А. В., А. С. Курочкин, Е. С. Колодезный та ін. "Гетероструктуры одночастотных и двухчастотных квантово-каскадных лазеров". Физика и техника полупроводников 52, № 6 (2018): 597. http://dx.doi.org/10.21883/ftp.2018.06.45922.8751.

Full text
Abstract:
AbstractThe results of development of the basic structure and technological conditions of growing heterostructures for single- and dual-frequency quantum-cascade lasers are reported. The heterostructure for a dual-frequency quantum-cascade laser includes cascades emitting at wavelengths of 9.6 and 7.6 μm. On the basis of the suggested heterostructure, it is possible to develop a quantum-cascade laser operating at a difference frequency of 8 THz. The heterostructures for the quantum-cascade laser are grown using molecularbeam epitaxy. The methods of X-ray diffraction and emission electron micro
APA, Harvard, Vancouver, ISO, and other styles
6

Hübers, Heinz-Wilhelm, Heiko Richter, Martin Wienold, Xiang Lü, Lutz Schrottke, and Holger T. Grahn. "Terahertz spectroscopy using quantum-cascade lasers." Photoniques, no. 101 (March 2020): 27–32. http://dx.doi.org/10.1051/photon/202010127.

Full text
Abstract:
Terahertz (THz) quantum-cascade lasers (QCLs) provide powerful, narrow-band, and frequencytunable radiation, which makes them ideal sources for high-resolution molecular spectroscopy. A first application of a THz QCL has been as local oscillator in a heterodyne spectrometer for astronomy on board a Boeing 747. For laboratory spectroscopy, QCLs close the so-called THz gap and enable new research topics.
APA, Harvard, Vancouver, ISO, and other styles
7

Fujita, Kazuue, Shohei Hayashi, Akio Ito, Masahiro Hitaka, and Tatsuo Dougakiuchi. "Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers." Nanophotonics 8, no. 12 (2019): 2235–41. http://dx.doi.org/10.1515/nanoph-2019-0238.

Full text
Abstract:
AbstractTerahertz quantum cascade laser sources with intra-cavity non-linear frequency mixing are the first room-temperature electrically pumped monolithic semiconductor sources that operate in the 1.2–5.9 THz spectral range. However, high performance in low-frequency range is difficult because converted terahertz waves suffer from significantly high absorption in waveguides. Here, we report a sub-terahertz electrically pumped monolithic semiconductor laser. This sub-terahertz source is based on a high-performance, long-wavelength (λ ≈ 13.7 μm) quantum cascade laser in which high-efficiency te
APA, Harvard, Vancouver, ISO, and other styles
8

Sirtori, Carlo, Stefano Barbieri, and Raffaele Colombelli. "Wave engineering with THz quantum cascade lasers." Nature Photonics 7, no. 9 (2013): 691–701. http://dx.doi.org/10.1038/nphoton.2013.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scamarcio, Gaetano, Miriam Serena Vitiello, and Vincenzo Spagnolo. "Hot Electrons in THz Quantum Cascade Lasers." Journal of Infrared, Millimeter, and Terahertz Waves 34, no. 5-6 (2013): 357–73. http://dx.doi.org/10.1007/s10762-013-9979-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SUN, J. P., G. I. HADDAD, M. DUTTA, and M. A. STROSCIO. "QUANTUM WELL INTERSUBBAND LASERS." International Journal of High Speed Electronics and Systems 09, no. 04 (1998): 867–99. http://dx.doi.org/10.1142/s0129156498000373.

Full text
Abstract:
This chapter/paper provides an overview of quantum well intersubband lasers including quantum cascade and step quantum well lasers. A simplified model of the quantum cascade laser is presented which provides a good estimate of major device parameters and illustrates the principles of operation and physical processes. Device schemes of other intersubband lasers such as step quantum wells are also presented and analyzed.
APA, Harvard, Vancouver, ISO, and other styles
11

Benz, A., M. Brandstetter, C. Deutsch, et al. "Photonic bandstructure engineering of THz quantum-cascade lasers." Applied Physics Letters 99, no. 20 (2011): 201103. http://dx.doi.org/10.1063/1.3661168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Amanti, M. I., A. Bismuto, M. Beck, et al. "Electrically driven nanopillars for THz quantum cascade lasers." Optics Express 21, no. 9 (2013): 10917. http://dx.doi.org/10.1364/oe.21.010917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Spagnolo, V., M. S. Vitiello, G. Scamarcio, et al. "Hot-phonon generation in THz quantum cascade lasers." Journal of Physics: Conference Series 92 (December 1, 2007): 012018. http://dx.doi.org/10.1088/1742-6596/92/1/012018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Manenti, M., F. Compagnone, A. Di Carlo, and P. Lugli. "Monte Carlo Simulations of THz Quantum-Cascade Lasers." Journal of Computational Electronics 2, no. 2-4 (2003): 433–37. http://dx.doi.org/10.1023/b:jcel.0000011466.51397.b0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rösch, Markus, Mattias Beck, Martin J. Süess, et al. "Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation." Nanophotonics 7, no. 1 (2018): 237–42. http://dx.doi.org/10.1515/nanoph-2017-0024.

Full text
Abstract:
AbstractWe report on a heterogeneous active region design for terahertz quantum cascade laser based frequency combs. Dynamic range, spectral bandwidth and output power have been significantly improved with respect to previous designs. When individually operating the lasers, narrow and stable intermode beatnote indicate frequency comb operation up to a spectral bandwidth of 1.1 THz, while in a dispersion-dominated regime a bandwidth up to 1.94 THz at a center frequency of 3 THz can be reached. A self-detected dual-comb setup has been used to verify the frequency comb nature of the lasers.
APA, Harvard, Vancouver, ISO, and other styles
16

Faist, Jérôme, Gustavo Villares, Giacomo Scalari, et al. "Quantum Cascade Laser Frequency Combs." Nanophotonics 5, no. 2 (2016): 272–91. http://dx.doi.org/10.1515/nanoph-2016-0015.

Full text
Abstract:
AbstractIt was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources a
APA, Harvard, Vancouver, ISO, and other styles
17

Abbasian, Karim, Leili Hayati, and Ali Rostami. "Design of Terahertz Quantum Dot Cascade Laser Using Raman Amplification Process." Advanced Materials Research 622-623 (December 2012): 1474–78. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.1474.

Full text
Abstract:
As we know, quantum cascade lasers (QCLs) are currently the most advanced electrically pumped semiconductor lasers, which emit radiation due to intersubband optical transitions in semiconductor superlattices. Also, quantum cascade laser is one of the best alternatives for reaching the terahertz frequency by semiconductor structures. In this paper, in order to engineer the QCL, effects of Raman inversion as an optical nonlinearity process in active region (QD Hetero structures) of the THz laser has been investigated by using Launda-type three-level system. This would allow suppression of therma
APA, Harvard, Vancouver, ISO, and other styles
18

HU, Q. "TERAHERTZ QUANTUM CASCADE LASERS AND REAL-TIME T-RAYS IMAGING AT VIDEO RATE." International Journal of High Speed Electronics and Systems 18, no. 04 (2008): 983–92. http://dx.doi.org/10.1142/s012915640800593x.

Full text
Abstract:
We report our development of terahertz (THz) quantum-cascade lasers with record performance. Using those high-power lasers as the illumination sources and a focal-plane array camera, we are able to perform real-time THz imaging at video rate.
APA, Harvard, Vancouver, ISO, and other styles
19

Abundis-Patino, Jesus Humberto, Michael Riesch, Petar Tzenov, and Christian Jirauschek. "Colliding pulse mode locking of quantum cascade lasers." EPJ Web of Conferences 205 (2019): 01018. http://dx.doi.org/10.1051/epjconf/201920501018.

Full text
Abstract:
We study the possibility for ultrashort pulse generation from THz quantum cascade lasers via the colliding pulse mode locking technique. Our analysis shows that this approach could enable sub-ps pulses from QCLs, even in devices with carrier recovery times as short as ~ 10 ps.
APA, Harvard, Vancouver, ISO, and other styles
20

Kelsall, Robert W., and Richard A. Soref. "Silicon-Germanium Quantum-Cascade Lasers." International Journal of High Speed Electronics and Systems 13, no. 02 (2003): 547–73. http://dx.doi.org/10.1142/s012915640300182x.

Full text
Abstract:
The prospects and advantages of silicon germanium quantum cascade lasers are discussed, from both physical and technological perspectives. A range of Si/SiGe intersubband laser configurations are discussed, for both edge and surface emission. Recent experimental activity on mid- and far-infrared devices is reviewed, and the value of detailed theoretical tools for heterostructure design is highlighted. Steps towards silicon optoelectronic integration are also considered.
APA, Harvard, Vancouver, ISO, and other styles
21

Li, L. H., L. Chen, J. R. Freeman, et al. "Multi‐Watt high‐power THz frequency quantum cascade lasers." Electronics Letters 53, no. 12 (2017): 799–800. http://dx.doi.org/10.1049/el.2017.0662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Brandstetter, M., C. Deutsch, A. Benz, et al. "THz quantum cascade lasers with wafer bonded active regions." Optics Express 20, no. 21 (2012): 23832. http://dx.doi.org/10.1364/oe.20.023832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Colombelli, R., F. Capasso, A. Straub, et al. "FIR quantum cascade lasers at and THz emitters at." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 848–53. http://dx.doi.org/10.1016/s1386-9477(02)00218-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fathololoumi, Saeed, Emmanuel Dupont, Dayan Ban, et al. "Time-Resolved Thermal Quenching of THz Quantum Cascade Lasers." IEEE Journal of Quantum Electronics 46, no. 3 (2010): 396–404. http://dx.doi.org/10.1109/jqe.2009.2031250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jirauschek, Christian, Giuseppe Scarpa, Paolo Lugli, Miriam S. Vitiello, and Gaetano Scamarcio. "Comparative analysis of resonant phonon THz quantum cascade lasers." Journal of Applied Physics 101, no. 8 (2007): 086109. http://dx.doi.org/10.1063/1.2719683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Бабичев, А. В., А. Г. Гладышев, А. С. Курочкин та ін. "Лазерная генерация многопериодных квантово-каскадных лазеров на длине волны излучения 8 мкм при комнатной температуре". Физика и техника полупроводников 52, № 8 (2018): 954. http://dx.doi.org/10.21883/ftp.2018.08.46226.8834.

Full text
Abstract:
AbstractRoom-temperature lasing at a wavelength of 8 μm in multistage quantum-cascade lasers pumped by current pulses is demonstrated. A quantum-cascade laser heterostructure based on the In_0.53Ga_0.47As/A_l0.48In_0.52As alloy heteropair, matched to an InP substrate, is grown by molecular-beam epitaxy and consists of 50 identical cascades placed in a waveguide with air as the top cladding. A threshold current density of ~5.1 kA/cm^2 at a temperature of 300 K is obtained in ridge lasers with a cavity length of 1.4 mm and a ridge width of 24 μm.
APA, Harvard, Vancouver, ISO, and other styles
27

Sterczewski, Lukasz Antoni, Jonas Westberg, and Gerard Wysocki. "Tuning properties of mid-infrared Fabry-Pérot quantum cascade lasers for multiheterodyne spectroscopy." Photonics Letters of Poland 8, no. 4 (2016): 113. http://dx.doi.org/10.4302/plp.2016.4.08.

Full text
Abstract:
Injection current tuning properties of an 8.5 um Fabry-Pérot mid-infrared quantum cascade laser are evaluated by analyzing the mode-by-mode frequency tuning behavior with an identification of high-noise regimes in a delayed self-heterodyne experiment. We find that modes on the edges of the spectral envelope exhibit anomalous tuning coefficients compared to those in the center. Furthermore, the frequencies of individual modes are susceptible to parasitic etalons, likely causing laser frequency pulling. Despite the complicated tuning behavior, low phase-noise operating regimes exist, and are com
APA, Harvard, Vancouver, ISO, and other styles
28

Li, Y. Y., J. Q. Liu, F. Q. Liu, and Z. G. Wang. "High performance terahertz quantum cascade lasers." Terahertz Science and Technology 13, no. 2 (2020): 61–72. http://dx.doi.org/10.1051/tst/2020132061.

Full text
Abstract:
Terahertz region is the electromagnetic gap between the infrared optoelectronics and the high frequency electronics, which is of broad prospects in applications. The application requirements drive the rapid development in Terahertz technologies including sources, detectors and systems. In the last two decades, quantum cascade laser has made great progress as one of the most promising terahertz sources. In this paper, we present the development of terahertz quantum cascade lasers in our group.
APA, Harvard, Vancouver, ISO, and other styles
29

Fasching, G., A. Benz, R. Zobl, et al. "Microcavity THz quantum cascade laser." Physica E: Low-dimensional Systems and Nanostructures 32, no. 1-2 (2006): 316–19. http://dx.doi.org/10.1016/j.physe.2005.12.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jukam, Nathan, Sukhdeep Dhillon, Zhen-Yu Zhao, et al. "Gain Measurements of THz Quantum Cascade Lasers using THz Time-Domain Spectroscopy." IEEE Journal of Selected Topics in Quantum Electronics 14, no. 2 (2008): 436–42. http://dx.doi.org/10.1109/jstqe.2007.911761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Freeman, Joshua R., Christopher Worrall, Vasilis Apostolopoulos, Jesse Alton, Harvey Beere, and David A. Ritchie. "Frequency Manipulation of THz Bound-to-Continuum Quantum-Cascade Lasers." IEEE Photonics Technology Letters 20, no. 4 (2008): 303–5. http://dx.doi.org/10.1109/lpt.2007.913340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vijayraghavan, Karun, Min Jang, Aiting Jiang, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin. "THz Difference-Frequency Generation in MOVPE-Grown Quantum Cascade Lasers." IEEE Photonics Technology Letters 26, no. 4 (2014): 391–94. http://dx.doi.org/10.1109/lpt.2013.2294941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schmielau, T., and M. F. Pereira. "Predictive microscopic approach to transport in THz quantum cascade lasers." Journal of Physics: Conference Series 242 (July 1, 2010): 012009. http://dx.doi.org/10.1088/1742-6596/242/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jirauschek, Christian, Giuseppe Scarpa, Paolo Lugli, and Maurizio Manenti. "Monte Carlo simulation of resonant phonon THz quantum cascade lasers." Journal of Computational Electronics 6, no. 1-3 (2007): 267–70. http://dx.doi.org/10.1007/s10825-006-0127-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Forrer, Andres, Yongrui Wang, Mattias Beck, Alexey Belyanin, Jérôme Faist, and Giacomo Scalari. "Self-starting harmonic comb emission in THz quantum cascade lasers." Applied Physics Letters 118, no. 13 (2021): 131112. http://dx.doi.org/10.1063/5.0041339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zdanevicius, Justinas, Heinz-Wilhelm Hubers, Hartmut G. Roskos, et al. "Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers." IEEE Transactions on Terahertz Science and Technology 8, no. 6 (2018): 613–21. http://dx.doi.org/10.1109/tthz.2018.2871360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mikołajczyk, Janusz. "An Overview of Free Space Optics with Quantum Cascade Lasers." International Journal of Electronics and Telecommunications 60, no. 3 (2014): 259–64. http://dx.doi.org/10.2478/eletel-2014-0033.

Full text
Abstract:
Abstract The article presents an overview of the work on quantum cascade lasers application in free space optical systems (Free Space Optics - FSO). There are discussed the main issues of the open-space laser communications and their practical construction. Comparative analyses of each FSO technology were performed. Brief description of quantum cascade (QC) lasers and some developments related to the use of these lasers in optical data link are also presented. In summary, the constructed models of FSO links with QC lasers are characterized.
APA, Harvard, Vancouver, ISO, and other styles
38

MANZUR, TARIQ, and MEHDI ANWAR. "STRAIN INDUCED ACTIVE LAYER DESIGN OF GaN-THz QUANTUM CASCADE LASERS." International Journal of High Speed Electronics and Systems 20, no. 03 (2011): 621–27. http://dx.doi.org/10.1142/s012915641100691x.

Full text
Abstract:
GaN -based pseudomorphic heterostructures with their demonstrated superior thermal performance suggest an alternative to the standard GaAs -based technology to realize high power lasing at THz frequencies. A larger electron effective mass in GaN based system results in the energy levels lying deeper within the quantum well compared to its GaAs counterpart resulting in longer carrier lifetimes assisting transitions required for THz radiation while reducing tunneling current. However, the presence of spontaneous and piezoelectric polarization and dependence of bandgap and band offsets on structu
APA, Harvard, Vancouver, ISO, and other styles
39

Vitiello, Miriam S., Luigi Consolino, Massimo Inguscio, and Paolo De Natale. "Toward new frontiers for terahertz quantum cascade laser frequency combs." Nanophotonics 10, no. 1 (2020): 187–94. http://dx.doi.org/10.1515/nanoph-2020-0429.

Full text
Abstract:
AbstractBroadband, quantum-engineered, quantum cascade lasers (QCLs) are the most powerful chip-scale sources of optical frequency combs (FCs) across the mid-infrared and the terahertz (THz) frequency range. The inherently short intersubband upper state lifetime spontaneously allows mode proliferation, with large quantum efficiencies, as a result of the intracavity four-wave mixing. QCLs can be easily integrated with external elements or engineered for intracavity embedding of nonlinear optical components and can inherently operate as quantum detectors, providing an intriguing technological pl
APA, Harvard, Vancouver, ISO, and other styles
40

Ohtani, Keita, Dana Turčinková, Christopher Bonzon, et al. "High performance 4.7 THz GaAs quantum cascade lasers based on four quantum wells." New Journal of Physics 18, no. 12 (2016): 123004. http://dx.doi.org/10.1088/1367-2630/18/12/123004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mátyás, Alpár, Tillmann Kubis, Paolo Lugli, and Christian Jirauschek. "Comparison between semiclassical and full quantum transport analysis of THz quantum cascade lasers." Physica E: Low-dimensional Systems and Nanostructures 42, no. 10 (2010): 2628–31. http://dx.doi.org/10.1016/j.physe.2009.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Andrews, Aaron Maxwell, Alexander Benz, Christoph Deutsch, et al. "Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers." Materials Science and Engineering: B 147, no. 2-3 (2008): 152–55. http://dx.doi.org/10.1016/j.mseb.2007.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Marshall, Owen, Jesse Alton, Christopher Worrall, Harvey Beere, David A. Ritchie, and Stefano Barbieri. "Distributed Feedback THz Quantum-Cascade Lasers Using Thin Double-Metallic Gratings." IEEE Photonics Technology Letters 20, no. 10 (2008): 857–59. http://dx.doi.org/10.1109/lpt.2008.921820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hu, Qing, Benjamin S. Williams, Sushil Kumar, Hans Callebaut, Stephen Kohen, and John L. Reno. "Resonant-phonon-assisted THz quantum-cascade lasers with metal–metal waveguides." Semiconductor Science and Technology 20, no. 7 (2005): S228—S236. http://dx.doi.org/10.1088/0268-1242/20/7/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mátyás, A., T. Kubis, P. Lugli, and C. Jirauschek. "Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?" Journal of Physics: Conference Series 193 (November 1, 2009): 012026. http://dx.doi.org/10.1088/1742-6596/193/1/012026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vitiello, Miriam S., Gaetano Scamarcio, Vincenzo Spagnolo, et al. "Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers." Applied Physics Letters 88, no. 24 (2006): 241109. http://dx.doi.org/10.1063/1.2211301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Barbieri, Stefano, Jesse Alton, Colin Baker, Thomas Lo, Harvey E. Beere, and David Ritchie. "Imaging with THz quantum cascade lasers using a Schottky diode mixer." Optics Express 13, no. 17 (2005): 6497. http://dx.doi.org/10.1364/opex.13.006497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Köhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram та ін. "Low-threshold quantum-cascade lasers at 35 THz (λ = 85 µm)". Optics Letters 28, № 10 (2003): 810. http://dx.doi.org/10.1364/ol.28.000810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sevin, G., D. Fowler, G. Xu, et al. "Continuous-wave operation of 2.7 THz photonic crystal quantum cascade lasers." Electronics Letters 46, no. 22 (2010): 1513. http://dx.doi.org/10.1049/el.2010.2036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fathololoumi, S., E. Dupont, S. G. Razavipour, et al. "Electrically switching transverse modes in high power THz quantum cascade lasers." Optics Express 18, no. 10 (2010): 10036. http://dx.doi.org/10.1364/oe.18.010036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!