Journal articles on the topic 'Tietze extension theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 26 journal articles for your research on the topic 'Tietze extension theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Grabiner, Sandy. "The Tietze Extension Theorem and the Open Mapping Theorem." American Mathematical Monthly 93, no. 3 (March 1986): 190. http://dx.doi.org/10.2307/2323339.
Full textGrabiner, Sandy. "The Tietze Extension Theorem and the Open Mapping Theorem." American Mathematical Monthly 93, no. 3 (March 1986): 190–91. http://dx.doi.org/10.1080/00029890.1986.11971783.
Full textPąk, Karol. "Tietze Extension Theorem for n-dimensional Spaces." Formalized Mathematics 22, no. 1 (March 30, 2014): 11–19. http://dx.doi.org/10.2478/forma-2014-0002.
Full textBakić, Damir. "Tietze extension theorem for Hilbert $C^*$-modules." Proceedings of the American Mathematical Society 133, no. 2 (August 25, 2004): 441–48. http://dx.doi.org/10.1090/s0002-9939-04-07563-x.
Full textUma, M. K., E. Roja, and G. Balasubramanian. "Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces." Mathematica Bohemica 133, no. 4 (2008): 341–49. http://dx.doi.org/10.21136/mb.2008.140624.
Full textShafer, Paul. "The reverse mathematics of the Tietze extension theorem." Proceedings of the American Mathematical Society 144, no. 12 (June 10, 2016): 5359–70. http://dx.doi.org/10.1090/proc/13217.
Full textKubiak, Tomasz. "L-fuzzy normal spaces and Tietze extension theorem." Journal of Mathematical Analysis and Applications 125, no. 1 (July 1987): 141–53. http://dx.doi.org/10.1016/0022-247x(87)90169-7.
Full textKotzé, Wesley, and Tomasz Kubiak. "Insertion of a measurable function." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, no. 3 (December 1994): 295–304. http://dx.doi.org/10.1017/s1446788700037708.
Full textOssa, Erich. "A simple proof of the Tietze-Urysohn extension theorem." Archiv der Mathematik 71, no. 4 (October 1, 1998): 331–32. http://dx.doi.org/10.1007/s000130050272.
Full textMandelkern, Mark. "A short proof of the Tietze-Urysohn extension theorem." Archiv der Mathematik 60, no. 4 (April 1993): 364–66. http://dx.doi.org/10.1007/bf01207193.
Full textPapageorgiou, Nikolaos S. "On measurable multifunctions with stochastic domain." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 45, no. 2 (October 1988): 204–16. http://dx.doi.org/10.1017/s1446788700030111.
Full textBARAN, Tesnim Meryem, and Ayhan ERCİYES. "T4, Urysohn’s lemma, and Tietze extension theorem for constant filter convergence spaces." TURKISH JOURNAL OF MATHEMATICS 45, no. 2 (March 26, 2021): 843–55. http://dx.doi.org/10.3906/mat-2012-101.
Full textPrieto, Carlos. "FLUIDIFICATION OF QUIVERS AND THE TIETZE EXTENSION THEOREM FOR DIAGRAMS OF TOPOLOGICAL SPACES." Quaestiones Mathematicae 11, no. 3 (January 1988): 233–51. http://dx.doi.org/10.1080/16073606.1988.9632142.
Full textFANG, XIAOCHUN. "THE REALIZATION OF MULTIPLIER HILBERT BIMODULE ON BIDUAL SPACE AND TIETZE EXTENSION THEOREM." Chinese Annals of Mathematics 21, no. 03 (July 2000): 375–80. http://dx.doi.org/10.1142/s025295990000039x.
Full textAhmed, Nasr, Anirudh Pradhan, and F. Salama. "A new topological perspective of expanding space-times with applications to cosmology." International Journal of Geometric Methods in Modern Physics 18, no. 08 (May 12, 2021): 2150130. http://dx.doi.org/10.1142/s0219887821501309.
Full textDegla, Guy Aymard. "Building Infinitely Many Solutions for Some Model of Sublinear Multipoint Boundary Value Problems." Abstract and Applied Analysis 2015 (2015): 1–4. http://dx.doi.org/10.1155/2015/732761.
Full textGiusto, Mariagnese, and Stephen G. Simpson. "Located sets and reverse mathematics." Journal of Symbolic Logic 65, no. 3 (September 2000): 1451–80. http://dx.doi.org/10.2307/2586708.
Full textBrown, Lawrence G. "Close hereditary C*-subalgebras and the structure of quasi-multipliers." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 147, no. 2 (January 16, 2017): 263–92. http://dx.doi.org/10.1017/s0308210516000172.
Full textBartelt, Martin W., and John J. Swetits. "An Elementary Extension of Tietze's Theorem." Mathematics Magazine 66, no. 5 (December 1, 1993): 330. http://dx.doi.org/10.2307/2690518.
Full textBartelt, Martin W., and John J. Swetits. "An Elementary Extension of Tietze's Theorem." Mathematics Magazine 66, no. 5 (December 1993): 330–32. http://dx.doi.org/10.1080/0025570x.1993.11996162.
Full textNarici, Lawrence, and Edward Beckenstein. "On Continuous Extensions." gmj 3, no. 6 (December 1996): 565–70. http://dx.doi.org/10.1515/gmj.1996.565.
Full textReagor, Mary P., and David F. Addis. "Tietze's extension theorem in fuzzy topological spaces." Fuzzy Sets and Systems 30, no. 3 (May 1989): 297–313. http://dx.doi.org/10.1016/0165-0114(89)90021-3.
Full textHernández-Muñoz, Salvador. "Approximation and extension of continuous functions." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, no. 2 (October 1994): 149–57. http://dx.doi.org/10.1017/s1446788700037484.
Full textCÎRSTEA, FLORICA C. "PROOFS OF URYSOHN’S LEMMA AND THE TIETZE EXTENSION THEOREM VIA THE CANTOR FUNCTION." Bulletin of the Australian Mathematical Society, July 3, 2020, 1–7. http://dx.doi.org/10.1017/s000497272000057x.
Full textROJA, E., M. K. UMA, and G. BALASUBRAMANIAN. "ORDERED L-FUZZY Gd-EXTREMALLY DISCONNECTED SPACES AND TIETZE EXTENSION THEOREM." Proyecciones (Antofagasta) 27, no. 3 (December 2008). http://dx.doi.org/10.4067/s0716-09172008000300002.
Full textAschenbrenner, Matthias, and Athipat Thamrongthanyalak. "Michael’s Selection Theorem in a semilinear context." Advances in Geometry 15, no. 3 (January 1, 2015). http://dx.doi.org/10.1515/advgeom-2015-0018.
Full text