Journal articles on the topic 'Tightness of SLM parts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tightness of SLM parts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Полупан, Антон Сергійович, та Валерій Терентійович Сікульський. "Теоретичне визначення режимів селективного лазерного плавлення для виготовлення деталей з мінімальним рівнем пористості". Aerospace technic and technology, № 2 (25 квітня 2022): 38–46. http://dx.doi.org/10.32620/aktt.2022.2.05.
Full textYan, Xiaoling, Xiansheng Xu, and Qinxue Pan. "Study on the Measurement of Stress in the Surface of Selective Laser Melting Forming Parts Based on the Critical Refraction Longitudinal Wave." Coatings 10, no. 1 (2019): 5. http://dx.doi.org/10.3390/coatings10010005.
Full textLiu, A., Chee Kai Chua, and Kah Fai Leong. "Properties of Test Coupons Fabricated by Selective Laser Melting." Key Engineering Materials 447-448 (September 2010): 780–84. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.780.
Full textKiass, E. M., K. Zarbane, and Z. Beidouri. "Process parameters effect on porosity rate of AlSi10Mg parts additively manufactured by Selective Laser Melting: challenges and research opportunities." Archives of Materials Science and Engineering 122, no. 1 (2023): 22–33. http://dx.doi.org/10.5604/01.3001.0053.8844.
Full textLiu, Jin Hui, Wen Juan Xie, Sheng Bing Xiao, Wei Ling Zhao, and Jia Zhang. "On Formation and Estimation of Pores during Selective Laser Melting of Single-Phase Metal Powders." Advanced Materials Research 338 (September 2011): 94–101. http://dx.doi.org/10.4028/www.scientific.net/amr.338.94.
Full textYan, Xiaoling, and Huiwen Fu. "Opportunities and Challenges for Predicting the Service Status of SLM Metal Parts Under Big Data and Artificial Intelligence." Materials 17, no. 22 (2024): 5648. http://dx.doi.org/10.3390/ma17225648.
Full textQiao, Rui, and Xiaoling Yan. "The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique." Materials 15, no. 3 (2022): 718. http://dx.doi.org/10.3390/ma15030718.
Full textWang, Di, Yang Liu, Yongqiang Yang, and Dongming Xiao. "Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting." Rapid Prototyping Journal 22, no. 4 (2016): 706–16. http://dx.doi.org/10.1108/rpj-06-2015-0078.
Full textFranz, Peter, Aamir Mukhtar, Warwick Downing, Graeme Smith, and Ben Jackson. "Mechanical Behaviour of Gas Nitrided Ti6Al4V Bars Produced by Selective Laser Melting." Key Engineering Materials 704 (August 2016): 225–34. http://dx.doi.org/10.4028/www.scientific.net/kem.704.225.
Full textGiganto, S., S. Martínez, J. Barreiro, and E. Cuesta. "Evaluation of the influence of post-processing on the optical inspection accuracy of additively manufactured parts." IOP Conference Series: Materials Science and Engineering 1193, no. 1 (2021): 012062. http://dx.doi.org/10.1088/1757-899x/1193/1/012062.
Full textChai, Qing, Chaoxin Jiang, Chunjie Huang, et al. "Printing Cu on a Cold-Sprayed Cu Plate via Selective Laser Melting—Hybrid Additive Manufacturing." Journal of Manufacturing and Materials Processing 7, no. 6 (2023): 188. http://dx.doi.org/10.3390/jmmp7060188.
Full textWang, Zhi Gang, Yu Sheng Shi, Rui Di Li, Qing Song Wei, and Jin Hui Liu. "Manufacturing AISI316L Components via Selective Laser Melting Coupled with Hot Isostatic Pressing." Materials Science Forum 675-677 (February 2011): 853–56. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.853.
Full textLin, Zhenqiang, Yiwen Lai, Taotao Pan, et al. "A New Method for Automatic Detection of Defects in Selective Laser Melting Based on Machine Vision." Materials 14, no. 15 (2021): 4175. http://dx.doi.org/10.3390/ma14154175.
Full textAkhtar, Maaz, Muhammad Samiuddin, Muhammad Muzamil, et al. "Mechanical Behavior of Selective Laser Melting (SLM) Parts with Varying Thicknesses in a Saline Environment under Different Exposure Times." Materials 17, no. 9 (2024): 1959. http://dx.doi.org/10.3390/ma17091959.
Full textBOJKO, Łukasz, Wojciech RYNIEWICZ, Anna M. RYNIEWICZ, Marcin KOT, and Paweł PAŁKA. "THE INFLUENCE OF ADDITIVE TECHNOLOGY ON THE QUALITY OF THE SURFACE LAYER AND THE STRENGTH STRUCTURE OF PROSTHETIC CROWNS." Tribologia 280, no. 4 (2018): 13–22. http://dx.doi.org/10.5604/01.3001.0012.7480.
Full textKról, M., J. Mazurkiewicz, and S. Żołnierczyk. "Optimization and analysis of porosity and roughness in selective laser melting 316L parts." Archives of Materials Science and Engineering 1, no. 90 (2018): 5–15. http://dx.doi.org/10.5604/01.3001.0012.0607.
Full textMerkt, Simon, Christian Hinke, Henrich Schleifenbaum, and Holger Voswinckel. "Integrative Technology Evaluation Model (ITEM) for Selective Laser Melting (SLM)." Advanced Materials Research 337 (September 2011): 274–80. http://dx.doi.org/10.4028/www.scientific.net/amr.337.274.
Full textHuang, Shuai, Bingqing Chen, Wei Liu, et al. "Effect of Heat Treatment on Microstructure and Properties of GH3536 Fabricated by Selective Laser Melting." Metals 12, no. 7 (2022): 1184. http://dx.doi.org/10.3390/met12071184.
Full textGao, Bingwei, Hongjian Zhao, Liqing Peng, and Zhixin Sun. "A Review of Research Progress in Selective Laser Melting (SLM)." Micromachines 14, no. 1 (2022): 57. http://dx.doi.org/10.3390/mi14010057.
Full textKurnosov, Nikolay, Aleksandr Tarnopol'skiy, and Yuliya Nakashidze. "ENSURING TIGHTNESS IN PRESSURE COUPLING PARTS." Bulletin of Bryansk state technical university 2021, no. 11 (2021): 51–59. http://dx.doi.org/10.30987/1999-8775-2021-11-51-59.
Full textBâlc, Nicolae, Sorin Cosmin Cosma, Julia Kessler, and Voicu Mager. "Research on Improving the Outer Surface Quality of the Parts Made by SLM." Applied Mechanics and Materials 808 (November 2015): 199–204. http://dx.doi.org/10.4028/www.scientific.net/amm.808.199.
Full textUhlmann, E., and V. Kashevko. "Oberflächengüte additiv gefertigter Kupferbauteile*/Surface quality of additive copper alloy parts – Investigations to increase the surface quality of top and side faces of SLM-generated CuCr1Zr copper alloy parts." wt Werkstattstechnik online 108, no. 11-12 (2018): 815–20. http://dx.doi.org/10.37544/1436-4980-2018-11-12-75.
Full textPonnusamy, Panneer, Rizwan Abdul Rahman Rashid, Syed Hasan Masood, Dong Ruan, and Suresh Palanisamy. "Mechanical Properties of SLM-Printed Aluminium Alloys: A Review." Materials 13, no. 19 (2020): 4301. http://dx.doi.org/10.3390/ma13194301.
Full textChen, Tian, Linzhi Wang, and Sheng Tan. "Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process." Modern Physics Letters B 30, no. 19 (2016): 1650255. http://dx.doi.org/10.1142/s0217984916502559.
Full textMaamoun, Ahmed, Yi Xue, Mohamed Elbestawi, and Stephen Veldhuis. "The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys." Materials 12, no. 1 (2018): 12. http://dx.doi.org/10.3390/ma12010012.
Full textKónya, János, Hajnalka Hargitai, Hassanen Jaber, Péter Pinke, and Tünde Anna Kovács. "Effect of Surface Modifications on Surface Roughness of Ti6Al4V Alloy Manufactured by 3D Printing, Casting, and Wrought." Materials 16, no. 11 (2023): 3989. http://dx.doi.org/10.3390/ma16113989.
Full textMaamoun, Ahmed, Yi Xue, Mohamed Elbestawi, and Stephen Veldhuis. "Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy." Materials 11, no. 12 (2018): 2343. http://dx.doi.org/10.3390/ma11122343.
Full textKonečná, Radomila, and Gianni Nicoletto. "Near-Surface Structure and Fatigue Crack Initiation Mechanisms of As-Built SLM Inconel 718." Defect and Diffusion Forum 405 (November 2020): 306–11. http://dx.doi.org/10.4028/www.scientific.net/ddf.405.306.
Full textKarakılınç, Uçan, Berkay Ergene, Bekir Yalçın, Kubilay Aslantaş, and Ali Erçetin. "Comparative Analysis of Minimum Chip Thickness, Surface Quality and Burr Formation in Micro-Milling of Wrought and Selective Laser Melted Ti64." Micromachines 14, no. 6 (2023): 1160. http://dx.doi.org/10.3390/mi14061160.
Full textBassani, Paola, Carlo Alberto Biffi, Riccardo Casati, Adrianni Zanatta Alarcon, Ausonio Tuissi, and Maurizio Vedani. "Properties of Aluminium Alloys Produced by Selective Laser Melting." Key Engineering Materials 710 (September 2016): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.710.83.
Full textLiu, Jin Hui, Wen Juan Xie, Qing Song Wei, and Li Wang. "Progress on Investigation of Pores During Selective Laser Melting of Metal Powders and Future Work Discussion." Advanced Materials Research 291-294 (July 2011): 3088–94. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.3088.
Full textGiganto, Sara, Susana Martínez-Pellitero, Pablo Rodríguez-Mateos, Neetesh Soni, and Joaquín Barreiro García. "Optimization of Sandblasting to Improve the Surface Finish of 17-4PH Parts Manufactured by SLM Using Different Laser Scanning Strategies." Key Engineering Materials 958 (October 5, 2023): 97–103. http://dx.doi.org/10.4028/p-cghz41.
Full textFieger, Thiemo Valentin, Maximilian Ferdinand Sattler, and Gerd Witt. "Developing laser beam welding parameters for the assembly of steel SLM parts for the automotive industry." Rapid Prototyping Journal 24, no. 8 (2018): 1288–95. http://dx.doi.org/10.1108/rpj-12-2016-0204.
Full textYan, Xiaoling, Jincheng Pang, and Yanlong Jing. "Ultrasonic Measurement of Stress in SLM 316L Stainless Steel Forming Parts Manufactured Using Different Scanning Strategies." Materials 12, no. 17 (2019): 2719. http://dx.doi.org/10.3390/ma12172719.
Full textDeng, Yong, Zhongfa Mao, Nan Yang, Xiaodong Niu, and Xiangdong Lu. "Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting." Materials 13, no. 7 (2020): 1601. http://dx.doi.org/10.3390/ma13071601.
Full textBaroutaji, Ahmad, Arun Arjunan, James Beal, John Robinson, and Julio Coroado. "The Influence of Atmospheric Oxygen Content on the Mechanical Properties of Selectively Laser Melted AlSi10Mg TPMS-Based Lattice." Materials 16, no. 1 (2023): 430. http://dx.doi.org/10.3390/ma16010430.
Full textZhang, L. C., and T. B. Sercombe. "Selective Laser Melting of Low-Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of Laser Point Distance." Key Engineering Materials 520 (August 2012): 226–33. http://dx.doi.org/10.4028/www.scientific.net/kem.520.226.
Full textLeal, Malena Ley Bun, Barbara Bermudez-Reyes, Patricia del Carmen Zambrano Robledo, and Omar Lopez-Botello. "Parameter optimization of aluminum alloy thin structures obtained by Selective Laser Melting." MRS Advances 4, no. 55-56 (2019): 2997–3005. http://dx.doi.org/10.1557/adv.2019.434.
Full textAbdelal, Gasser, Daniel Higgins, Chi-Wai Chan, and Brian G. Falzon. "Numerical Modelling and Experimental Validation of Selective Laser Melting Processes Using a Custom Argon Chamber Setup for 316L Stainless Steel and Ti6AI4V." Coatings 14, no. 11 (2024): 1406. http://dx.doi.org/10.3390/coatings14111406.
Full textJadhav, Dadbakhsh, Vleugels, et al. "Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper." Materials 12, no. 15 (2019): 2469. http://dx.doi.org/10.3390/ma12152469.
Full textMokhtari, Morgane, Pierrick Pommier, Yannick Balcaen, and Joel Alexis. "Laser Welding of AISI 316L Stainless Steel Produced by Additive Manufacturing or by Conventional Processes." Journal of Manufacturing and Materials Processing 5, no. 4 (2021): 136. http://dx.doi.org/10.3390/jmmp5040136.
Full textLi, Zhonghua, Ibrahim Kucukkoc, David Z. Zhang, and Fei Liu. "Optimising the process parameters of selective laser melting for the fabrication of Ti6Al4V alloy." Rapid Prototyping Journal 24, no. 1 (2018): 150–59. http://dx.doi.org/10.1108/rpj-03-2016-0045.
Full textPacurar, Razvan, and Petru Berce. "Research on How Lens Position of the Optical System is Influencing the Mechanical Characteristics of the Metallic Parts Made by Selective Laser Melting Equipment." Advanced Engineering Forum 8-9 (June 2013): 285–92. http://dx.doi.org/10.4028/www.scientific.net/aef.8-9.285.
Full textZhao, Zhanyong, Liang Li, Le Tan, et al. "Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169." Materials 11, no. 9 (2018): 1525. http://dx.doi.org/10.3390/ma11091525.
Full textMaksimkin, Igor P., Arkadiy A. Yukhimchuk, Igor L. Malkov, et al. "Effect of Hydrogen on the Structure and Mechanical Properties of 316L Steel and Inconel 718 Alloy Processed by Selective Laser Melting." Materials 15, no. 14 (2022): 4806. http://dx.doi.org/10.3390/ma15144806.
Full textBaitimerov, R. M. "Single Track Formation during Selective Laser Melting of Ti-6Al-4V Alloy." Materials Science Forum 946 (February 2019): 978–83. http://dx.doi.org/10.4028/www.scientific.net/msf.946.978.
Full textHötter, Jan Steffen, Miranda Fateri, and Andreas Gebhardt. "Selective Laser Melting of Metals: Desktop Machines Open up New Chances even for Small Companies." Advanced Materials Research 622-623 (December 2012): 461–65. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.461.
Full textYadroitsava, Ina, Stephen Grewar, Daniel Hattingh, and Igor Yadroitsev. "Residual Stress in SLM Ti6Al4V Alloy Specimens." Materials Science Forum 828-829 (August 2015): 305–10. http://dx.doi.org/10.4028/www.scientific.net/msf.828-829.305.
Full textMaksimov, Peter, Oleg Smetannıkov, Aleksandra Dubrovskaya, Konstantin Dongauzer, and Leonid Bushuev. "Numeric simulation of aircraft engine parts additive manufacturing process." MATEC Web of Conferences 224 (2018): 01065. http://dx.doi.org/10.1051/matecconf/201822401065.
Full textLu, Xufei, Michele Chiumenti, Miguel Cervera, Mehdi Slimani, and Iban Gonzalez. "Recoater-Induced Distortions and Build Failures in Selective Laser Melting of Thin-Walled Ti6Al4V Parts." Journal of Manufacturing and Materials Processing 7, no. 2 (2023): 64. http://dx.doi.org/10.3390/jmmp7020064.
Full text