To see the other types of publications on this topic, follow the link: Tilting pad thrust bearing.

Dissertations / Theses on the topic 'Tilting pad thrust bearing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 dissertations / theses for your research on the topic 'Tilting pad thrust bearing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Glavatskikh, Sergei B. "On the hydrodynamic lubrication in tilting pad thrust bearings /." Luleå, 2000. http://epubl.luth.se/1402-1544/2000/34/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Denis, Sébastien. "Analyse dynamique d'une ligne d'arbre verticale supportée par une butée à patins oscillants." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2335/document.

Full text
Abstract:
Les problèmes vibratoires sont l'une des principales causes des maintenances effectuées sur les turbines de barrages hydroélectrique en France. Dans cette thèse CIFRE, subventionnée par la Division Technique Générale d’Électricité de France à Grenoble, nous voulons étudier numériquement les phénomènes physiques en jeu.Pour cela, chaque partie composant ce type de machine tournante est modélisée : la ligne d'arbre, les accouplements rigides, les paliers hydrodynamiques, la butée hydrodynamique à patins oscillants, les étanchéités et les efforts électromagnétiques. Celui du rotor est basé sur une approche classique 1D, prenant en compte des défauts d'accouplement rigide. Les paliers hydrodynamiques peuvent être alimentés par des rainures hélicoïdales : ceci est pris en compte dans la modélisation des paliers via un changement de variable dans l'équation de Reynolds. Concernant la butée hydrodynamique à patins oscillants, l'équation de Reynolds est explicitée en fonction des paramètres du système (rotor et patins). Un cas test est également présenté afin d'évaluer les différentes approches possibles pour l'intégration dans la modélisation du rotor et pour mieux appréhender la réponse dynamique d'une butée. Les joints d'étanchéités sont modélisés en linéarisant les efforts hydrauliques gouvernés par les équations du "bulk-flow" et sont donc représentés par des coefficients dynamiques de masse, d'amortissement et de raideur. Les efforts électromagnétiques au niveau de l'alternateur sont pris en compte via une formulation analytique des forces d'attraction sur chaque paire de pôles. Cela permet de gérer, par exemple, des défauts d'ovalisation ou de positionnement du stator.Une seconde partie est consacrée à l'étude d'une turbine complète. Y sont présentées différentes études de sensibilités des défauts les plus courants sur ce type de machine, le but étant d'en connaître l'influence sur le comportement dynamique de l'ensemble du rotor<br>Vibration problems are one of the main causes leading to maintenances performed on the turbines of hydroelectric power generation systems in France. In this CIFRE dissertation, financed by Division Technique Générale d'Électricité de France in Grenoble, we shall numerically study the physical phenomena involved in turbine vibrations of this kind.Hence, each component of this type of rotating machinery is modeled: the rotor, the rigid coupling, the hydrodynamic bearings, the hydrodynamic tilting pad thrust bearing, the annular seals and the electromagnetic forces. The model of the rotor is based on classical 1D approach taking into account the defects of the rigid coupling. The hydrodynamic bearings can be fed by helicoidally grooves. This feature is taken into account in the numerical model of journal bearing by applying a variable transformation to the Reynolds equation. For the tilting pad thrust bearing, the Reynolds equation takes into account the displacements and the velocities of both the pads and the rotor. A test case is presented for evaluating the different numerical approaches of the tilting pad thrust bearing that can be integrated in a rotordynamic analysis. The annular seals are modeled by using linearized hydraulic efforts (i.e. stiffness, damping and added mass dynamic coefficients) modeled by the "bulk flow" system of equations. The electromagnetic efforts in the alternator are taken into account by using an analytic model of the forces of each pair of poles. This enables to tackle ovalisation or eccentricity defects of the stator.A second part is dedicated to the numerical study of a complete turbine. Different studies dealing with sensitivity analyses of most often-encountered defects of this type of rotating machinery are presented, the goal being to underline their influence on the dynamic behavior of the whole rotor
APA, Harvard, Vancouver, ISO, and other styles
3

Hensley, John Eric. "Rotordynamic coefficients for a load-between-pad, flexible-pivot tilting pad bearing at high loads." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4404.

Full text
Abstract:
The dynamic and static performance of a flexure-pivot tilting pad bearing is presented at a load between pad configuration for various load and speed combinations. A similar work performed on the same bearing at lower loads ranging from 0-1 MPa (0-150 psi) by Al-Ghasem was tested, whereas the current work investigates effects in the load range between 1-2.2 MPa (150-320 psi). The bearing design parameters include: 4 pads with pad arc angle 72º and 50% pivot offset, pad axial length 0.0762 m (3 in), pad radial clearance 0.254 mm (0.010 in), bearing radial clearance 190.5 µm (0.0075 in), preload 0.25, and shaft nominal diameter of 0.11684 m (4.600 in). An important distinction between the two sets of tests is the difference in experimental bearing radial clearance, which for this case measured 208 µm (0.00082 in), and for Al-Ghasem’s was 165.1 µm (0.0065 in). The rotordynamic coefficients are determined experimentally using a test rig equipped with motion and load sensors. The rig is modeled using Newton’s laws, which is converted from the time to frequency domain using Fourier Transform to give complex dynamic stiffnesses. From the resulting complex dynamic stiffnesses the associated real and imaginary components are plotted as a function of excitation frequency and curve fitted via linear regression to give the rotordynamic coefficients. The primary objectives were to determine whether the real component of the complex dynamic stiffnesses could be better modeled with or without the mass coefficient and to contrast the rotordynamic coefficients with an analytical model. Only in the load range of 1 to 2.2 MPa were the unloaded direct mass coefficients near or at 0, which would allow for a [K][C] model to be used. The remaining real components are better represented with the mass term. The analytical model generally overpredicted the stiffness, damping and mass coefficients, especially for the direct components; the trends were generally consistent.
APA, Harvard, Vancouver, ISO, and other styles
4

Benali, Abdelkader. "Comportement dynamique des butées hydrodynamiques." Poitiers, 1988. http://www.theses.fr/1988POIT2011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rodriguez, Colmenares Luis Emigdio. "Experimental frequency-dependent rotordynamic coefficients for a load-on-pad, high-speed, flexible-pivot tilting-pad bearing." Texas A&M University, 2003. http://hdl.handle.net/1969.1/138.

Full text
Abstract:
This thesis provides experimental frequency dependent stiffness and damping coefficient results for a high-speed, lightly loaded, flexible-pivot tilting-pad bearing, with a load-on-pad configuration. Test conditions include four shaft speeds (6000, 9000, 13000 and 16000 rpm), and bearing unit loads from 172 kPa to 690 kPa. The results show that the bearing stiffness is a quadratic function of the frequency of vibration; hence their frequency dependency can be modeled by added-mass terms. The additional degrees of freedom introduced by the pads and the influence of the inertial forces generated in the fluid film account for this frequency dependency. The conventional frequency-dependent stiffness and damping model for tilting-pad bearings is extended with an added-mass matrix to account for the frequency dependency. This approach allows the description of the bearing dynamic characteristics with frequency-independent stiffness, damping and added-mass matrices. Experimental results are compared with predictions from the Reynolds equation and from a bulk-flow Navier-Stokes model. Both models produce good predictions of the stiffness and damping coefficients. However, results show that the bulk-flow model is more adequate for predicting the direct added-mass terms because it accounts for the fluid inertial forces. A bulk-flow solution of the Navier-Stokes equations that includes the effects of fluid inertia should be used to calculate the rotordynamic coefficients of a flexible-pivot tilting-bearing. Static performance measurement results are also detailed. Results include pad metal temperatures, eccentricity-ratios and attitude-angle as a function of bearing load, and estimated power losses.
APA, Harvard, Vancouver, ISO, and other styles
6

Al-Ghasem, Adnan Mahmoud. "Measurement of rotordynamic coefficients for a high-speed flexure pivot tilting-pad bearing(load between pad) configuration." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2415.

Full text
Abstract:
This thesis presents the dynamic and static forced performance of a flexure-pivot tilting-pad bearing load between pad (LBP) configuration for different rotor speeds and bearing unit loadings. The bearing has the following design parameters: 4 pads with pad arc angle 72o and 50% pivot offset, pad axial length 0.0762 m (3 in), pad radial clearance 0.254 mm (0.010 in), bearing radial clearance 0.1905 mm (0.0075 in), preload 0.25 and shaft nominal diameter of 0.11684 m (4.600 in). The dynamic coefficients and the static performance parameters of the FPB have been compared with the theoretical predictions using the isothermal analysis from the rotordynamic software suite XLTRC2-XLTFPBrg. The bearing shows a small attitude angle, about 10o, which indicates small crosscoupling stiffnesses. The pad temperatures increase in the circumferential direction of rotation with speed and load. The pads maximum temperature was measured near the trailing edge. The dependency of the stiffness and damping coefficients on the excitation frequency has been studied. The frequency dependency in the dynamic coefficients was removed by introducing an added mass coefficient to the bearing model. The direct added mass coefficients were around 32 kg. The direct stiffness and damping coefficients increase with load, while increasing and decreasing with rotor speed, respectively. A small whirl frequency ratio (WFR) was found of about 0.15, and it decreases with load and increases with speed. A comparison between the dynamic stiffnesses using a Reynolds equation and the bulk-flow Navier-Stokes models with the experimental dynamic stiffnesses shows that the Reynolds model (even for laminar flows) is not adequate, and that the bulk-flow model should be used for rotordynamic coefficients prediction. The bulk-flow model in general predicts well the static performance parameters and the direct dynamic coefficients, and underpredicts the cross-coupled coefficients (overpredicts the stability).
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, Joel Mark. "Static characteristics and rotordynamic coefficients of a four-pad tilting-pad journal bearing with ball-in-socket pivots in load-between-pad configuration." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rowan, D. "Design and development of a high-speed test facility and the measurement of the fluid film characteristics of journal bearings." Thesis, Cranfield University, 1998. http://dspace.lib.cranfield.ac.uk/handle/1826/11357.

Full text
Abstract:
In the theoretical analysis of high speed rotor bearing systems, it is common to use four displacement and four velocity based coefficients, which characterise the behaviour of the lubricating fluid film. Although a great deal of work has been published establishing theoretical models of all types of hydrodynamic journal bearings, the large amount of experimental work has centred on relatively low speed conditions. This work presents a contribution to the experimental study of the static and dynamic characteristics of oil films in journal bearings used in high-speed rotating machinery. The main objectives of the work are: • To devise new experimental techniques for the measurement of dynamic coefficients suitable for use at high rotational speeds • To design, manufacture, assemble and commission a test facility to measure the static and dynamic characteristics of journal bearings at speeds up to 30000 rpm • To determine the static and dynamic characteristics of a 5 Pad Tilting Pad Journal Bearing Unit of 80 mm diameter at speeds up to 25 000 rpm using the said test facility. New techniques are particularly necessary for the measurement of velocity coefficients because these invoke the necessity of imposing a velocity on to the bearing housing and previous techniques have utilised synchronous motion of the bearing. Consequently a new experimental procedure for measuring the four velocity or damping coefficients of an oil film journal bearing from imposed dynamic "orbits" has been devised called the "double pulse" technique. All four velocity coefficients are derived from one imposed journal centre dynamic orbit and, therefore may be regarded as being obtained at the same time. The method requires the production of a "cross- over" point similar to that of a "figure of eight" shaped orbit and utilises the "cross-over" point therein. Coefficients are initially evaluated in a co-ordinate system, which is chosen to align with the designated parts of the measured orbit. Each coefficient is then evaluated from single values of instantaneous imposed force and resulting journal centre velocity. Coefficients are them converted into any other desired axes system. The result is a simpler experimental procedure, with reduced uncertainty compared to hitherto existing methods. The use of non-sinusoidal excitation of the oil film was explored, in the form of applying a step-pulse train load pattern to produce a cross-over pattern in the journal displacement ·orbit'. Experimental tests were completed on a tilting pad bearing at speeds up to 15 000 rpm inclusive. At speeds above this, the bearing exhibited a vibrational response, which precluded the accurate measurement of journal centre displacement.
APA, Harvard, Vancouver, ISO, and other styles
9

Harangozo, Andrew Vilmos. "An investigation into the effects of lubrication methods on the performance of the tilting-pad journal bearing." Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sabnavis, Giridhar. "Test Results for Shaft Tracking Behavior of Pads in a Spherical Pivot Type Tilting Pad Journal Bearing." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32574.

Full text
Abstract:
Most tilting pad journal bearing dynamic characteristics estimation methodologies assume perfect shaft tracking by the pads. In other words, they neglect pivot friction. In case of pads having point or line contact that operate under most normal load conditions, the pad tilting is due to a rocking motion which is not greatly influenced by friction. Hence this simplifying assumption might be acceptable. Heavier loading conditions, such as those typically encountered in gearboxes, demand the use of spherical pivots to avoid pivot failure. The spherical pivot is very attractive for this reason, but the tilting motion is rather a sliding action that must occur in the precision ball socket. A valid concern exists for verifying the soundness of assumed shaft tracking by the pads of such bearings. A â fixed test bearing, floating shaftâ type of test rig previously built for determining the dynamic characteristics of bearings was accordingly modified to facilitate the testing of shaft tracking for a spherical pivot bearing. This thesis describes the modifications carried out on the rig. The special instrumentation and data acquisition systems implemented to observe the minute pad motion are also discussed. Some preliminary results of the tests are presented for various loading conditions. They show excellent shaft tracking by the pads. More detailed testing and analysis of data is required to fully understand the pad motion and tracking ability of the spherical pivot design.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
11

Ellis, Cameron B. "Tribopairs in Wellbore Drilling: A Study of PCD Tilting Pad Bearings in an Electric Submersible Pump." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7233.

Full text
Abstract:
A polycrystalline diamond was tested as a bearing material for a tilting pad thrust bearing to be used in an electric submersible pump, which elevates process fluids from the bottom of well bores. The goal of this study was to compare the PCD to a current best of technology, which is stainless steel with an engineering polymer.This study found that PCD can handle larger loads than current technology but is limited in size due to diamond sintering and manufacturing constraints. The maximum size is Ø75mm.
APA, Harvard, Vancouver, ISO, and other styles
12

Charitopoulos, Anastasios. "Computational Fluid Dynamics study of heavily loaded fixed-pad thrust bearings operating under thermoelastohydrodynamic regime." Thesis, Poitiers, 2020. http://www.theses.fr/2020POIT2285.

Full text
Abstract:
Dans la présente thèse sont étudiés les effets des déformations thermiques sur les performances des butées à patin fixe fonctionnant sous des charges et des températures élevées. Le travail présenté se compose de deux parties principales. Dans une première étape, afin d'identifier les mécanismes de génération de pression dans les butées à surfaces parallèles, les différentes théories proposées dans la littérature scientifique ont été évaluées. À cette fin, un modèle thermoélastohydrodynamique (TEHD) basé sur la Dynamique de Fluides Numérique (CFD) a été généré, en tenant compte tous les phénomènes physiques du lubrifiant, des solides et de leur interaction, qui ont été suggérés dans la littérature comme des phénomènes contribuant au mécanisme de génération de pression des butées à faces parallèles. L'importance de chaque théorie a été quantifiée et une modélisation finale a été proposée afin d’évaluer avec précision les performances d'une butée à faces parallèles. De plus, le modèle généré a été validé par rapport aux résultats expérimentaux de la littérature. La deuxième partie de la thèse utilise l'approche de modélisation proposée précédemment pour évaluer les conceptions contemporaines de butées, telles que les butées à surfaces texturées, revêtus, à poche et à plan incliné. En conclusion, les déformations thermiques des patins de la butée ou de la glissière sont établies comme le principal mécanisme de création de pression dans les butées à surfaces parallèles. En outre, elles contribuent de manière significative aux performances TEHD des butées texturées et revêtues. Au contraire, sur les butées à poche et à plan incliné, les déformations thermiques sont d'une importance négligeable, même à des charges et des températures de fonctionnement élevées<br>The present Thesis investigates the effects of thermal deformations on the performance of fixed-pad thrust bearings operating under high loads and temperatures. The presented work consists of two main parts. Firstly, in order to identify the mechanisms of pressure build-up in parallel surface thrust bearings, the different theories proposed in the scientific literature have been evaluated. To this end, a CFD-based thermoelastohydrodynamic (TEHD) model has been generated, accounting for all the physical phenomena of the lubricant, of the solid domains and their interaction, which have been suggested in the literature as phenomena contributing to the pressure build-up mechanism of the parallel thrust bearing. The importance of each theory has been quantified and a final modelling approach has been proposed, for accurately evaluating the performance of a parallel thrust bearing. Furthermore, the generated model has been validated against experimental results of the literature. The second part of the Thesis utilises the previously proposed modelling approach to evaluate contemporary designs of thrust bearings, such as textured, coated, pocket and tapered-land bearings. In conclusion, the thermal deformations of the bearing pad are established as the main pressure build-up mechanism in parallel thrust bearings. Moreover, they contribute significantly to the TEHD performance of textured and coated bearings. Contrariwise, on pocket and tapered-land bearings, the thermal deformations are of negligible importance, even at high loads and operating temperatures
APA, Harvard, Vancouver, ISO, and other styles
13

Žatko, Miroslav. "Výpočtová analýza dynamických vlastností axiálních ložisek." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229361.

Full text
Abstract:
This master´s thesis solves the problem of stationary viscous flow of incompressible fluids in thin layers of fluid film lubrication in fixed pad thrust bearings. The parametric computational model of oil domain was created for investigation the distribution of pressure, velocity and thermal fields together with the determination of the basic parameters as axial force, heating up and friction loss. Subsequently this model was applied for investigation influence of uneven bearing clearance. The problem task was solved by final volume method in Ansys CFX 12.0 software.
APA, Harvard, Vancouver, ISO, and other styles
14

Přibyl, Jan. "Optimalizace tvaru mazací mezery hydrodynamického ložiska s využitím metamodelování." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401543.

Full text
Abstract:
The aim of my diploma thesis was to optimize the gap shape of a turbocharger thrust (axial) bearing using the metamodeling. In its first part, the thesis focuses on introduction of optimization and metamodeling, description of different metamodeling techniques and description of a turbocharger with focus on lubrication of thrust bearing. The second part contains a calculation model of flow through the lubrication gap, use of the techniques for compiling a metamodel and the evaluation of individual techniques. Specifically, the methods used are response surfaces and kriging.
APA, Harvard, Vancouver, ISO, and other styles
15

Plantegenet, Thibaud. "Analyse expérimentale de l'effet Morton." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2319.

Full text
Abstract:
Cette thèse a pour objectif d’étudier expérimentalement l’effet Morton pour différents types de paliers et un rotor rigide ou flexible. L’effet Morton est un phénomène d’instabilité thermique se produisant dans les paliers hydrodynamiques qui a pour conséquence d’influencer le comportement vibratoire du système rotor-palier. L’introduction permet d’évoquer les différents phénomènes d’instabilité thermique, en se concentrant dans un premier temps sur l’effet Newkirk pour en décrire mathématiquement son fonctionnement et comprendre la philosophie des phénomènes d’instabilité thermique. L’étude bibliographique de l’effet Morton est ensuite détaillée (cas industriels, modélisation numérique et analyse expérimentale). La première analyse expérimentale est réalisée pour un rotor rigide supporté par un palier cylindrique. Avant l’analyse des essais dans cette configuration, le banc d’essais est détaillé, les caractéristiques dynamiques du palier sont identifiées expérimentalement. Les essais réalisés à vitesse constante montrent la présence de l’effet Morton « stable ». La seconde étude est conduite avec un rotor flexible et permet de mettre en évidence l’influence du temps de démarrage sur l’apparition d’un comportement instable. La dernière étude expérimentale est réalisée avec le rotor flexible supporté par un palier à patins oscillants à pivots flexibles. Le palier étant d’une conception particulière, une étude bibliographique permet de comprendre son fonctionnement, ses points forts et ses applications. Sa conception, son dimensionnement et sa caractérisation expérimentale sont ensuite détaillés, puis les résultats expérimentaux montrent l’influence du balourd initial sur la stabilité. Pour finir, les résultats expérimentaux de chaque configuration sont comparés et permettent de mieux appréhender le comportement de l’effet Morton dans les paliers hydrodynamiques et son influence sur la dynamique du rotor<br>The main goal of this thesis is the experimental study of the Morton effect in hydrodynamic bearing for rigid and flexible rotors. The Morton effect is a thermally induced increase of the synchronous vibration phenomenon that appears in journal bearing. The introduction part permits to describe the thermal instabilities with firstly a focus on the Newkirk effect and its mathematical description to understand the philosophy of thermal instabilities. Bibliography study of the Morton effect is fully described (case studies, numerical analyses, experimental analyses). The first experimental analysis is conduct for a rigid rotor on a plain journal bearing. In this configuration, the test rig is detailed, the dynamic characteristics of the bearing are experimentally identified and then the tests at constant rotational speed show the “stable” Morton effect. The second study is achieved with a flexible rotor and permits to show the influence of the start-up time on the Morton effect stability. The last experimental study is realized with the flexible rotor on a tilting pad journal bearing with flexible pivot. This bearing being of a particular design, a bibliography allows to understand its principles, its pros and cons and its applications. Its design and its experimental characterization are detailed and then the experimental results show the unbalance influence on stability. To conclude, experimental results are compared and allow a better understanding of the Morton effect in the journal bearing and its influence on the rotordynamic
APA, Harvard, Vancouver, ISO, and other styles
16

Chaturvedi, Kaushal kishore. "Deformation and heat transfer effects in conventional and water-cooled spring-supported tilting-pad thrust bearings." Thesis, 1994. http://localhost:8080/xmlui/handle/12345678/4487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lin, Heng Yi, and 林恒毅. "Design and Manufacturing of Pivoted Tilting Pad Journal Bearing." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/07348840212130445052.

Full text
Abstract:
碩士<br>南開科技大學<br>車輛與機電產業研究所<br>99<br>This paper conducts a research on the design and manufacture of the tilting pad journal bearing. The heat-transfer problems associated with the high capability and high-speed spinning of tilting pad journal bearing lead to the need of well lubrication cooling in the bearing system. The main consideration is the flow runner design of lubricant oil. The important parameters in the design include (1) numbers and layouts of tilting pad, (2) design of preload, (3) amount and flow runners of lubricant oil, (4) cooling types of bearing, and (5) sensing of bearing temperature. During the manufacture of bearing, a layer of 0.5mm Babbitt metal is applied on the tilting pad for increasing lubricity and wear-resistance. In order to produce high hydrodynamic oil pressure between the pad and the bearing, a bearing clearance at the order of a few micrometers is manufactured accompanied with highly fine surface roughness and product quality. The results show that the tilting pad journal bearing possesses the capabilities of high rigidity and high buffering to effectively raise the whirl threshold of the pad bearing, which accordingly makes the rotating spindle operates in a good and stable running condition. Also the new design of the oil runner in this paper provides a good lubricated effect at a lower oil consumption as the pad bearing is performed
APA, Harvard, Vancouver, ISO, and other styles
18

Patra, Pravajyoti. "Aerodynamic Analysis of Pivotless Tilting Pad Gas Journal Bearing." Thesis, 2015. http://ethesis.nitrkl.ac.in/7276/1/AERODYNAMIC_PATRA_2015.pdf.

Full text
Abstract:
Gas lubrication has found a place of particular importance where it is necessary to keep the environment free from contamination by conventional lubricants. Pivot less tilting pad gas bearing mainly used for high speed rotors where whirling is the main issue. Each pad of the journal bearing forms a subsystem with its own local parameters to sustain the load. Basically three pads are used and each pad acts separately on the journal for better load carrying capacity. So during frequent start and stop application pads are coming in contacts protecting the bearing house. This paper contains aeronamic analysis of pivot less tilting pad gas journal bearing. Reynolds’equation is solved by finite difference method and Newton-Raphson method. Static characteristics like pressure profile, load carrying capacity, frictional force,coefficient of friction are calculated, and method to find dynamic parameters of stiffness and damping of a pivotless tilting pad gas journal bearing is shown. The author believes that such detail analysis on tilting pad gas journal bearing at different condition will help researchers around the world.
APA, Harvard, Vancouver, ISO, and other styles
19

Wilkes, Jason Christopher. "Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10366.

Full text
Abstract:
Many researchers have compared predicted stiffness and damping coefficients for tilting-pad journal bearings (TPJBs) to measurements. Most have found that direct damping is consistently overpredicted. The thrust of this research is to explain the difference between measured and predicted stiffness and damping coefficients for TPJBs, and to provide some confidence to designers that TPJB dynamic coefficients can be accurately predicted. Most analytical models for TPJBs are based on the assumption that explicit dependence on pad motion can be eliminated by assuming harmonic rotor motion such that the amplitude and phase of pad motions resulting from radial and transverse rotor motions are predicted by rotor-pad transfer functions. In short, these transfer functions specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in response to an input rotor motion. A new pad perturbation model is developed including the effects of angular, radial, and circumferential pad motion and changes in pad clearance due to pad bending compliance. Though all of these pad variables have previously been included in different analyses, there are no publications containing perturbations of all four variables. In addition, previous researchers have only perturbed the journal, while both the bearing and journal motions are perturbed in the present analysis, and the applicability of comparing rotor-perturbed bearing impedance predictions to impedances measured on a bearing-perturbed test rig is discussed. This perturbation model was implemented in a Reynolds-based TPJB code to predict the frequency-dependent bearing impedances and rotor-pad transfer functions. Direct measurements of pad motion during test excitation were recorded to produce measured transfer functions between rotor and pad motion, and a comparison between these measurements and predictions is given. Motion probes were added to the loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, and pitch. Strain gages were attached to the side of the loaded pad to measure static and dynamic bending strains, which were then used to determine static and dynamic changes in pad curvature (pad clearance). Good agreement was found between the amplitude of the measured and predicted transfer functions concerning radial and transverse pad motions throughout the range of speeds and loads tested, while pad tilt was moderately underpredicted. For the bearing investigated, radial pad motions resulting from pivot compliance were as large as 60% of the radial component of shaft motion when operating at 4400 rpm under heavily loaded conditions. Hence, if a dynamic load applied to the shaft resulted in a shaft displacement of 25 microns (1 mil), the pad would displace radially 15 microns (0.6 mils), and the fluid film height would only decrease by 10 microns (0.4 mils). The consequence of this pad motion is that fluid film stiffness and damping forces produced by relative rotor-pad motions are significantly reduced, resulting in a bearing having significantly less direct stiffness and damping than predicted. A similar effect occurs when shaft motions produce significant changes in pad clearance due to pad compliance. For the pad tested here, the measurements show that predicting TPJB stiffness and damping coefficients without accounting for pad and pivot compliance will produce large errors, and is not advised. Transverse pad motion was predicted and observed. Based on phase measurements, this motion is lightly damped, and appears to be caused by pivot deflection instead of slipping. Despite observing a lightly damped phase change, an increase in magnitude at this natural frequency was not observed. Predicted direct stiffness and damping for unit loads from 0-3200 kPa (0-450 psi) fit through 1.5× running speed are within 18% of measurements at 4400 rpm, while predictions at 10200 rpm are within 10% of measurements. This is a significant improvement on the accuracy of predictions cited in literature. Comparisons between predictions from the developed bearing model neglecting pad, pivot, and pad and pivot flexibility show that predicted direct stiffness and damping coefficients for a model having a rigid pad and pivot are overestimated, respectively, by 202% and 811% at low speeds and large loads, by 176% and 513% at high speeds and high loads, and by 51% and 182% at high speeds and light loads. While the reader is likely questioning the degree to which these predictions are overestimated in regard to previous comparisons, these predictions are based on measured operating bearing clearances, which are 20-30% smaller than the cold bearing clearances that previous comparisons were based on. The effect of employing a full bearing model (retaining all of the pad degrees of freedom) versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. This overestimation of stability is due to an increase in predicted direct damping at the synchronous frequency over the subsynchronously reduced value. This increase in direct damping with excitation frequency was also seen in highly loaded test data at frequencies below approximately 2×running speed, after which direct damping decreased with increasing excitation frequency. This effect was more pronounced in predictions, occurring at all load and speed combinations. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies at 10200 rpm. It was found that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping. This outcome contrasts with the comparison between models using synchronously and subsynchronously reduced impedance predictions, which showed the subsynchronously reduced model to be the most conservative. This contrast results from a predicted increase in damping with increasing excitation frequency at all speeds and loads, while this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.
APA, Harvard, Vancouver, ISO, and other styles
20

Nowesar, Mohammed Abdel Gawad Ashour. "Distortion of a thrust pad bearing on elastic support." Thesis, 1989. http://localhost:8080/iit/handle/2074/4946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sinha, Amarendra Nath. "Thermoelastohydrodynamic analysis of spring supported large thrust pad bearing." Thesis, 1992. http://localhost:8080/iit/handle/2074/4999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tao, Yujiao 1988. "A Novel Computational Model for Tilting Pad Journal Bearings with Soft Pivot Stiffnesses." Thesis, 2012. http://hdl.handle.net/1969.1/148299.

Full text
Abstract:
A novel tilting pad journal bearing model including pivot flexibility as well as temporal fluid inertia effects on the thin film fluid flow aims to accurately predict the bearing forced performance. The predictive model also accounts for the thermal energy transport effects in a TPJB. A Fortran program with an Excel GUI models TPJBs and delivers predictions of the bearing static and dynamic forced performance. The calculation algorithm uses a Newton-Raphson procedure for successful iterations on the equilibrium pad radial and transverse displacements and journal center displacements, even for bearings pads with very soft pivots. The predictive model accounts for the effect of film temperature on the operating bearing and pad clearances by calculating the thermal expansion of the journal and pad surfaces. The pad inlet thermal mixing coefficient (lambda) influences moderately the predicted fluid film temperature field. Pad pivot flexibility decreases significantly and dominates the bearing stiffness and damping coefficients when the pivot stiffness is lower than 10% of the fluid film stiffness coefficients (with rigid pivots). Pivot flexibility has a more pronounced effect on reducing the bearing damping coefficients than the stiffness coefficients. Pad pivot flexibility may still affect the bearing behavior at a light load condition for a bearing with a large pad preload. Pad pivot flexibility, as well as the fluid inertia and the pads’ mass and mass moment of inertia, could influence the bearing impedance coefficients, in particular at high whirl frequencies. The stiffness and damping coefficients of a TPJB increase with a reduction in the operating bearing and pad clearances. The work delivers a predictive tool benchmarked against a number of experimental results for test bearings available in the recent literature. The static and dynamic forced performance characteristics of actual TPJBs can not be accurately predicted unless their pad flexibility and pivot flexibility, fluid film temperature, pad inlet thermal mixing coefficient, operating bearing and pad clearances, among others are well known in advance. However, the extensive archival literature showcasing test procedures and experimental results for TPJBs does not report the above parameters. Thus, reasonable assumptions on the magnitude of certain elusive parameters for use in the predictive TPJB model are necessary.
APA, Harvard, Vancouver, ISO, and other styles
23

NOCCIOLINI, DANIELE. "Development and Validation of an Efficient TEHD Model of Tilting Pad Journal Bearings." Doctoral thesis, 2017. http://hdl.handle.net/2158/1080940.

Full text
Abstract:
The constant increase of turbomachinery rotational speed has brought the design and the use of journal bearings to their very limits: tilting pad journal bearings (TPJBs) have been introduced for high-speed/high-load applications due to their intrinsic stability properties and can be used both in transient and steady-state operations obtaining superior performances. TPJBs operation involves different physical aspects, like the pads flexibility and the heat exchange between solids and fluids. An accurate analysis of the TPJBs behavior is essential for a successful design and operation of the system; however, it is necessary to reach a compromise between the accuracy of the results provided by the TPJB model and its computational cost. The present thesis exposes the development of an innovative and efficient quasi-3D TPJB modeling approach that allows an accurate analysis of the interactions between the fluid dynamic and thermal phenomena with the elastic behaviour of the solid components (ThermoElastoHydroDynamic analysis); the majority of existing models describes these aspects separately but their complex interactions must be taken into account to obtain a more accurate characterization of the system. The main objective of the proposed model is to provide accurate 3D results with low computational times; furthermore, it is characterized by a strong modularity, allowing for complex transient simulations of the complete plant and for the representation of different kinds of bearings. In this thesis, the whole model has been developed and experimentally validated in collaboration with Nuovo Pignone General Electric S.p.a., which provided the required technical and experimental data.
APA, Harvard, Vancouver, ISO, and other styles
24

Tschoepe, David 1987. "Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-pad Rocker-pivot, Tilting-pad Journal Bearing." Thesis, 2012. http://hdl.handle.net/1969.1/148049.

Full text
Abstract:
Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing in the load-on-pad and load-between-pad orientations. The bearing has the following characteristics: 4 pads, .57 pad pivot offset, 0.6 L/D ratio, 60.33 mm (2.375in) pad axial length, 0.08255 mm (0.00325 in) radial clearance in the load-on-pad orientation, and 0.1189 mm (0.00468 in) radial clearance in the load-between-pad orientation. Tests were conducted on a floating test bearing design with unit loads ranging from 0 to 2903 kPa (421.1 psi) and speeds from 6.8 to 13.2 krpm. For all rotor speeds, hot-clearance measurements were taken to show the reduction in bearing clearance due to thermal expansion of the shaft and pads during testing. As the testing conditions get hotter, the rotor, pads, and bearing expand, decreasing radial bearing clearance. Hot-clearance measurements showed a 16-25% decrease in clearance compared to a clearance measurement at room temperature. For all test conditions, dynamic tests were performed over a range of excitation frequencies to obtain complex dynamic stiffness coefficients as a function of frequency. The direct real dynamic stiffness coefficients were then fitted with a quadratic function with respect to frequency. From the curve fit, the frequency dependence was captured by including a virtual-mass matrix [M] to produce a frequency independent [K][C][M] model. The direct dynamic stiffness coefficients for the load-on-pad orientation showed significant orthotropy, while the load-between-pad did not. The load-between-pad showed slight orthotropy as load increased. Experimental cross-coupled stiffness coefficients were measured in both load orientations, but were of the same sign and significantly less than direct stiffness coefficients. In both orientations the imaginary part of the measured dynamic stiffness increased linearly with increasing frequency, allowing for frequency independent direct damping coefficients. Rotordynamic coefficients presented were compared to predictions from two different Reynolds-based models. Both models showed the importance of taking into account pivot flexibility and different pad geometries (due to the reduction in bearing clearance during testing) in predicting rotordynamic coefficients. If either of these two inputs were incorrect, then predictions for the bearings impedance coefficients were very inaccurate. The main difference between prediction codes is that one of the codes incorporates pad flexibility in predicting the impedance coefficients for a tilting-pad journal bearing. To look at the effects that pad flexibility has on predicting the impedance coefficients, a series of predictions were created by changing the magnitude of the pad's bending stiffness. Increasing the bending stiffness used in predictions by a factor of 10 typically caused a 3-11% increase in predicted Kxx and Kyy, and a 10-24% increase in predicted Cxx and Cyy. In all cases, increasing the calculated bending stiffness from ten to a hundred times the calculated value caused slight if any change in Kxx, Kyy, Cxx, and Cyy. For a flexible pad an increase in bending stiffness can have a large effect on predictions; however, for a more rigid pad an increase in pad bending stiffness will have a much lesser effect. Results showed that the pad's structural bending stiffness can be an important factor in predicting impedance coefficients. Even though the pads tested in this thesis are extremely stiff, changes are still seen in predictions when the magnitude of the pad?s bending stiffness is increased, especially in Cxx, and Cyy. The code without pad flexibility predicted Kxx and Kyy much more accurately than the code with pad flexibility. The code with pad flexibility predicts Cxx more accurately, while the code without pad flexibility predicted Cyy more accurately. Regardless of prediction Code used, the Kxx and Kyy were over-predicted at low loads, but predicted more accurately as load increased. Cxx, and Cyy were modeled very well in the load-on-pad orientation, while slightly overpredicted in the load-between-pad orientation. For solid pads, like the ones tested here, both codes do a decent job at predicting impedance coefficients
APA, Harvard, Vancouver, ISO, and other styles
25

Kulhanek, Chris David. "Dynamic and Static Characteristics of a Rocker-Pivot, Tilting-Pad Bearing with 50% and 60% Offsets." Thesis, 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8924.

Full text
Abstract:
Static performance and rotordynamic coefficients are provided for a rocker-pivot, tilting-pad journal bearing with 50 and 60 percent offset pads in a load-between-pad configuration. The bearing uses leading-edge-groove lubrication and has the following characteristics: 5-pads, 101.6 mm (4.0 in) nominal diameter, .0814 - .0837 mm (.0032 - .0033 in) radial bearing clearance, .25 to .27 preload, 60.325 mm (2.375 in) axial pad length. Operating conditions included loads from 0 to 3101 kPa (450 psi) and speeds from 7 to 16 krpm. Dynamic tests were conducted over a range of frequencies to obtain complex dynamic stiffness coefficients as functions of excitation frequency. For most test conditions, the direct real dynamic stiffnesses were well fitted with a quadratic function with respect to frequency. This curve fit allowed for the stiffness frequency dependency to be captured by including an added mass matrix [M] to a conventional [K][C] model, producing a frequency independent [K][C][M] model. The direct imaginary dynamic stiffness coefficients increased linearly with frequency, producing frequency independent direct damping coefficients. Compared to the 50 percent offset, the 60 percent offset configuration’s direct stiffness coefficients were larger at light unit loads. At high loads, the 50 percent offset configuration had a larger direct stiffness in the loaded direction. Negative direct added-mass coefficients were regularly obtained for both offsets, especially in the unloaded direction. Added-mass magnitudes were below 32 kg for all test cases. No appreciable difference was measured in direct damping coefficients for both pivot offset. A bulk-flow Navier-Stokes CFD code provided rotordynamic coefficient predictions. The following stiffness and damping prediction trends were observed for both 50 and 60 percent offsets. The direct stiffness coefficients were modeled well at light loads and became increasingly over-predicted with increasing unit load. Stiffness orthotropy was measured at zero and light load conditions that was not predicted. Direct damping predictions in the loaded direction increased significantly with unit load while the experimental direct damping coefficients remained constant with load. The direct damping coefficients were reasonably modeled only at the highest test speed of 16 krpm. Experimental cross-coupled stiffness coefficients were larger than predicted for both offsets, but were of the same sign and considerably smaller than the direct coefficients.
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Jung Gu. "A Nonlinear Transient Approach for Morton Synchronous Rotordynamic Instability and Catcher Bearing Life Predictions." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10981.

Full text
Abstract:
This dissertation deals with three research topics; i) the catcher bearings life prediction method, ii) the Morton effect, and iii) the two dimensional modified Reynolds equation. Firstly, catcher bearings (CB) are an essential component for rotating machine with active magnetic bearings (AMBs) suspensions. The CB's role is to protect the magnetic bearing and other close clearance component in the event of an AMB failure. The contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, and balls are calculated, using a nonlinear ball bearing model with thermal growth, during the rotor drop event. Fatigue life of the CB in terms of the number of drop occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm to the sub/surface shear stress-time history. Numerical simulations including high fidelity bearing models and a Timoshenko beam finite element rotor model show that CB life is dramatically reduced when high-speed backward whirl occurs. Secondly, the theoretical models and simulation results about the synchronous thermal instability phenomenon known as Morton Effect is presented in this dissertation. A transient analysis of the rotor supported by tilting pad journal bearing is performed to obtain asymmetric temperature distribution of the journal by solving variable viscosity Reynolds equation, energy equation, heat conduction equation, and equations of motion for rotor. The tilting pad bearing is fully nonlinear model. In addition, thermal mode approach and staggered integration scheme are utilized in order to reduce computation time. The simulation results indicate that the temperature of the journal varies sinusoidally along the circumferential direction and linearly across the diameter, and the vibration envelope increased and decreased, which considers as a limit cycle that is stable oscillation of the envelope of the amplitude of synchronous vibration. Thirdly, the Reynolds equation plays an important role to predict pressure distribution in the fluid film for the fluid film bearing analysis. One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. In elastohydrodynamic lubrication (EHL) which the lubricant is subjected to extremely high pressure, however, the pressure independent viscosity assumption should be reconsidered. With considering pressure-dependent viscosity, the 2D modified Reynolds equation is derived in this study. The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the plain journal bearing and ball bearing cases. The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations.<br>PDF file replaced 10-21-2012 at the request of the Thesis Office.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!