Academic literature on the topic 'Time-aware recommender systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time-aware recommender systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Time-aware recommender systems"

1

Yang, Dan, Jing Zhang, Sifeng Wang, and XueDong Zhang. "A Time-Aware CNN-Based Personalized Recommender System." Complexity 2019 (December 18, 2019): 1–11. http://dx.doi.org/10.1155/2019/9476981.

Full text
Abstract:
Recommender system has received tremendous attention and has been studied by scholars in recent years due to its wide applications in different domains. With the in-depth study and application of deep learning algorithms, deep neural network is gradually used in recommender systems. The success of modern recommender system mainly depends on the understanding and application of the context of recommendation requests. However, when leveraging deep learning algorithms for recommendation, the impact of context information such as recommendation time and location is often neglected. In this paper, a time-aware convolutional neural network- (CNN-) based personalized recommender system TC-PR is proposed. TC-PR actively recommends items that meet users’ interests by analyzing users’ features, items’ features, and users’ ratings, as well as users’ time context. Moreover, we use Tensorflow distributed open source framework to implement the proposed time-aware CNN-based recommendation algorithm which can effectively solve the problems of large data volume, large model, and slow speed of recommender system. The experimental results on the MovieLens-1m real dataset show that the proposed TC-PR can effectively solve the cold-start problem and greatly improve the speed of data processing and the accuracy of recommendation.
APA, Harvard, Vancouver, ISO, and other styles
2

Beheshti, Amin, Shahpar Yakhchi, Salman Mousaeirad, Seyed Mohssen Ghafari, Srinivasa Reddy Goluguri, and Mohammad Amin Edrisi. "Towards Cognitive Recommender Systems." Algorithms 13, no. 8 (July 22, 2020): 176. http://dx.doi.org/10.3390/a13080176.

Full text
Abstract:
Intelligence is the ability to learn from experience and use domain experts’ knowledge to adapt to new situations. In this context, an intelligent Recommender System should be able to learn from domain experts’ knowledge and experience, as it is vital to know the domain that the items will be recommended. Traditionally, Recommender Systems have been recognized as playlist generators for video/music services (e.g., Netflix and Spotify), e-commerce product recommenders (e.g., Amazon and eBay), or social content recommenders (e.g., Facebook and Twitter). However, Recommender Systems in modern enterprises are highly data-/knowledge-driven and may rely on users’ cognitive aspects such as personality, behavior, and attitude. In this paper, we survey and summarize previously published studies on Recommender Systems to help readers understand our method’s contributions to the field in this context. We discuss the current limitations of the state of the art approaches in Recommender Systems and the need for our new approach: A vision and a general framework for a new type of data-driven, knowledge-driven, and cognition-driven Recommender Systems, namely, Cognitive Recommender Systems. Cognitive Recommender Systems will be the new type of intelligent Recommender Systems that understand the user’s preferences, detect changes in user preferences over time, predict user’s unknown favorites, and explore adaptive mechanisms to enable intelligent actions within the compound and changing environments. We present a motivating scenario in banking and argue that existing Recommender Systems: (i) do not use domain experts’ knowledge to adapt to new situations; (ii) may not be able to predict the ratings or preferences a customer would give to a product (e.g., loan, deposit, or trust service); and (iii) do not support data capture and analytics around customers’ cognitive activities and use it to provide intelligent and time-aware recommendations.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Dan, Zheng Tie Nie, and Fajun Yang. "Time-Aware CF and Temporal Association Rule-Based Personalized Hybrid Recommender System." Journal of Organizational and End User Computing 33, no. 3 (May 2021): 19–34. http://dx.doi.org/10.4018/joeuc.20210501.oa2.

Full text
Abstract:
Most recommender systems usually combine several recommendation methods to enhance the recommendation accuracy. Collaborative filtering (CF) is a best-known personalized recommendation technique. While temporal association rule-based recommendation algorithm can discover users' latent interests with time-specific leveraging historical behavior data without domain knowledge. The concept-drifting and user interest-drifting are two key problems affecting the recommendation performance. Aiming at the above problems, a time-aware CF and temporal association rule-based personalized hybrid recommender system, TP-HR, is proposed. The proposed time-aware CF algorithm considers evolving features of users' historical feedback. And time-aware users' similar neighbors selecting measure and time-aware item rating prediction function are proposed to keep track of the dynamics of users' preferences. The proposed temporal association rule-based recommendation algorithm considers the time context of users' historical behaviors when mining effective temporal association rules. Experimental results on real datasets show the feasibility and performance improvement of the proposed hybrid recommender system compared to other baseline approaches.
APA, Harvard, Vancouver, ISO, and other styles
4

Javed, Umair, Kamran Shaukat, Ibrahim A. Hameed, Farhat Iqbal, Talha Mahboob Alam, and Suhuai Luo. "A Review of Content-Based and Context-Based Recommendation Systems." International Journal of Emerging Technologies in Learning (iJET) 16, no. 03 (February 12, 2021): 274. http://dx.doi.org/10.3991/ijet.v16i03.18851.

Full text
Abstract:
In our work, we have presented two widely used recommendation systems. We have presented a context-aware recommender system to filter the items associated with user’s interests coupled with a context-based recommender system to prescribe those items. In this study, context-aware recommender systems perceive the user’s location, time, and company. The context-based recommender system retrieves patterns from World Wide Web-based on the user’s past interactions and provides future news recommendations. We have presented different techniques to support media recommendations for smartphones, to create a framework for context-aware, to filter E-learning content, and to deliver convenient news to the user. To achieve this goal, we have used content-based, collaborative filtering, a hybrid recommender system, and implemented a Web ontology language (OWL). We have also used the Resource Description Framework (RDF), JAVA, machine learning, semantic mapping rules, and natural ontology languages that suggest user items related to the search. In our work, we have used E-paper to provide users with the required news. After applying the semantic reasoning approach, we have concluded that by some means, this approach works similarly as a content-based recommender system since by taking the gain of a semantic approach, we can also recommend items according to the user’s interests. In a content-based recommender system, the system provides additional options or results that rely on the user’s ratings, appraisals, and interests.
APA, Harvard, Vancouver, ISO, and other styles
5

Campos, Pedro G., Fernando Díez, and Iván Cantador. "Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols." User Modeling and User-Adapted Interaction 24, no. 1-2 (February 15, 2013): 67–119. http://dx.doi.org/10.1007/s11257-012-9136-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahn, Hyun Chul, and Kyoung Jae Kim. "Context-Aware Recommender System for Location-Based Advertising." Key Engineering Materials 467-469 (February 2011): 2091–96. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.2091.

Full text
Abstract:
Demand for context-aware systems continues to grow due to the diffusion of mobile devices. This trend may represent good market opportunities for mobile service industries. Thus, context-aware or location-based advertising (LBA) has been an interesting marketing tool for many companies. However, some studies reported that the performance of context-aware marketing or advertising has been quite disappointing. In this study, we propose a novel context-aware recommender system for LBA. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user’s needs type. In particular, we employ a classification rule to understand user’s needs type using a decision tree algorithm. We empirically validated the effectiveness of the proposed model by using a real-world dataset. Experimental results show that our model makes more accurate and satisfactory advertisements than comparative systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Sundermann, Camila, Marcos Domingues, Roberta Sinoara, Ricardo Marcacini, and Solange Rezende . "Using Opinion Mining in Context-Aware Recommender Systems: A Systematic Review." Information 10, no. 2 (January 28, 2019): 42. http://dx.doi.org/10.3390/info10020042.

Full text
Abstract:
Recommender systems help users by recommending items, such as products and services, that can be of interest to these users. Context-aware recommender systems have been widely investigated in both academia and industry because they can make recommendations based on a user’s current context (e.g., location and time). Moreover, the advent of Web 2.0 and the growing popularity of social and e-commerce media sites have encouraged users to naturally write texts describing their assessment of items. There are increasing efforts to incorporate the rich information embedded in user’s reviews/texts into the recommender systems. Given the importance of this type of texts and their usage along with opinion mining and contextual information extraction techniques for recommender systems, we present a systematic review on the recommender systems that explore both contextual information and opinion mining. This systematic review followed a well-defined protocol. Its results were based on 17 papers, selected among 195 papers identified in four digital libraries. The results of this review give a general summary of the current research on this subject and point out some areas that may be improved in future primary works.
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Ghossein, Marie, Talel Abdessalem, and Anthony BARRÉ. "A Survey on Stream-Based Recommender Systems." ACM Computing Surveys 54, no. 5 (June 2021): 1–36. http://dx.doi.org/10.1145/3453443.

Full text
Abstract:
Recommender Systems (RS) have proven to be effective tools to help users overcome information overload, and significant advances have been made in the field over the past two decades. Although addressing the recommendation problem required first a formulation that could be easily studied and evaluated, there currently exists a gap between research contributions and industrial applications where RS are actually deployed. In particular, most RS are meant to function in batch: they rely on a large static dataset and build a recommendation model that is only periodically updated. This functioning introduces several limitations in various settings, leading to considering more realistic settings where RS learn from continuous streams of interactions. Such RS are framed as Stream-Based Recommender Systems (SBRS). In this article, we review SBRS, underline their relation with time-aware RS and online adaptive learning, and present and categorize existing work that tackle the corresponding problem and its multiple facets. We discuss the methodologies used to evaluate SBRS and the adapted datasets that can be used, and finally we outline open challenges in the area.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Hongzhi, and Dezhi Han. "A Novel Time-Aware Hybrid Recommendation Scheme Combining User Feedback and Collaborative Filtering." Mobile Information Systems 2020 (October 22, 2020): 1–16. http://dx.doi.org/10.1155/2020/8896694.

Full text
Abstract:
Nowadays, recommender systems are used widely in various fields to solve the problem of information overload. Collaborative filtering and content-based models are representative solutions in recommender systems; however, the content-based model has some shortcomings, such as single kind of recommendation results and lack of effective perception of user preferences, while for the collaborative filtering model, there is a cold start problem, and such a model is greatly affected by its adopted clustering algorithm. To address these issues, a hybrid recommendation scheme is proposed in this paper, which is based on both collaborative filtering and content-based. In this scheme, we propose the concept of time impact factor, and a time-aware user preference model is built based on it. Also, user feedback on recommendation items is utilized to improve the accuracy of our proposed recommendation model. Finally, the proposed hybrid model combines the results of content recommendation and collaborative filtering based on the logistic regression algorithm.
APA, Harvard, Vancouver, ISO, and other styles
10

Lozano Murciego, Álvaro, Diego M. Jiménez-Bravo, Adrián Valera Román, Juan F. De Paz Santana, and María N. Moreno-García. "Context-Aware Recommender Systems in the Music Domain: A Systematic Literature Review." Electronics 10, no. 13 (June 27, 2021): 1555. http://dx.doi.org/10.3390/electronics10131555.

Full text
Abstract:
The design of recommendation algorithms aware of the user’s context has been the subject of great interest in the scientific community, especially in the music domain where contextual factors have a significant impact on the recommendations. In this type of system, the user’s contextual information can come from different sources such as the specific time of day, the user’s physical activity, and geolocation, among many others. This context information is generally obtained by electronic devices used by the user to listen to music such as smartphones and other secondary devices such as wearables and Internet of Things (IoT) devices. The objective of this paper is to present a systematic literature review to analyze recent work to date in the field of context-aware recommender systems and specifically in the domain of music recommendation. This paper aims to analyze and classify the type of contextual information, the electronic devices used to collect it, the main outstanding challenges and the possible opportunities for future research directions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Time-aware recommender systems"

1

Grönberg, David, and Otto Denesfay. "Comparison and improvement of time aware collaborative filtering techniques : Recommender systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160360.

Full text
Abstract:
Recommender systems emerged in the mid '90s with the objective of helping users select items or products most suited for them. Whether it is Facebook recommending people you might know, Spotify recommending songs you might like or Youtube recommending videos you might want to watch, recommender systems can now be found in every corner of the internet. In order to handle the immense increase of data online, the development of sophisticated recommender systems is crucial for filtering out information, enhancing web services by tailoring them according to the preferences of the user. This thesis aims to improve the accuracy of recommendations produced by a classical collaborative filtering recommender system by utilizing temporal properties, more precisely the date on which an item was rated by a user. Three different time-weighted implementations are presented and evaluated: time-weighted prediction approach, time-weighted similarity approach and our proposed approach, weighting the mean rating of a user on time. The different approaches are evaluated using the well known MovieLens 100k dataset. Results show that it is possible to slightly increase the accuracy of recommendations by utilizing temporal properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Ribacki, Guilherme Haag. "Uma abordagem de recomendação de colaborações acadêmicas através da análise de séries temporais." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/141965.

Full text
Abstract:
O avanço da tecnologia nos últimos anos permitiu a criação de Sistemas de Informação com acesso a grandes bases de dados, abrindo diversas possibilidades de aplicações. Tem-se como exemplo a Internet, onde uma enorme quantidade de dados é gerada e publicada a todo momento por usuários ao redor do mundo. Com isso, aos poucos foi surgindo a necessidade de métodos para filtrar o conteúdo disponível de forma a permitir que um usuário pudesse focar apenas nos seus interesses. Nesse contexto surgiram os Sistemas de Recomendação e as Redes Sociais, onde, mais recentemente, surgiram trabalhos que apresentam abordagens para o uso de Sistemas de Recomendação no contexto acadêmico, de forma a aumentar a produtividade de grupos de pesquisa. Também têm sido bastante exploradas formas de se utilizar informações temporais em Sistemas de Recomendação de maneira a melhorar as recomendações feitas. O presente trabalho propõe uma abordagem de recomendação de colaborações acadêmicas utilizando a técnica de Análise de Séries Temporais, buscando melhorar os resultados obtidos por trabalhos anteriores. Foi realizado um experimento offline para avaliar o desempenho da abordagem proposta em relação às abordagens anteriores e um estudo de usuários para fazer uma análise mais profunda com feedback de usuários. Foram utilizadas métricas conhecidas das áreas de Recuperação de Informação e Sistemas de Recomendação, mas alguns resultados se mostraram inferiores em comparação com as abordagens existentes; outros, porém, foram similares. Também foram utilizadas algumas métricas de avaliação focadas em Sistemas de Recomendação, e os resultados obtidos foram similares em todas as abordagens testadas.
The advance of technology in recent years made possible the creation of Information Systems with access to large databases, opening many applications possibilities. There’s the Internet, for example, where a vast amount of data is generated and published all the time by users around the world. In this sense, the need for methods to filter the available content to enable users to focus only on their interests slowly emerged. In this context, Recommender Systems and Social Networks appeared, where, recently, works reporting approaches to provide recommendations in the academic context appeared, increasing the productivity of research groups. New ways to employ temporal information in Recommender Systems to make better recommendations are also being explored. The present work proposes an approach to academic collaborations recommendation using Time Series Analysis, aiming to improve results reported on previous and current works. An offline experiment was done to evaluate the proposed approach in comparison with other works and a user study was done to make a deeper analysis from user feedback. Known metrics from the Information Retrieval and Recommender Systems fields were used, and in some cases the results obtained were lower compared to the current methods but similar in others. Some evaluation metrics from Recommender Systems were also used, and the results were similar to all approaches.
APA, Harvard, Vancouver, ISO, and other styles
3

Barreau, Baptiste. "Machine Learning for Financial Products Recommendation." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST010.

Full text
Abstract:
L’anticipation des besoins des clients est cruciale pour toute entreprise — c’est particulièrement vrai des banques d’investissement telles que BNP Paribas Corporate and Institutional Banking au vu de leur rôle dans les marchés financiers. Cette thèse s’intéresse au problème de la prédiction des intérêts futurs des clients sur les marchés financiers, et met plus particulièrement l’accent sur le développement d’algorithmes ad hoc conçus pour résoudre des problématiques spécifiques au monde financier.Ce manuscrit se compose de cinq chapitres, répartis comme suit :- Le chapitre 1 expose le problème de la prédiction des intérêts futurs des clients sur les marchés financiers. Le but de ce chapitre est de fournir aux lecteurs toutes les clés nécessaires à la bonne compréhension du reste de cette thèse. Ces clés sont divisées en trois parties : une mise en lumière des jeux de données à notre disposition pour la résolution du problème de prédiction des intérêts futurs et de leurs caractéristiques, une vue d’ensemble, non exhaustive, des algorithmes pouvant être utilisés pour la résolution de ce problème, et la mise au point de métriques permettant d’évaluer la performance de ces algorithmes sur nos jeux de données. Ce chapitre se clôt sur les défis que l’on peut rencontrer lors de la conception d’algorithmes permettant de résoudre le problème de la prédiction des intérêts futurs en finance, défis qui seront, en partie, résolus dans les chapitres suivants ;- Le chapitre 2 compare une partie des algorithmes introduits dans le chapitre 1 sur un jeu de données provenant de BNP Paribas CIB, et met en avant les difficultés rencontrées pour la comparaison d’algorithmes de nature différente sur un même jeu de données, ainsi que quelques pistes permettant de surmonter ces difficultés. Ce comparatif met en pratique des algorithmes de recommandation classiques uniquement envisagés d’un point de vue théorique au chapitre précédent, et permet d’acquérir une compréhension plus fine des différentes métriques introduites au chapitre 1 au travers de l’analyse des résultats de ces algorithmes ;- Le chapitre 3 introduit un nouvel algorithme, Experts Network, i.e., réseau d’experts, conçu pour résoudre le problème de l’hétérogénéité de comportement des investisseurs d’un marché donné au travers d’une architecture de réseau de neurones originale, inspirée de la recherche sur les mélanges d’experts. Dans ce chapitre, cette nouvelle méthodologie est utilisée sur trois jeux de données distincts : un jeu de données synthétique, un jeu de données en libre accès, et un jeu de données provenant de BNP Paribas CIB. Ce chapitre présente aussi en plus grand détail la genèse de l’algorithme et fournit des pistes pour l’améliorer ;- Le chapitre 4 introduit lui aussi un nouvel algorithme, appelé History-augmented collaborative filtering, i.e., filtrage collaboratif augmenté par historiques, qui proposes d’augmenter les approches de factorisation matricielle classiques à l’aide des historiques d’interaction des clients et produits considérés. Ce chapitre poursuit l’étude du jeu de données étudié au chapitre 2 et étend l’algorithme introduit avec de nombreuses idées. Plus précisément, ce chapitre adapte l’algorithme de façon à permettre de résoudre le problème du cold start, i.e., l’incapacité d’un système de recommandation à fournir des prédictions pour de nouveaux utilisateurs, ainsi qu’un nouveau cas d’application sur lequel cette adaptation est essayée ;- Le chapitre 5 met en lumière une collection d’idées et d’algorithmes, fructueux ou non, qui ont été essayés au cours de cette thèse. Ce chapitre se clôt sur un nouvel algorithme mariant les idées des algorithmes introduits aux chapitres 3 et 4
Anticipating clients’ needs is crucial to any business — this is particularly true for corporate and institutional banks such as BNP Paribas Corporate and Institutional Banking due to their role in the financial markets. This thesis addresses the problem of future interests prediction in the financial context and focuses on the development of ad hoc algorithms designed for solving specific financial challenges.This manuscript is composed of five chapters:- Chapter 1 introduces the problem of future interests prediction in the financial world. The goal of this chapter is to provide the reader with all the keys necessary to understand the remainder of this thesis. These keys are divided into three parts: a presentation of the datasets we have at our disposal to solve the future interests prediction problem and their characteristics, an overview of the candidate algorithms to solve this problem, and the development of metrics to monitor the performance of these algorithms on our datasets. This chapter finishes with some of the challenges that we face when designing algorithms to solve the future interests problem in finance, challenges that will be partly addressed in the following chapters;- Chapter 2 proposes a benchmark of some of the algorithms introduced in Chapter 1 on a real-word dataset from BNP Paribas CIB, along with a development on the difficulties encountered for comparing different algorithmic approaches on a same dataset and on ways to tackle them. This benchmark puts in practice classic recommendation algorithms that were considered on a theoretical point of view in the preceding chapter, and provides further intuition on the analysis of the metrics introduced in Chapter 1;- Chapter 3 introduces a new algorithm, called Experts Network, that is designed to solve the problem of behavioral heterogeneity of investors on a given financial market using a custom-built neural network architecture inspired from mixture-of-experts research. In this chapter, the introduced methodology is experimented on three datasets: a synthetic dataset, an open-source one and a real-world dataset from BNP Paribas CIB. The chapter provides further insights into the development of the methodology and ways to extend it;- Chapter 4 also introduces a new algorithm, called History-augmented Collaborative Filtering, that proposes to augment classic matrix factorization approaches with the information of users and items’ interaction histories. This chapter provides further experiments on the dataset used in Chapter 2, and extends the presented methodology with various ideas. Notably, this chapter exposes an adaptation of the methodology to solve the cold-start problem and applies it to a new dataset;- Chapter 5 brings to light a collection of ideas and algorithms, successful or not, that were experimented during the development of this thesis. This chapter finishes on a new algorithm that blends the methodologies introduced in Chapters 3 and 4
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Time-aware recommender systems"

1

Wei, Suyun, Ning Ye, and Qianqian Zhang. "Time-Aware Collaborative Filtering for Recommender Systems." In Communications in Computer and Information Science, 663–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33506-8_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Borba, Eduardo José, Isabela Gasparini, and Daniel Lichtnow. "Time-Aware Recommender Systems: A Systematic Mapping." In Lecture Notes in Computer Science, 464–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58077-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sánchez, Pablo, and Alejandro Bellogín. "Time-Aware Novelty Metrics for Recommender Systems." In Lecture Notes in Computer Science, 357–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76941-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Borba, Eduardo José, Isabela Gasparini, and Daniel Lichtnow. "Describing Scenarios and Architectures for Time-Aware Recommender Systems for Learning." In Enterprise Information Systems, 366–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93375-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campos, Pedro G., Alejandro Bellogín, Iván Cantador, and Fernando Díez. "Time-Aware Evaluation of Methods for Identifying Active Household Members in Recommender Systems." In Advances in Artificial Intelligence, 22–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40643-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Time-aware recommender systems"

1

Anelli, Vito W., Vito Bellini, Tommaso Di Noia, Wanda La Bruna, Paolo Tomeo, and Eugenio Di Sciascio. "An Analysis on Time- and Session-aware Diversification in Recommender Systems." In UMAP '17: 25th Conference on User Modeling, Adaptation and Personalization. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3079628.3079703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Hanxuan, and Zuoquan Lin. "A Hybrid Neural Network and Hidden Markov Model for Time-aware Recommender Systems." In 11th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007380402040213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Pengyu, Kecheng Xiao, Yuanxing Zhang, Kaigui Bian, and Wei Yan. "AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/290.

Full text
Abstract:
Recently, deep learning models have been widely explored in recommender systems. Though having achieved remarkable success, the design of task-aware recommendation models usually requires manual feature engineering and architecture engineering from domain experts. To relieve those efforts, we explore the potential of neural architecture search (NAS) and introduce AMEIR for Automatic behavior Modeling, interaction Exploration and multi-layer perceptron (MLP) Investigation in the Recommender system. Specifically, AMEIR divides the complete recommendation models into three stages of behavior modeling, interaction exploration, MLP aggregation, and introduces a novel search space containing three tailored subspaces that cover most of the existing methods and thus allow for searching better models. To find the ideal architecture efficiently and effectively, AMEIR realizes the one-shot random search in recommendation progressively on the three stages and assembles the search results as the final outcome. The experiment over various scenarios reveals that AMEIR outperforms competitive baselines of elaborate manual design and leading algorithmic complex NAS methods with lower model complexity and comparable time cost, indicating efficacy, efficiency, and robustness of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
4

Xin, Xin, Bo Chen, Xiangnan He, Dong Wang, Yue Ding, and Joemon Jose. "CFM: Convolutional Factorization Machines for Context-Aware Recommendation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/545.

Full text
Abstract:
Factorization Machine (FM) is an effective solution for context-aware recommender systems (CARS) which models second-order feature interactions by inner product. However, it is insufficient to capture high-order and nonlinear interaction signals. While several recent efforts have enhanced FM with neural networks, they assume the embedding dimensions are independent from each other and model high-order interactions in a rather implicit manner. In this paper, we propose Convolutional Factorization Machine (CFM) to address above limitations. Specifically, CFM models second-order interactions with outer product, resulting in ''images'' which capture correlations between embedding dimensions. Then all generated ''images'' are stacked, forming an interaction cube. 3D convolution is applied above it to learn high-order interaction signals in an explicit approach. Besides, we also leverage a self-attention mechanism to perform the pooling of features to reduce time complexity. We conduct extensive experiments on three real-world datasets, demonstrating significant improvement of CFM over competing methods for context-aware top-k recommendation.
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Guibing, Enneng Yang, Li Shen, Xiaochun Yang, and Xiaodong He. "Discrete Trust-aware Matrix Factorization for Fast Recommendation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/191.

Full text
Abstract:
Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.
APA, Harvard, Vancouver, ISO, and other styles
6

Perera, Dilruk, and Roger Zimmermann. "LSTM Networks for Online Cross-Network Recommendations." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/532.

Full text
Abstract:
Cross-network recommender systems use auxiliary information from multiple source networks to create holistic user profiles and improve recommendations in a target network. However, we find two major limitations in existing cross-network solutions that reduce overall recommender performance. Existing models (1) fail to capture complex non-linear relationships in user interactions, and (2) are designed for offline settings hence, not updated online with incoming interactions to capture the dynamics in the recommender environment. We propose a novel multi-layered Long Short-Term Memory (LSTM) network based online solution to mitigate these issues. The proposed model contains three main extensions to the standard LSTM: First, an attention gated mechanism to capture long-term user preference changes. Second, a higher order interaction layer to alleviate data sparsity. Third, time aware LSTM cell gates to capture irregular time intervals between user interactions. We illustrate our solution using auxiliary information from Twitter and Google Plus to improve recommendations on YouTube. Extensive experiments show that the proposed model consistently outperforms state-of-the-art in terms of accuracy, diversity and novelty.
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Zeping, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. "Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/585.

Full text
Abstract:
User modeling is an essential task for online recommender systems. In the past few decades, collaborative filtering (CF) techniques have been well studied to model users' long term preferences. Recently, recurrent neural networks (RNN) have shown a great advantage in modeling users' short term preference. A natural way to improve the recommender is to combine both long-term and short-term modeling. Previous approaches neglect the importance of dynamically integrating these two user modeling paradigms. Moreover, users' behaviors are much more complex than sentences in language modeling or images in visual computing, thus the classical structures of RNN such as Long Short-Term Memory (LSTM) need to be upgraded for better user modeling. In this paper, we improve the traditional RNN structure by proposing a time-aware controller and a content-aware controller, so that contextual information can be well considered to control the state transition. We further propose an attention-based framework to combine users' long-term and short-term preferences, thus users' representation can be generated adaptively according to the specific context. We conduct extensive experiments on both public and industrial datasets. The results demonstrate that our proposed method outperforms several state-of-art methods consistently.
APA, Harvard, Vancouver, ISO, and other styles
8

Karahodza, Bakir, and Dzenana Donko. "Feature enhanced time-aware recommender system." In 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 2015. http://dx.doi.org/10.1109/icat.2015.7340527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamed, A. A., R. Roose, M. Branicki, and A. Rubin. "T-Recs: Time-aware Twitter-based Drug Recommender System." In 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). IEEE, 2012. http://dx.doi.org/10.1109/asonam.2012.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Puntheeranurak, Sutheera, and Pongpan Pitakpaisarnsin. "Time-aware Recommender System Using Naive Bayes Classifier Weighting Technique." In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/3ca-13.2013.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography