Dissertations / Theses on the topic 'Time dependent current density functional theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Time dependent current density functional theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ioannou, Andrew George. "Applications of time-dependent current density functional theory." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624734.
Full textJensen, Daniel S. "Real-Space Approach to Time Dependent Current Density Functional Theory." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2559.
Full textYam, Chi-yung, and 任志勇. "Linear-scaling time-dependent density functional theory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31246199.
Full textCazorla, Julien J. A. "Real time techniques in time-dependent density functional theory." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615790.
Full textVan, Caillie Carole. "Electronic structure calculations using time-dependent density functional theory." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621205.
Full textEsplugas, Ricardo Oliveira. "Density functional theory and time-dependent density functional theory studies of copper and silver cation complexes." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496931.
Full textTempel, David Gabriel. "Time-Dependent Density Functional Theory for Open Quantum Systems and Quantum Computation." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10208.
Full textPhysics
Zhang, Xing. "Spin-flip time-dependent density functional theory and its applications to photodynamics." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469628877.
Full textLacombe, Lionel. "On dynamics beyond time-dependent mean-field theories." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30185/document.
Full textThis thesis presents various quantal approaches for the exploration of dynamical processes in multielectronic systems, especially after an intense excitation which can possibly lead to dissipative effects. Mean field theories constitute useful tools in that respect. Despite the existence of numerous works during the past two decades, they have strong difficulties to capture full 2-body correlations. Thermalization is one of these effects that stems from electron-electron collisions. After an introductory chapter, we present in Chapter 2 the formalism of the various schemes studied in this thesis toward the description of such an effect by including collisional terms on top of a mean field theory. These schemes are called Stochastic Time-Dependent Hartree Fock (STDHF), Extended TDHF (ETDHF) and Collisional TDHF (CTDHF). The latter scheme constitutes in some sense the main achievement of this thesis. The numerical realizations of each scheme are also discussed in detail. In Chapters 3, 4 and 5, we apply the approaches discussed in Chapter 2 but in various systems. In Chapter 3, we first explore a rare reaction channel, that is the probability of an electron to attach on small water clusters. Good agreement with experimental data is achieved. In Chapter 4, a model widely used in nuclear physics is exactly solved and quantitatively compared to STDHF. The time evolution of 1-body observables agrees well in both schemes, especially what concerns thermal behavior. However, to allow a good description of the dynamics, one is bound to use a large statistics, which can constitute a hindrance of the use of STDHF in larger systems. To overcome this problem, in Chapter 5, we go for a testing of CTDHF developed in Chapter 2 in a one-dimensional system (and without electronic emission). This system consists in electrons in a jellium potential with a simplified self-consistent interaction expressed as a functional of the density. The advantage of this 1D model is that STDHF calculations are numerically manageable and therefore allows a direct comparison with CTDHF calculations. In this proof of concept study, CTDHF compares remarkably well with STDHF. This thus paves the road toward an efficient description of dissipation in realistic 3D systems by CTDHF
Tafur, Sergio. "NONLINEAR OPTICAL PROPERTIES OF ORGANIC CHROMOPHORES CALCULATED WITHIN TIME DEPENDENT DENSITY FUNCTIONAL THEORY." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4079.
Full textM.S.
Department of Physics
Sciences
Physics MS
Craig, Colleen F. "Nonadiabatic molecular dynamics in time-dependent density functional theory with applications to nanoscale materials /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8671.
Full textDinh, Phuong Mai. "Time-dependent density functional theory applied to clusters and molecules in contact with an environment." Habilitation à diriger des recherches, Université Paul Sabatier - Toulouse III, 2009. http://tel.archives-ouvertes.fr/tel-00981941.
Full textNiesert, Manfred [Verfasser]. "Ab initio calculations of spin-wave excitation spectra from time-dependent density-functional theory / Manfred Niesert." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/102156754X/34.
Full textHofmann, Fabian [Verfasser], and Stephan [Akademischer Betreuer] Kümmel. "The Sternheimer Approach to Linear Response Time-Dependent Density Functional Theory / Fabian Hofmann ; Betreuer: Stephan Kümmel." Bayreuth : Universität Bayreuth, 2020. http://d-nb.info/1223982041/34.
Full textHofmann-Mees, Dirk [Verfasser], and Stephan [Akademischer Betreuer] Kümmel. "Charge and excitation-energy transfer in time-dependent density functional theory / Dirk Hofmann-Mees. Betreuer: Stephan Kümmel." Bayreuth : Universität Bayreuth, 2013. http://d-nb.info/1059353652/34.
Full textDrummond, Michael L. "Denisty functional theory investigations of the ground- and excited-state chemistry of dinuclear organometallic carbonyls." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1104284754.
Full textJokar, Jeiran Verfasser], Nicole [Akademischer Betreuer] Helbig, and Carsten [Akademischer Betreuer] [Honerkamp. "Adiabatic approximations within time-dependent density functional theory for the non-linear regime / Jeiran Jokar ; Nicole Helbig, Carsten Honerkamp." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1161411771/34.
Full textRüger, Robert, Lenthe Erik van, Thomas Heine, and Lucas Visscher. "Tight-binding approximations to time-dependent density functional theory: A fast approach for the calculation of electronically excited states." AIP Publishing, 2016. https://ul.qucosa.de/id/qucosa%3A21501.
Full textJokar, Jeiran [Verfasser], Nicole Akademischer Betreuer] Helbig, and Carsten [Akademischer Betreuer] [Honerkamp. "Adiabatic approximations within time-dependent density functional theory for the non-linear regime / Jeiran Jokar ; Nicole Helbig, Carsten Honerkamp." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1161411771/34.
Full textZhu, Ying. "A Comparison of Calculation by Real-Time and by Linear-Response Time-Dependent Density Functional Theory in the Regime of Linear Optical Response." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1460554444.
Full textRichard, Ryan M. "Time-Dependent Density-Functional Description of the 1La State in Polycyclic Aromatic Hydrocarbons." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1302098974.
Full textWang, Yuekui [Verfasser]. "Application of the Time-Dependent Density Functional Theory to the Study of Chiroptical Properties of Organic and Inorganic Compounds / Yuekui Wang." Aachen : Shaker, 2003. http://d-nb.info/1170543413/34.
Full textMaier, Toni Mike [Verfasser], Martin [Akademischer Betreuer] Kaupp, Martin [Gutachter] Kaupp, and Thomas [Gutachter] Körzdörfer. "Development of local hybrid functionals for time-dependent density functional theory / Toni Mike Maier ; Gutachter: Martin Kaupp, Thomas Körzdörfer ; Betreuer: Martin Kaupp." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156011787/34.
Full textBhandari, Srijana. "AN ELECTRONIC STRUCTURE APPROACH TO UNDERSTAND CHARGE TRANSFERAND TRANSPORT IN ORGANIC SEMICONDUCTING MATERIALS." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1606836665551399.
Full textFalklöf, Olle, and Bo Durbeej. "Modeling of phytochrome absorption spectra." Linköpings universitet, Beräkningsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92393.
Full textWeerawardene, K. L. Dimuthu M. "Optical and luminescence properties of noble metal nanoparticles." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38189.
Full textDepartment of Chemistry
Christine M. Aikens
The remarkable optical and luminescence properties of noble metal nanoparticles (with diameters < 2 nm) attract researchers due to potential applications in biomedicine, photocatalysis, and optoelectronics. Extensive experimental investigations on luminescence properties of thiolate-protected gold and silver nanoclusters during the past decade have failed to unravel their exact photoluminescence mechanism. Herein, density functional and time-dependent density functional theory (DFT and TDDFT) calculations are performed to elucidate electronic-level details of several such systems upon photoexcitation. Multiple excited states are found to be involved in photoemission from Au₂₅(SR)₁₈– nanoclusters, and their energies agree well with experimental emission energies. The Au₁₃ core-based excitations arising due to electrons excited from superatom P orbitals into the lowest two superatom D orbitals are responsible for all of these states. The large Stokes shift is attributed to significant geometrical and electronic structure changes in the excited state. The origin of photoluminescence of Ag₂₅(SR)₁₈– nanoclusters is analogous to their gold counterparts and heteroatom doping of each cluster with silver and gold correspondingly does not affect their luminescence mechanism. Other systems have been examined in this work to determine how widespread these observations are. We observe a very small Stokes shift for Au₃₈(SH)₂₄ that correlates with a relatively rigid structure with small bond length changes in its Au₂₃ core and a large Stokes shift for Au₂₂(SH)₁₈ with a large degree of structural flexibility in its Au₇ core. This suggests a relationship between the Stokes shift of gold−thiolate nanoparticles and their structural flexibility upon photoexcitation. The effect of ligands on the geometric structure and optical properties of the Au₂₀(SR)₁₆ nanocluster is explored. Comparison of the relative stability and optical absorption spectra suggests that this system prefers the [Au₇(Au₈SR₈)(Au₃SR₄)(AuSR₂)₂] structure regardless of whether aliphatic or aromatic ligands are employed. The real-time (RT) TDDFT method is rapidly gaining prominence as an alternative approach to capture optical properties of molecular systems. A systematic benchmark study is performed to demonstrate the consistency of linear-response (LR) and RT-TDDFT methods for calculating the optical absorption spectra of a variety of bare gold and silver nanoparticles with different sizes and shapes.
Mancini, Lorenzo. "Adiabatic and local approximations for the kohn-sham potential in the hubbard model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5935/.
Full textCaramella, Lucia. "Theoretical spectroscopy of realistic condensed matter systems." Paris 6, 2009. http://www.theses.fr/2009PA066019.
Full textKarimova, Natalia Vladimirovna. "Theoretical study of the optical properties of the noble metal nanoparticles: CD and MCD spectroscopy." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38177.
Full textDepartment of Chemistry
Christine M. Aikens
Gold and silver particles with dimensions less than a nanometer possess unique characteristics and properties that are different from the properties of the bulk. They demonstrate a non–zero HOMO–LUMO gap that can reach up to 3.0 eV. These differences arise from size quantization effects in the metal core due to the small number of atoms. These nanoparticles have attracted great interest for decades both in fundamental and applied research. Small gold clusters protected by various types of ligands are of interest because ligands allow obtaining gold nanoclusters with given sizes, shapes and properties. Three main families of organic ligands are usually used for stabilization of gold nanoclusters: phosphine ligands, thiolate ligands and DNA. Usually, optical properties of these NPs are studied using optical absorption spectroscopy. Unfortunately, sometimes this type of spectrum is poorly resolved and tends to appear very similar for different complexes. In these cases, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopy can be applied. However, the interpretation of experimental CD and MCD spectra is a complicated process. In this thesis, theoretically simulated CD and MCD spectra were combined with optical absorption spectra to study optical activity for octa– and nona– and undecanuclear gold clusters protected by mono– and bidentate phosphine ligands. Additionally, optical properties of bare and DNA protected silver NPs were studied. Theoretical CD spectra were examined to learn more about the origin of chirality in chiral organometallic complexes, and to contribute to the understanding of the difference in chiroptical activity of gold clusters stabilized by different phosphine ligands and DNA–stabilized silver clusters. Furthermore, optical properties of the small centered gold clusters Au₈(PPh₃)₈²⁺ and Au₉(PPh₃)₈³⁺ were examined by optical absorption and MCD spectra using TDDFT. Theoretical MCD spectra were also used to identify the plasmonic behavior of silver nanoparticles. These results showed that CD and MCD spectroscopy yield more detailed information about optical properties and electronic structure of the different chemical systems than optical absorption spectroscopy alone. Theoretical simulation of the CD and MCD spectra together with optical absorption spectra can be used to assist in the understanding of empirically measured CD and MCD and provide useful information about optical properties and electronic structure.
Bergstedt, Mikael. "Theoretical investigation of the first-order hyperpolarizability in the two-photon resonant region." Thesis, Linköping University, The Department of Physics, Chemistry and Biology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10290.
Full textTime-dependent density functional theory calculations have been carried out to determine the complex first-order hyperpolarizability in the two-photon resonance region of the molecule IDS-Cab. Calculations show that three strongly absorbing states, in the ultraviolet region, are separated to the extent that no significant interference of the imaginary parts of the tensor elements of the first-order hyper-polarizability occurs. Consequently, and in contrast to experimental findings [27], no reduced imaginary parts of the first-order hyperpolarizability in the two-photon resonant region can be seen.
Natarajan, Bhaarathi. "Implémentation et applications d'algorithmes fondés sur la théorie de la fonctionnelle de la densité dépendante du temps dans les logiciels à la base des fonctions gaussiennes et ondelettes." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00682011.
Full textGuidez, Emilie Brigitte. "Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17314.
Full textDepartment of Chemistry
Christine M. Aikens
Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculations are performed to study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long and short axis of the nanorod respectively), similar to the plasmons observed experimentally for larger nanoparticles. These plasmon modes result from a constructive addition of the dipole moments of nearly degenerate single-particle excitations. The number of single-particle transitions involved increases with increasing system size, due to the growing density of states available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. The high-energy, high-intensity beta-peak of acenes also results from a constructive addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple configuration interaction (CI) interpretation. The evolution between molecular absorption spectrum and plasmon is also investigated by computing the density of states of spherical thiolate-protected gold clusters using a charge-perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives good qualitative agreement with DFT calculations at a fraction of the cost. The progressive increase of the density of states with particle size observed is in accordance with the appearance of a plasmon peak. The optical properties of nanoparticles can be tuned by varying their composition. Therefore, the optical behavior of the bimetallic Au[subscript](25-n)Ag[subscript]n(SH)[subscript]18[superscript]- cluster for different values of n using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed with increasing silver content, in accordance with experimental results.
Caserta, Mario. "Dinamica degli stati eccitati della formaldeide tramite teoria del funzionale-densità dipendente dal tempo in tempo reale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19529/.
Full textOksuz, Nevin. "Quantum-chemical Study Of Geometrical And Electronic Structures Of Aromatic Five-membered Heterocyclic Oligomers In The Ground And Lowest Singlet Excited States." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605397/index.pdf.
Full textoligothiophenes (nT), oligofurans (nF), and oligopyrroles (nP)- containing up to six monomer units (total of 18 molecules) were explored using several computational methodologies. Geometry optimizations were carried out at Austin Model 1 (AM1), Restricted Hartree-Fock (RHF/6-31G*), and Density Functional Theory (DFT, B3LYP/6-31G*) levels for the ground-state conformations of these structurally well-defined heterocyclic oligomers. The Configuration Interaction Singles (CIS) method with the 6-31G* basis set was chosen in computation of the optimal geometry of the lowest singlet excited state. Lowest singlet excitation S1ß
S0 energies were calculated using the Zerner&rsquo
s Intermediate Neglect of Differential Overlap for Spectroscopy (ZINDO/S), CIS (CIS/6-31G*), and Time-Dependent DFT (TDDFT/6-31G* and TDDFT/6-31+G*) methods. In computation of the emission S1à
S0 energies, we have employed all methods above except ZINDO/S. In investigation of geometries of the ground and lowest singlet excited state, we compared the bond length alternation (BLA) parameters, Dri in the conjugated backbone of the oligomers. Saturation of the geometrical parameters at the center of oligomers was observed after a certain chain length. Among all methodologies used in computation of excitation (S1ß
S0) and emission (S1à
S0) energies, TDDFT results showed the best agreement with experimental data. Fits of computed and experimental excitation energies to an exponential function using the least squares method enabled us to predict Effective Conjugation Length (ECL) values. We obtained the ECLs of 17 (17), 16 (15), and 14 (13) monomer units for polythiophene (PTh), polyfuran (PFu), and polypyrrole (PPr), which have very good agreement with the results obtained from the fits of experimental data (the values in parentheses).
Yuen-Zhou, Joel. "A Quantum Information Approach to Ultrafast Spectroscopy." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10317.
Full textMigliore, Mattia. "Recherche par modélisaion moléculaire de signatures RMN et DC caractéristiques pour les coudes β et y dans les peptides bioactifs. Characterization of β-turns by electronic circular dichroism spectroscopy : a coupled molecular dynamics and time-dependent density functional theory computational study." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR001.
Full textThe aim of this work is to identify NMR and CD characteristic patterns for β- and γ-turns in bioactive peptides by molecular modelling. With helices, β- and γ-turns constitute favoured recognition motifs in bioactive peptides by their targets. Even though several classes of turns with different geometries exist in polypeptide structures (2 γ-turn types and 12 β-turn types), few experimental tools are available for their characterization. Thus, only 4 types of β-turns (I, I’, II et II’) have been, at present, described by NMR and there are no reliable reference CD spectra for turns. In order to extend the NMR data for all β- and γ-turn types, we analyzed NMR structural parameters (inter-hydrogen distances and ᶾJʜɴ-ʜꭤ coupling constants) in a representative peptide model dataset extracted from the PDB. The inter-hydrogen distance analysis allowed to identify specific NMR patterns for the two γ-turn types and for four β-turn types (IV₁, IV₂,, VIb and VIII). ᶾJʜɴ-ʜꭤ coupling constant may be used to confirm the identification and to remove ambiguities. Then, we simulated the reference CD spectra of model peptides adopting type I, I’, II and II’ β-turn conformations by combining molecular dynamic simulations and TDDFT computations. These computations allowed to determine two families of specific CD spectra : types I/II’, on one side and types I’/II, on the other. All these results indicate that the turns do not present the same patterns in both techniques. The combination of NMR and CD could therefore allow a better identification of the nature and the different types of turns
Sinha, Roy Rajarshi. "Ab initio simulation of optical properties of noble-metal clusters." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0017/document.
Full textThe fundamental research interest in nanometric pieces of noble metals is mainly due to the localized surface-plasmon resonance (LSPR) in the optical absorption. Different aspects related to the theoretical understanding of LSPRs in `intermediate-size' noble-metal clusters are studied in this thesis. To gain a broader perspective both the real-time \ai formalism of \td density-functional theory (RT-TDDFT) and the classical electromagnetics approach are employed. A systematic and detailed comparison of these two approaches highlights and quantifies the limitations of the electromagnetics approach when applied to quantum-sized systems. The differences between collective plasmonic excitations and the excitations involving $d$-electrons, as well as the interplay between them are explored in the spatial behaviour of the corresponding induced densities by performing the spatially resolved Fourier transform of the time-dependent induced density obtained from a RT-TDDFT simulation using a $\delta$-kick perturbation. In this thesis, both bare and ligand-protected noble-metal clusters were studied. In particular, motivated by recent experiments on plasmon emergence phenomena, the TDDFT study of Au-Cu nanoalloys in the size range just below 2~nm produced subtle insights into the general effects of alloying on the optical response of these systems
Vieira, Daniel. "Correções de auto-interação na teoria do funcional da densidade: investigação em modelos de sistemas de muitos corpos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23042010-101040/.
Full textIn this work we use model systems to develop, implement and analyse orbital-dependent density functionals, focusing, specifically, on the self-interaction corrections (SICs) of Perdew and Zunger (PZSIC) and of Lundin and Eriksson (LESIC). These self-interaction corrections are applied to the local-density approximation (LDA) for the one-dimensional Hubbard model and for semiconductor quantum wells, in one-dimensional static and time-dependent situations. For the one-dimensional Hubbard model we compare LDA, LDA+PZSIC and LDA+LESIC, and investigate the performance of these approaches for ground-state energies, densities and energy gaps, with and without impurities in the system. We also consider the case of fractional charges, where a connection to the delocalization error of the LDA can be made. We show that in principle a correct description of the frequences of Friedel oscillations in the Hubbard model can be obtained from DFT, and investigate how the failure of the LDA in reproducing this is related to the selfinteraction and delocalization errors. Moreover, we investigate different procedures for the selfconsistent implementation of any orbital-dependent functional, and analyse the question of the interplay between an approximate functional and its approximate implementation. For quantum wells sytems we analyse, in a time-dependent framework, the discontinuity of the exchange-correlation potential under variation of the particle number in two different processes: the ionization of a simple quantum well and the dissociation of an asymmetric double well. In the latter case, we also consider the effect of changes in the particle number in each subwell, thus revealing the mechanism that restores electric neutrality during dissociation, with correct final charge.
Fradon, Alexis. "Design de polymères conjugués pour des applications dans le photovoltaïque assisté par modélisation moléculaire." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0310/document.
Full textDuring the last decade, a new kind of donor polymers for photovoltaic application have been intensively studied, the low band-gap polymers. They are based on repeating units associating two different moieties, one electron-rich (ER) and one electron-poor (EP), which allow to finely tune the molecular orbitals and to induce a delocalization of the exciton generated upon the photo-excitation process. A large variety of devices are based on such low band-gap polymers, with a power conversion efficiency record around 10%, and, to increase the efficiency, it is necessary to have a better understanding of these polymers during the photo-absorption phenomenon. Computational chemistry isa powerful tool that permits to predict different opto-electronic properties. For this work, we used Density Functional Theory and Time-Dependent Density Functional Theory to compute the optical properties of increasingly large oligomers involving various ER and EP subunits. The optical properties in the polymer limit were then estimated for the different systems by using an extrapolation scheme based on the Kuhn equation. This theoretical screening allowed us to select promising candidates based on benzodithiophene, benzothiadiazole and benzofurazan for syntheses, which were performed by a Stille coupling. The obtained polymers and size-controlled oligomers were further characterized by UV visible spectroscopy, fluorescence, size exclusion chromatography and NMR, in order to extractstructure-properties relationships and correlate experimental results to theoretical data
Carter-Fenk, Kevin D. "Design and Implementation of Quantum Chemistry Methods for the Condensed Phase: Noncovalent Interactions at the Nanoscale and Excited States in Bulk Solution." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu161617640330551.
Full textMessud, Jérémie. "Théorie de la fonctionnelle de la densité dépendant du temps avec correction d'auto-intéraction." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/626/.
Full textTime dependent Density Functional Theory is a tool of choice to study elementary molecular irradiation processes. But the approximations that are inherent do not eliminate an unphysical effect called self-interaction, which completely distorts the irradiation properties. The most promising way to remove the self-interaction without introducing any additional free parameter is to use orbital dependent functionals (SIC methods). But the usual formalism that follows is not hermitian, which dramatically distorts the physical predictions in the dynamical case, and attempts to restore hermiticity know all undesirable pathologies. So the question, in the time dependent case, of an exact SIC formalism (TDSIC) which would satisfy all the conservation laws and would be numerically manageable remains an open question. We propose a new purely variational formulation, enforcing the orthonormality and using the unitary transformation degree of freedom. This allows to write the exact TDSIC equations in an hermitian form (in the occupied subspace), which satisfies all the conservation laws and leads to a clear numerical scheme for propagation. The price to pay is that the resulting hamiltonian is explicitly non-local, which is more costly numerically speaking. This led us to propose, in a second step, a particularly interesting local approximation, which we called "Generalized SIC-Slater". Finally, we propose a set of numerical results on various molecular systems in order to submit the developed formalisms to the verdict of nature and to compare them with the usual SIC formalism
Magero, Denis. "Electrochemical and photochemical studies of some remarkable ruthenium complexes." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV071/document.
Full textThis thesis is part of the Franco-Kenyan project ELEPHOX (ELEctrochemicaland PHOto Properties of Some Remarkable Ruthenium and Iron CompleXes)project. In particular, it focused on the continuation of the work ofC. Muhavini Wawire, Damien Jouvenot, Fréd erique Loiseau, Pablo Baudin,Sébastien Liatard, Lydia Njenga, Geoffrey Kamau, and Mark E. Casida,“Density-Functional Study of Lumininescence in Polypyridine RutheniumComplexes,” J. Photochem. and Photobiol. A 276, 8 (2014). That paperproposed a luminescence index for estimating whether a ruthenium complexwill luminesce or not. However that paper only tested the theory ona few molecules. In order for the theory to have a significant impact, itmust be tested on many more molecules. Now that the protocol has beenworked out, it was a straightforward but still quite challenging matter todo another 100 or so molecules to prove or disprove the theory. In order todo so, I went through the 98 pages of Table I of A. Juris, V. Balzani, F.Bargelleti, S. Campagna, P. Belser, and A.V. Zelewsky, “Ru(II) polypyridinecomplexes: Photophysics, photochemistry, electrochemistry, and chemiluminescence,”Chem. Rev. 84, 85 (1988) and extracted data suitable for comparingagainst density-functional theory (DFT) and time-dependent (TD-)DFT.Since the results were sufficiently encouraging, the DFT model was examinedin the light of partial density of states ligand field theory (PDOS-LFT) andthe previously proposed luminescence indices were tested. In fact, the originallyproposed indices were not found to be very reliable but we were able topropose a new luminescence index based upon much more data and in analogywith frontier-molecular orbital ideas. Except for a few compounds, this index provides a luminescence index with a good linear correlation with anexperimentally-derived average excited-state activation energy barrier. Futurework should be aimed at both explicit theoretical calculations of thisbarrier for ruthenium complexes and extension of the luminescence indexidea to iridium complexes
Fischer, Michael. "Non-adiabatic quantum molecular dynamics: - Benchmark systems in strong laser fields - Approximate electron-nuclear correlations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-148848.
Full textGarcia, Ricardo D\'Agostino. "Modelagem molecular (TD-DFT) aplicada à simulação de espectros UV para cinamatos com perfil de filtros solares." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/9/9138/tde-11082014-162702/.
Full textSkin cancer presents itself as a very serious world public health problem, being incident all over the five continents. Using sunscreen and receiving health education, among other factors, are related to prevent the disease. The number of people with skin cancer increases every year, therefore, studies for better knowledge and development for better and safer sunscreens are crucial. Products used with the intention to protect the skin from ultraviolet sunrays (UV) are partially composed by sunscreen, which may lead to two different reactions, a physical reaction, that reflects and ceases the UV radiation; or a chemical reaction, that absorbs the UV radiation. Chemical filters may present absorption in UVB (290-320 nm), UVA (320 400 nm) or in both, which is considered as broad spectrum. Among the various types of compound forms with sunscreen UVB profile, cinnamates stand out for presenting good efficiency and excellent cost-benefit. The application of theoretical calculations became essential for drug design and bioactive molecules action mechanism studies, considering time saving and costs in research and development. The development of robust quantum method, such as TD-DFT allowed the simulation of experimental properties in silico, like RMN and UV spectra. Given this overview, this method was applied to simulate UV spectra of cinnamates with sunscreen profile. A search was done to define the best functional to simulate all spectrum, where the functionals B3LYP and B3P86 showed the best results when compared to experimental spectra of the compound ethylhexyl methoxycinnamate determined in methanol. An UV spectrum simulation for seven compounds derived from cinnamic acid showed maximum wavelength around to 310 nm, as described in the literature. It was observed that the average energy for the main electronic transition, HOMO to LUMO, is 3,95 eV. The method proved to be adequate for the determination of UV spectra for cinnamate class and it can be used as a tool on the search for new compounds from this class to be used as sunscreen.
Flick, Johannes. "Exact nonadiabatic many-body dynamics." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17581.
Full textMany natural and synthetic processes are triggered by the interaction of light and matter. All these complex processes are routinely explained by employing various approximations. In the first part of this work, we assess the validity of the Born-Oppenheimer approximation in the case of equilibrium and time-resolved nonequilibrium photoelectron spectra for a vibronic model system of Trans-Polyacetylene. We show that spurious peaks appear for the vibronic spectral function in the Born-Oppenheimer approximation, which are not present in the exact spectral function of the system. This effect can be traced back to the factorized nature of the Born-Oppenheimer initial and final photoemission states. In the nonequilibrium case, we illustrate for an initial Franck-Condon excitation and an explicit pump-pulse excitation how the vibronic wave packet motion can be traced in the time-resolved photoelectron spectra as function of the pump-probe delay. In the second part of this work, we aim at treating both, matter and light, on an equal quantized footing. We apply the recently developed quantum electrodynamical density-functional theory, (QEDFT), which allows to describe electron-photon systems fully quantum mechanically. We present the first numerical calculations in the framework of QEDFT. We focus on the electron-photon exchange-correlation contribution by calculating exact Kohn-Sham potentials in real space using fixed-point inversions and present the performance of the first approximate exchange-correlation potential based on an optimized effective potential approach for a Jaynes-Cummings-Hubbard dimer. This work opens new research lines at the interface between materials science and quantum optics.
Nayyar, Iffat. "Prediction of Optical Properties of Pi-Conjugated Organic Materials for Technological Innovations." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5993.
Full textPh.D.
Doctorate
Physics
Sciences
Physics
Scheid, Philippe. "Investigation of light–induced ultrafast magnetization dynamics using ab initio methods." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0166.
Full textThis thesis begins with a review of the current experimental and theoretical state of the art related to the light-induced ultrafast demagnetization and the all-optical helicity-dependent switching. This is followed by an overview of density functional theory, upon which relies most of the work reported thereafter. The first set of results concerns the ab initio study of the effect of a rise in the electronic temperature on the magnetized matter properties, and more specifically Fe, Co, Ni and FePt. We show that the magnetic moment carried by each atom disappears at the so–called Stoner temperature, and that this phenomenon impacts the electronic energy and specific heat, even at low electronic temperature. Then, we show that upon an increase in the electronic temperature, the interatomic Heisenberg exchange, which is responsible for the magnetic ordering, decreases. Using the atomistic Langevin Landau–Lifshitz–Gilbert equation, we demonstrate that this decrease is enough to induce a large reduction of the average magnetization by creating transversal excitations. The second set of results regards the origin of the helicity–dependent light–induced dynamics. While the literature attributes it mainly to the inverse Faraday effect, we argue that another and novel phenomenon, which occurs during the absorption of the light, may be more suited to account for the experimental dynamics. Indeed, using the Fermi golden rule and ground state density functional theory calculations in Fe, Co, Ni and FePt, we show that, as the light is absorbed and electrons are excited, concurrently to the increase of the electronic energy, the spin–state is also changed in presence of spin–orbit coupling. This results in a difference in the value of the atomic magnetic moments, persisting even after the light is gone, as opposed to the inverse Faraday effect. Then, using real–time time–dependent density functional theory, we compute the magnetization dynamics induced by real optical and XUV femtosecond circularly polarized pulses. We show that, in both cases the dynamics is helicity–dependent and that this characteristic is largely amplified in the XUV regime involving the semi–core 3p states. Finally, we compare the relative role of the inverse Faraday effect and the magnetization induced during the absorption of the light and show that the latter plays a prominent role, especially after the light has gone, and in the XUV regime
Wawire, Cleophas. "Investigation des photocatalystes de Ruthénium à l'échelle Nano." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00768059.
Full textMotornyi, Oleksandr. "Ab initio study of electronic surfaces states and plasmons of gold : role of the spin-orbit coupling and surface geometry." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX116.
Full textThe PhD thesis is devoted to the ab initio study of surface plasmons and surface states offlat and vicinal surfaces of Au through the simulation of electron energy loss (EEL) spectraby means of the density functional theory (DFT) and the time-dependent density func-tional perturbation theory (TDDFPT). The influence of the spin-orbit coupling (SOC)and of the surface geometry has been investigated. In bulk Au I have studied the effect ofthe inclusion of semi-core electrons on the EEL spectrum at q = 0 and the plasmon peakposition and intensity. In particular, I have shown that in order to reproduce the EELspectrum on a wide frequency range (0-60 eV) it is important to account for semi-coreelectrons in the pseudopotential although they can be frozen in the core in studies of thelow energy part of the spectrum (below 20 eV). I have made methodological developmentsfor TDDFPT with SOC in the ultrasoft pseudopotential scheme that led to the practicalimplementation of SOC in the Liouville-Lanczos and Sternheimer approaches. I have thensuccessfully applied these approaches that allowed me to model systems with hundreds ofatoms. I have revisited the plasmonic excitations in bulk Au, pointing out that, in partic-ular, one can observe traces of an unscreened s-like bulk plasmon in the EEL spectrum atq = 0 calculated without SOC. I have also demonstrated that SOC has a small but notice-able effect on the Au EEL spectrum and plasmon peak, mainly modifying the unscreeneds-like plasmon peak and thus bringing the calculated spectrum into a better agreementwith experimental results at q = 0. Moreover I have observed that the dispersion ofthe acoustic surface plasmon (ASP) on the Au(111) surface is slightly modified by SOC,because the ASP comes from the surface state that itself is modified by SOC through theRashba splitting. To investigate the effect of geometry I have studied the vicinal (322),(455) and (788) surfaces of Au. In particular I have performed the theoretical study of thesurface states, analyzing the evolution of the Shockley surface state from the flat Au(111)surface towards the surfaces with terraces of different width. I have shown the surfaceresonance-to-surface state transition from (322) to (455) and (788) surfaces. I have shownalso the transition from the average-surface-modulated to the terrace-modulated statefrom (322) to (455) and (788) surfaces, as well as the transition from the extended 2Dstate to the quasi-1D state confined within the terrace. These results are in agreementwith experiments and results obtained with the Kronig-Penney periodic potential model.I have performed the EEL spectrum calculations for the Au(455) surface which I havemodeled with a 5 nm sized slab separated from its periodic neighbors by 5 nm of vacuum.I have identified signatures of the ASP in these spectra, showing that indeed, for the caseof the transferred electron wavevector momentum perpendicular to the step, the ASPdispersion is not changed with respect to the ASP dispersion of the Au(111) surface forq < 0.125 Å −1 . For bigger values of q, however, the ASP peak has a lower energy com-pared to the ASP peak of the Au(111) surface, showing signs of the ASP confinement, andsuggesting that two types of the ASP could occur: an intra(sub)band plasmon, similarto the Au(111) surface plasmon, and an inter(sub)band plasmon, characteristic of thisvicinal surface
Gong, Yun. "Structure-property relationships of dyes as applied to dye-sensitized solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275007.
Full text