To see the other types of publications on this topic, follow the link: Time-dependent Schrödinger equation.

Dissertations / Theses on the topic 'Time-dependent Schrödinger equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 21 dissertations / theses for your research on the topic 'Time-dependent Schrödinger equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nissen, Anna. "Absorbing boundary techniques for the time-dependent Schrödinger equation." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-113087.

Full text
Abstract:
Chemical dissociation processes are important in quantum dynamics. Such processes can be investigated theoretically and numerically through the time-dependent Schrödinger equation, which gives a quantum mechanical description of molecular dynamics. This thesis discusses the numerical simulation of chemical reactions involving dissociation. In particular, an accurate boundary treatment in terms of artificial, absorbing boundaries of the computational domain is considered. The approach taken here is based on the perfectly matched layer technique in a finite difference framework. The errors introduced due to the perfectly matched layer can be divided into two categories, the modeling error from the continuous model and numerical reflections that arise for the discretized problem. We analyze the different types of errors using plane wave analysis, and parameters of the perfectly matched layer are optimized so that the modeling error and the numerical reflections are of the same order. The level of accuracy is determined by estimating the order of the spatial error in the interior domain. Numerical calculations show that this procedure enables efficient calculations within a given accuracy. We apply our perfectly matched layer to a three-state system describing a one-dimensional IBr molecule subjected to a laser field and to a two-dimensional model problem treating dissociative adsorbtion and associative desorption of an H2 molecule on a solid surface. Comparisons made to standard absorbing layers in chemical physics prove our approach to be efficient, especially when high accuracy is of importance.<br>eSSENCE
APA, Harvard, Vancouver, ISO, and other styles
2

Viklund, Lina, Louise Augustsson, and Jonas Melander. "Numerical approaches to solving the time-dependent Schrödinger equation with different potentials." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295932.

Full text
Abstract:
This project is an immersive study in numerical methods, focusing on quantum molecular dynamics and methods for solving the time-dependent Schrödinger equation. First the Schrödinger equation was solved with finite differences and a basic propagator in time, and it was then concluded that this method is far too slow and compuationally heavy for its use to be justified for this type of problem. Instead pseudo-spectral methods with split-operators were implemented, and this proved to be a far more favourable method for solving, both in regards to time and memory requirements. Further, the pseudo-spectral methods with splitoperators were used to solve the dynamics resulting from the excitation of sodium iodide by an ultra-fast laser pulse. This was modeled as two Schrödinger equations coupled with a potential modeling the laser pulse. The resulting solution made the quantum nature of the system clear, but also the limitations and advantages of different numerical methods.
APA, Harvard, Vancouver, ISO, and other styles
3

Fathe, Jalali Atabak, and Hugo Åkesson. "Comparing Three Numerical Methods For Solving The 1D Time Dependent Schrödinger Equation." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297532.

Full text
Abstract:
The purpose of this thesis is to implement three numerical methods for solving and examining the time-dependent Schrödinger equation (TDSE) of the analytically solved quantum harmonic oscillator (QHO) and the, to our knowledge, analytically unsolved double well potential (DW), and to compare the numerical solutions. These methods are the Crank-Nicolson method and two split operator methods of different orders. For the QHO, the exact solution is used to determine the errors of the methods, while other methods for examining the DW had to be used (due to the lack of exact solutions). The solutions converged for the QHO, and depending the desired accuracy, either the Crank-Nicolson method or the modified split operator method were the most effective choices with regards to the global error and computation time. Applied on the DW potential, the numerical methods succeeded in displaying expected behaviours, such as locally behaving like a QHO under specific conditions, and displaying the quantum tunneling effect. For very small time-steps and fine spacial discretizations, the solutions did not deviate much from each other, indicating on convergence toward a correct solution.
APA, Harvard, Vancouver, ISO, and other styles
4

Johansson, Karoline. "A counterexample concerning nontangential convergence for the solution to the time-dependent Schrödinger equation." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1082.

Full text
Abstract:
<p>Abstract: Considering the Schrödinger equation $\Delta_x u = i\partial{u}/\partial{t}$, we have a solution $u$ on the form $$u(x, t)= (2\pi)^{-n} \int_{\RR} {e^{i x\cdot \xi}e^{it|\xi|^2}\widehat{f}(\xi)}\, d \xi, x \in \RR, t \in \mathbf{R}$$ where $f$ belongs to the Sobolev space. It was shown by Sjögren and Sjölin, that assuming $\gamma : \mathbf{R}_+ \rightarrow \mathbf{R}_+ $ being a strictly increasing function, with $\gamma(0) = 0$ and $u$ and $f$ as above, there exists an $f \in H^{n/2} (\RR)$ such that $u$ is continuous in $\{ (x, t); t>0 \}$ and $$\limsup_{(y,t)\rightarrow (x,0),|y-x|<\gamma (t), t>0} |u(y,t)|= + \infty$$ for all $x \in \RR$. This theorem was proved by choosing $$\widehat{f}(\xi )=\widehat{f_a}(\xi )= | \xi | ^{-n} (\log | \xi |)^{-3/4} \sum_{j=1}^{\infty} \chi _j(\xi)e^{- i( x_{n_j} \cdot \xi + t_j | \xi | ^a)}, \, a=2,$$ where $\chi_j$ is the characteristic function of shells $S_j$ with the inner radius rapidly increasing with respect to $j$. The purpose of this essay is to explain the proof given by Sjögren and Sjölin, by first showing that the theorem is true for $\gamma (t)=t$, and to investigate the result when we use $$S^a f_a (x, t)= (2 \pi)^{-n}\int_{\RR} {e^{i x\cdot \xi}e^{it |\xi|^a}\widehat{f_a}(\xi)}\, d \xi$$ instead of $u$.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Capel, Pierre. "Coulomb breakup of halo nuclei by a time-dependent method." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211186.

Full text
Abstract:
Halo nuclei are among the strangest nuclear structures.<p>They are viewed as a core containing most of the nucleons<p>surrounded by one or two loosely bound nucleons. <p>These have a high probability of presence at a large distance<p>from the core.<p>Therefore, they constitute a sort of halo surrounding the other nucleons.<p>The core, remaining almost unperturbed by the presence<p>of the halo is seen as a usual nucleus.<p><p><P><p><p>The Coulomb breakup reaction is one of the most useful<p>tools to study these nuclei. It corresponds to the<p>dissociation of the halo from the core during a collision<p>with a heavy (high <I>Z</I>) target.<p>In order to correctly extract information about the structure of<p>these nuclei from experimental cross sections, an accurate<p>theoretical description of this mechanism is necessary.<p><p><P><p><p>In this work, we present a theoretical method<p>for studying the Coulomb breakup of one-nucleon halo nuclei.<p>This method is based on a semiclassical approximation<p>in which the projectile is assumed to follow a classical trajectory.<p>In this approximation, the projectile is seen as evolving<p>in a time-varying potential simulating its interaction with the target.<p>This leads to the resolution of a time-dependent Schrödinger<p>equation for the projectile wave function.<p><p><P><p><p>In our method, the halo nucleus is described<p>with a two-body structure: a pointlike nucleon linked to a<p>pointlike core.<p>In the present state of our model, the interaction between<p>the two clusters is modelled by a local potential.<p><p><P><p><p>The main idea of our method is to expand the projectile wave function<p>on a three-dimensional spherical mesh.<p>With this mesh, the representation of the time-dependent potential<p>is fully diagonal.<p>Furthermore, it leads to a simple<p>representation of the Hamiltonian modelling the halo nucleus.<p>This expansion is used to derive an accurate evolution algorithm.<p><p><P><p><p>With this method, we study the Coulomb breakup<p>of three nuclei: <sup>11</sup>Be, <sup>15</sup>C and <sup>8</sup>B.<p><sup>11</sup>Be is the best known one-neutron halo nucleus.<p>Its Coulomb breakup has been extensively studied both experimentally<p>and theoretically.<p>Nevertheless, some uncertainty remains about its structure.<p>The good agreement between our calculations and recent<p>experimental data suggests that it can be seen as a<p><I>s1/2</I> neutron loosely bound to a <sup>10</sup>Be core in its<p>0<sup>+</sup> ground state.<p>However, the extraction of the corresponding spectroscopic factor<p>have to wait for the publication of these data.<p><p><P><p><p><sup>15</sup>C is a candidate one-neutron halo nucleus<p>whose Coulomb breakup has just been studied experimentally.<p>The results of our model are in good agreement with<p>the preliminary experimental data. It seems therefore that<p><sup>15</sup>C can be seen as a <sup>14</sup>C core in its 0<sup>+</sup><p>ground state surrounded by a <I>s1/2</I> neutron.<p>Our analysis suggests that the spectroscopic factor<p>corresponding to this configuration should be slightly lower<p>than unity.<p><p><P><p><p>We have also used our method to study the Coulomb breakup<p>of the candidate one-proton halo nucleus <sup>8</sup>B.<p>Unfortunately, no quantitative agreement could be obtained<p>between our results and the experimental data.<p>This is mainly due to an inaccuracy in the treatment<p>of the results of our calculations.<p>Accordingly, no conclusion can be drawn about the pertinence<p>of the two-body model of <sup>8</sup>B before an accurate reanalysis of these<p>results.<p><p><P><p><p>In the future, we plan to improve our method in two ways.<p>The first concerns the modelling of the halo nuclei.<p>It would be indeed of particular interest to test<p>other models of halo nuclei than the simple two-body structure<p>used up to now.<p>The second is the extension of this semiclassical model to<p>two-neutron halo nuclei.<p>However, this cannot be achieved<p>without improving significantly the time-evolution algorithm so as to<p>reach affordable computational times.<br>Doctorat en sciences appliquées<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
6

Kopylov, Nikita. "Magnus-based geometric integrators for dynamical systems with time-dependent potentials." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/118798.

Full text
Abstract:
[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial. La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo. El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis. El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo. La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético. En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock. El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente. El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura.<br>[CAT] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest. L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps. El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi. El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps. L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic. En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock. El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent. El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura.<br>[EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics. The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass. Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced. The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations. The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field. In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq. Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass. The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined.<br>Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
7

Grandin, Magnus. "Adaptive Solvers for High-Dimensional PDE Problems on Clusters of Multicore Processors." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234984.

Full text
Abstract:
Accurate numerical solution of time-dependent, high-dimensional partial differential equations (PDEs) usually requires efficient numerical techniques and massive-scale parallel computing. In this thesis, we implement and evaluate discretization schemes suited for PDEs of higher dimensionality, focusing on high order of accuracy and low computational cost. Spatial discretization is particularly challenging in higher dimensions. The memory requirements for uniform grids quickly grow out of reach even on large-scale parallel computers. We utilize high-order discretization schemes and implement adaptive mesh refinement on structured hyperrectangular domains in order to reduce the required number of grid points and computational work. We allow for anisotropic (non-uniform) refinement by recursive bisection and show how to construct, manage and load balance such grids efficiently. In our numerical examples, we use finite difference schemes to discretize the PDEs. In the adaptive case we show how a stable discretization can be constructed using SBP-SAT operators. However, our adaptive mesh framework is general and other methods of discretization are viable. For integration in time, we implement exponential integrators based on the Lanczos/Arnoldi iterative schemes for eigenvalue approximations. Using adaptive time stepping and a truncated Magnus expansion, we attain high levels of accuracy in the solution at low computational cost. We further investigate alternative implementations of the Lanczos algorithm with reduced communication costs. As an example application problem, we have considered the time-dependent Schrödinger equation (TDSE). We present solvers and results for the solution of the TDSE on equidistant as well as adaptively refined Cartesian grids.<br>eSSENCE
APA, Harvard, Vancouver, ISO, and other styles
8

Kieri, Emil. "Numerical Methods for Wave Propagation : Analysis and Applications in Quantum Dynamics." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-268625.

Full text
Abstract:
We study numerical methods for time-dependent partial differential equations describing wave propagation, primarily applied to problems in quantum dynamics governed by the time-dependent Schrödinger equation (TDSE). We consider both methods for spatial approximation and for time stepping. In most settings, numerical solution of the TDSE is more challenging than solving a hyperbolic wave equation. This is mainly because the dispersion relation of the TDSE makes it very sensitive to dispersion error, and infers a stringent time step restriction for standard explicit time stepping schemes. The TDSE is also often posed in high dimensions, where standard methods are intractable. The sensitivity to dispersion error makes spectral methods advantageous for the TDSE. We use spectral or pseudospectral methods in all except one of the included papers. In Paper III we improve and analyse the accuracy of the Fourier pseudospectral method applied to a problem with limited regularity, and in Paper V we construct a matrix-free spectral method for problems with non-trivial boundary conditions. Due to its stiffness, the TDSE is most often solved using exponential time integration. In this thesis we use exponential operator splitting and Krylov subspace methods. We rigorously prove convergence for force-gradient operator splitting methods in Paper IV. One way of making high-dimensional problems computationally tractable is low-rank approximation. In Paper VI we prove that a splitting method for dynamical low-rank approximation is robust to singular values in the approximation approaching zero, a situation which is difficult to handle since it implies strong curvature of the approximation space.<br>eSSENCE
APA, Harvard, Vancouver, ISO, and other styles
9

Hashemloo, Avazeh. "Numerical simulation of the dynamics of a trapped molecular ion." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118899.

Full text
Abstract:
This thesis explores the dynamics of a heteronuclear diatomic molecular ion, possessing a permanent electric dipole moment, µ, which is trapped in a linear Paul trap and can interact with an off-resonance laser field. To build our model we use the rigid-rotor approximation, where the dynamics of the molecular ion are limited to its translational and rotational motions of the center-of-mass. These dynamics are investigated by carrying out suitable numerical calculations. To introduce our numerical methods, we divide our research topic into two different subjects. First, we ignore the rotational dynamics of the ion by assuming µ = 0. By this assumption, the system resembles an atomic ion, which mainly exhibits translational motion for its center of the mass when exposed to an external trapping field. To study this translational behavior, we implement full-quantum numerical simulations, in which a wave function is attributed to the ion. Finally, we study the quantum dynamics of the mentioned wave packet and we compare our results with those obtained classically. In the latter case, we keep the permanent dipole moment of the ion and we study the probable effects of the interaction between the dipole moment and the trapping electric field, on both the translational and the rotational dynamics of the trapped molecular ion. In order to study these dynamics, we implement both classical and semi-classical numerical simulations. In the classical method, the rotational and the translational motions of the center of mass of the ion are obtained via classical equations of motion. On the other hand, in the semi-classical method, while the translational motion of the center-of-mass is still obtained classically, the rotation is treated full-quantum mechanically by considering the rotational wave function of the ion. In the semi-classical approach, we mainly study the probable couplings between the rotational states of the molecular ion, due to the interaction of the permanent dipole moment with the trapping electric field. In the end, we also present a semi-classical model, where the trapped molecular ion interacts with an off-resonance laser field.
APA, Harvard, Vancouver, ISO, and other styles
10

Johansson, Karoline. "Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators." Licentiate thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-2447.

Full text
Abstract:
<p>In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations.  They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators.</p><p>In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators.</p><p>The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation.</p><p>Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985).</p><p>In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take <em>B</em> as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x<sub>0</sub>, ξ<sub>0</sub>) such that no localization of the distribution at x<sub>0</sub>, belongs to <em>FB</em> in the direction ξ<sub>0</sub>. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols.</p><br><p>I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer.</p><p>I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna.</p><p>Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen.</p><p>Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se  Hörmander (1985).</p><p>I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter <em>B</em> vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x<sub>0</sub>, ξ<sub>0</sub>) så att ingen lokalisering av distributionen kring x<sub>0</sub>, tillhör <em>FB</em> i riktningen ξ<sub>0</sub>. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.</p>
APA, Harvard, Vancouver, ISO, and other styles
11

Kormann, Katharina. "Efficient and Reliable Simulation of Quantum Molecular Dynamics." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-180251.

Full text
Abstract:
The time-dependent Schrödinger equation (TDSE) models the quantum nature of molecular processes.  Numerical simulations based on the TDSE help in understanding and predicting the outcome of chemical reactions. This thesis is dedicated to the derivation and analysis of efficient and reliable simulation tools for the TDSE, with a particular focus on models for the interaction of molecules with time-dependent electromagnetic fields. Various time propagators are compared for this setting and an efficient fourth-order commutator-free Magnus-Lanczos propagator is derived. For the Lanczos method, several communication-reducing variants are studied for an implementation on clusters of multi-core processors. Global error estimation for the Magnus propagator is devised using a posteriori error estimation theory. In doing so, the self-adjointness of the linear Schrödinger equation is exploited to avoid solving an adjoint equation. Efficiency and effectiveness of the estimate are demonstrated for both bounded and unbounded states. The temporal approximation is combined with adaptive spectral elements in space. Lagrange elements based on Gauss-Lobatto nodes are employed to avoid nondiagonal mass matrices and ill-conditioning at high order. A matrix-free implementation for the evaluation of the spectral element operators is presented. The framework uses hybrid parallelism and enables significant computational speed-up as well as the solution of larger problems compared to traditional implementations relying on sparse matrices. As an alternative to grid-based methods, radial basis functions in a Galerkin setting are proposed and analyzed. It is found that considerably higher accuracy can be obtained with the same number of basis functions compared to the Fourier method. Another direction of research presented in this thesis is a new algorithm for quantum optimal control: The field is optimized in the frequency domain where the dimensionality of the optimization problem can drastically be reduced. In this way, it becomes feasible to use a quasi-Newton method to solve the problem.<br>eSSENCE
APA, Harvard, Vancouver, ISO, and other styles
12

Awasthi, Manohar. "Molecules in strong laser fields." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16072.

Full text
Abstract:
Eine Methode zur Lösung der zeitabhängigen Schrödingergleichung (engl. time-dependent Schrödinger equation, TDSE) wurde entwickelt, welche das Verhalten der Elektronenbewegung in Molekülen beschreibt, die ultrakurzen, intensiven Laserpulsen ausgesetzt werden. Die zeitabhängigen elektronischen Wellenfunktionen werden durch eine Superposition von feldfreien Eigenzuständen beschrieben, welche auf zwei Weisen berechnet werden. Im ersten Ansatz , welcher auf Zweielektronen-Systeme wie H$_2$ anwendbar ist, werden die voll korrelierten feldfreien Eigenzustände in voller Dimensionalität in einem Konfigurations-Wechselwirkungs Verfahren (engl. configuration interaction, CI) bestimmt, wobei die Einelektron-Basisfunktionen mit B-Splines beschrieben werden. Im zweiten Verfahren, welches sogar auf größere Moleküle anwendbar ist, werden die feldfreien Eigenzustände in der Näherung eines aktiven Elektrons (engl. single active electron, SAE) mit Verwendung der Dichtefunktionaltheorie (DFT) bestimmt. Im Allgemeinen kann die Methode zum Auffinden der zeitabhängigen Lösung in zwei Schritte, dem Auffinden der feldfreien Eigenzustände und einer Zeitpropagation in Abhängigkeit der Laserpuls-Parameter, unterteilt werden. Die Gültigkeit der SAE Näherung ist überprüft und die Ergebnisse für grund und erste angeregte zustand der Wasserstoff-Molekül werden vorgestellt. Die Ergebnisse für einige größere Moleküle innerhalb der SAE Angleichung werden ebenfalls gezeigt.<br>A method for solving the time-dependent Schrödinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like hydrogen molecule, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B-splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. Using these methods the validity of SAE approximation is tested and the results for the ground and first excited state of hydrogen molecule are presented. The results for some larger molecules within the SAE approximation are also shown.
APA, Harvard, Vancouver, ISO, and other styles
13

Vanne, Yulian V. "Ionization of molecular hydrogen in ultrashort intense laser pulses." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16107.

Full text
Abstract:
Ein neuer numerischer ab initio Ansatz wurde entwickelt und zur Lösung der zeitabhängigen Schrödingergleichung für zweiatomig Moleküle mit zwei Elektronen (z.B. molekularer Wasserstoff), welche einem intensiven kurzen Laserpuls ausgesetzt sind, angewandt. Die Methode basiert auf der Näherung fester Kernabstände und der nicht-relativistischen Dipolnäherung und beabsichtigt die genaue Beschreibung der beiden korrelierten Elektronen in voller Dimensionalität. Die Methode ist anwendbar für eine große Bandbreite von Laserpulsparamtern und ist in der Lage, Einfachionisationsprozesse sowohl mit wenigen als auch mit vielen Photonen zu beschreiben, sogar im nicht-störungstheoretischen Bereich. Ein entscheidender Vorteil der Methode ist ihre Fähigkeit, die Reaktion von Molekülen mit beliebiger Orientierung der molekularen Achse im Bezug auf das linear polarisierte Laserfeld in starken Feldern zu beschreiben. Dementsprechend berichtet diese Arbeit von der ersten erfolgreichen orientierungsabhängigen Analyse der Multiphotonenionisation von H2, welche mit Hilfe einer numerischen Behandlung in voller Dimensionalität durchgeführt wurde. Neben der Erforschung des Bereichs weniger Photonen wurde eine ausführliche numerische Untersuchung der Ionisation durch ultrakurze frequenzverdoppelte Titan:Saphir-Laserpulse (400 nm) präsentiert. Mit Hilfe einer Serie von Rechnungen für verschiedene Kernabstände wurden die totalen Ionisationsausbeuten für H2 und D2 in ihren Vibrationsgrundzuständen sowohl für parallele als auch für senkrechte Ausrichtung erhalten. Eine weitere Serie von Rechnungen für 800nm Laserpulse wurde benutzt, um ein weitverbreitetes einfaches Interferenzmodel zu falsifizieren. Neben der Diskussion der numerischen ab initio Methode werden in dieser Arbeit verschiedene Aspekte im Bezug auf die Anwendung der Starkfeldnäherung für die Erforschung der Reaktion eines atomaren oder molekularen Systems auf ein intensives Laserfeld betrachtet.<br>A novel ab initio numerical approach is developed and applied that solves the time-dependent Schrödinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H2 and D2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized.
APA, Harvard, Vancouver, ISO, and other styles
14

Chqondi, Soumia. "Etude théorique de petits systèmes quantiques en champ laser intenses (infrarouges et/ou hautes fréquences)." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066546/document.

Full text
Abstract:
L'interaction entre un rayonnement laser et un système atomique, peut conduire à différents processus physiques comme la photoionisation, l'ionisation multiphotonique, l'ionisation tunnel, génération d'harmoniques d'ordres élevés... L'importance de chacun de ces processus est en fait dépend de l'intensité et de la fréquence du champ laser considéré. Ce travail de thèse a porté sur la description de l'interaction d'un champ laser (Infrarouge et/ou Haute fréquence) avec un atome d'hydrogène (archétype d'un système à un électron actif). Nous avons tout d'abord développé les méthodes numériques pour la résolution de l'équation de Schrödinger dépendante du temps décrivant le système laser-atome d'hydrogène. Ces méthodes nous ont permis d'écrire un code numérique pour la simulation des solutions de cette équation. Nous les avons ensuite utilisées, après la vérification de la convergence de notre programme numérique pour présenter les résultats sur la photoionisation à un seul photon, sur l'ionisation multiphotonique et aussi sur un autre phénomène résultant du processus d'ionisation, il s'agit de l'absorption de photons au dessus du seuil d'ionisation, nommé processus ATI (Above Threshold Ionization). Ensuite, nous appliquerons ce code numérique à la photoionisation de l'atome d'hydrogène combinant deux photons, infrarouge (basse fréquence) et l'une de ses harmoniques (haute fréquence). Finalement, un calcul de la distribution angulaire des électrons émis a été effectué numériquement<br>The interaction between laser radiation and atomic system, can lead to various physical processes such as photoionization, multiphoton ionization, tunneling ionization, High Order Harmonic Generation ... The importance of each of these processes is in fact dependent on the intensity and frequency of the laser field. In this thesis, we describe the interaction of a laser field (Infrared and / or high frequencie) with hydrogen (arche-type of a system with one active electron). We first developed numerical methods for solving the time-dependant Schrödinger equation of time describing the hydrogen atom laser system. These methods allowed us to write a numerical code for the simulation of solutions of this equation. We then used, after the verification of the numerical convergence of our program to present the results on the single-photon photoionization on multiphoton ionization. We also concentrate on another phenomenon resulting from the ionization process, it is absorption of photons above the ionization threshold, named process ATI (above threshold ionization). Then, we will apply this numerical code to the photoionization hydrogen combining two photons, infrared (low frequency) and one of its harmonics (high frequency). Finally, a calculation of the angular distribution of the emitted electron was carried out numerically
APA, Harvard, Vancouver, ISO, and other styles
15

Förster, Johann Jakob. "Molecules exposed to Intense, Ultrashort Laser Fields." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19149.

Full text
Abstract:
Das Ionisierungsverhalten kleiner Moleküle (insbesondere H2 und NH3) in intensiven, ultrakurzen Laserfeldern wird theoretisch untersucht. Das Hauptaugenmerk liegt dabei auf dem Einfluss der Kerndynamik. Zunächst wird das Ionisierungsverhalten des H2-Moleküls bei eingefrorener Kernschwingung untersucht. Bereits im Rahmen dieser Näherung kann im Mehrphotonenregime ein zuvor beobachteter Zusammenbruch der Näherung im Gleichgewichtsabstand festgehaltener Kerne erklärt werden. Weiterhin wird der Übergang vom Mehrphotonen zum quasistatischen Ionisierungsregime für 800-nm-Laserfelder untersucht. Eine neuartige Methode zur Beschreibung der korrelierten Schwingungs- und Elektronendynamik des H2-Moleküls (7D) wird entwickelt. Mit dieser Methode wird schließlich der Einfluss der Kernbewegung während des Laserfeldes auf das Ionisierungsverhalten untersucht. Es wird ein sichtbarer Einfluss auf den zuvor diskutierten Zusammenbruch der Näherung festgehaltener Kerne beobachtet. Dies gilt ebenfalls für einen vor kurzem experimentell beobachteten Isotopeneffekt in der Ionisierung der Moleküle H2 vs. D2 untersucht. Im zweiten Teil der Arbeit wird das Ionisierungsverhalten des NH3-Moleküls untersucht. Die Möglichkeit, die Kerngeometrieabhängigkeit zur Erzeugung und Messung von Schwingungswellenpaketen im neutralen NH3-Molekül mittels Lochfraß auszunutzen, wird untersucht. Das erwartete Schwingungsverhalten und die dafür optimalen Laserparameter werden aufgezeigt. Zusätzlich wird die Möglichkeit des Filmens eines tunnelnden Kernwellenpakets im Doppelmuldenpotential entlang der Schwingungskoordinate untersucht. In der Tat sollte die Verwendung extrem kurzer Laserfelder das Drehen eines Echtzeit-Filmes dieses quantenmechanischen Tunnelprozesses ermöglichen. Abschließend werden die Winkelabhängigkeit der Ionisierungswahrscheinlichkeit von NH3 (ähnelt Orbitalgeometrie) sowie elliptisch polarisierte Laserfelder untersucht.<br>The ionization behavior of small molecules (especially H2 and NH3) exposed to intense, ultrashort laser fields is investigated theoretically. The focus lies on the influence of nuclear dynamics on this ionization behavior. The ionization behavior of the H2 molecule is first examined within the frozen-nuclei approximation. A previously reported pronounced breakdown of the fixed-nuclei approximation can be explained already within this level of approximation. Furthermore, the transition from the multiphoton to the quasistatic ionization regime is studied for 800 nm laser pulses. A novel approach for the correlated description of the electronic-vibrational motion of the H2 molecule (7D) is developed. The influence of vibrational dynamics during the laser field on the ionization behavior is investigated using this method. A pronounced difference on the previously discussed breakdown of the fixed-nuclei approximation is observed. The vibrational dynamics also lead to a notable change for a recently experimentally observed isotope effect in the ionization of the molecular isotopes H2 vs. D2. The ionization behavior of the NH3 molecule is studied in the second part of this thesis. The possibility to exploit the geometry dependence of the ionization yield in order to create and measure vibrational wave packets in the neutral NH3 molecule via Lochfraß is explored. The expected vibrational dynamics and the optimal laser parameters to observe this effect are demonstrated. Furthermore, the possibility to shoot a "movie" of a tunneling wave packet in the double-well potential along the vibrational coordinate is investigated. Indeed, extremely short laser fields should allow creating a real-time movie of the quantum-mechanical tunneling process. Finally, the orientation dependence of the ionization yield of the NH3 molecule (reflecting the orbital shape) and elliptically polarized laser fields are studied.
APA, Harvard, Vancouver, ISO, and other styles
16

Trabelsi, Saber. "Analysis of the MultiConfiguration Time-Dependent Hartree-Fock equations." Paris 7, 2008. http://www.theses.fr/2008PA077117.

Full text
Abstract:
Les méthodes de multi-configuration sont une amélioration naturelle des modèles simples d' approximation bien connus de l'équation de Schrödinger linéaire à N corps pour les systèmes moléculaires sous interactions binaires -Coulombiennes dans les situations réelles-, tel que les modèles de Hartree et de Hartree-Fock. Les modèles telles que MCTDHF sont intensivement utilisés pour des simulations numériques en chimie/physique quantique. Cependant, les équations associées à ces modèles sont encore mal compris d'un point de vue mathématique. La présente contribution apporte la première fondation mathématique rigoureuse aux équations associées à la MCTDH(F) avec interaction singulière de Coulomb. En particulier, on formule le problème d'évolution d'une façon qui convient à l'analyse mathématique et on obtient des résultats d'existence et d'unicité dépendants de la régularité de la donnée initiale avec et sans hypothèse sur le rang de la matrice densité associée. La simulation numérique d'un modèle simplifié est aussi présentée avec un intérêt particulier è ce qu'on appelle « corrélation » qui représente à elle seule une des principales motivations et avantages des méthodes de type multiconfiguration comparées aux méthodes de Hartree-Fock<br>The multiconfiguration methods are a natural improvement of well-known simple models for approximating the linear N body Schro}dinger equation for atomic and molecular Systems with binary - Coulomb in realistic situations- interactions, like the Hartree and the Hartree-Fock equation. Models like MCTDHF are intensively used for numerical simulations in quantum physics/chemistry. However, from the mathematical point of view, these equations are yet poorly understood. The present contribution gives the first rigorous mathematical foundation of the MCTHDH(F) equations with the singular Coulomb interaction. In particular, we formulate in a convenient way for the mathematical analysis the associated initial value problem for which we obtain well-posedness results depending on the regularity of the initial data, with and without an assumption on the rank of the associated density matrix. Also, numerical simulations of a toy model are presented with particular interest to the so called « correlation » which is one of the main motivations and advantage of the multiconfiguration methods compared to Hartree-Fock models
APA, Harvard, Vancouver, ISO, and other styles
17

Crivelli, Dawid Wiesław. "Particle and energy transport in strongly driven one-dimensional quantum systems." Doctoral thesis, Katowice: Uniwersytet Śląski, 2016. http://hdl.handle.net/20.500.12128/5879.

Full text
Abstract:
This Dissertation concerns the transport properties of a strongly–correlated one–dimensional system of spinless fermions, driven by an external electric field which induces the flow of charges and energy through the system. Since the system does not exchange information with the environment, the evolution can be accurately followed to arbitrarily long times by solving numerically the time–dependent Schrödinger equation, going beyond Kubo’s linear response theory. The thermoelectric response of the system is here characterized, using the ratio of the induced energy and particle currents, in the nonequilibrium state under the steady applied electric field. Even though the equilibrium response can be reached for vanishingly small driving, strong fields produce quantum–mechanical Bloch oscillations in the currents, which disrupt the proportionality of the currents. The effects of the driving on the local state of the ring are analyzed via the reduced density matrix of small subsystems. The local entropy density can be defined and shown to be consistent with the laws of thermodynamics for quasistationary evolution. Even integrable systems are shown to thermalize under driving, with heat being produced via the Joule effect by the flow of currents. The spectrum of the reduced density matrix is shown to be distributed according the Gaussian unitary ensemble predicted by random–matrix theory, both during driving and a subsequent relaxation. The first fully–quantum model of a thermoelectric couple is realized by connecting two correlated quantum wires. The field is shown to produce heating and cooling at the junctions according to the Peltier effect, by mapping the changes in the local entropy density. In the quasiequilibrium regime, a local temperature can be defined, at the same time verifying that the subsystems are in a Gibbs thermal state. The gradient of temperatures, established by the external field, is shown to counterbalance the flow of energy in the system, terminating the operation of the thermocouple. Strong applied fields lead to new nonequilibrium phenomena. At the junctions, observable Bloch oscillations of the density of charge and energy develop at the junctions. Moreover, in a thermocouple built out of Mott insulators, a sufficiently strong field leads to a dynamical transition reversing the sign of the charge carriers and the Peltier effect.
APA, Harvard, Vancouver, ISO, and other styles
18

Jobunga, Eric Ouma. "Beyond-the-dipole effects in strong-field photoionization using short intense laser pulses." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17653.

Full text
Abstract:
Die Entwicklung Freier-Elektronen-Laser und einer neuen Generation von Strahlungsquellen erlaubt die Realisierung hoher Intensitäten und kurzer Pulsdauern. Im Regime niedriger Laserintensitäten war bisher die Dipolnäherung recht erfolgreich bei der Beschreibung der durch die Licht-Materie-Wechselwirkung erzeugten Dynamik, wodurch viele experimentell beobachtete Resultate reproduziert werden konnten. Bei den durch die neuen Strahlungsqullen erzeugten bisher unerreichten Intensitäten und Rönten-Wellenlängen kann die Dipolnäherung allerdings zusammenbrechen. Höhere Multipol-Wechselwirkungen, die mit dem Strahlungsdruck assoziiert werden, sollten dann erwartungsgemäß wichtig zur genauen Beschreibung der Wechselwirkungsdynamiken werden. In dieser Arbeit wird eine Methode zur Lösung der nichtrelativistischen zeitabhängigen Schrödingergleichung zur Beschreibung von Systemen mit einem einzelnen aktiven Elektron, das mit einem Laserfeld wechselwirkt, über die Dipolnäherung hinausgehend erweitert. Dabei wird sowohl die Taylor- als auch die Rayleight-Multipolentwicklung des Retardierungsterms ebener Wellen verwendet. Es wird erwartet, dass die Berücksichtigung höherer Ordnungen der Multipolwechselwirkung zu einer erhöhten Genauigkeit und Richtigkeit der Resultate führen. Weiterhin wird gezeigt, dass die Rayleigh-Multipolentwicklung für gleiche Laserparameter genauer ist und schneller zur Konvergenz der numerischen Rechnung führt. Die nicht-Dipoleffekte spiegeln is sowohl in den differentiellen als auch den totalen Ionisierungswahrscheinlichkeiten in Form von erhöhten Ionisierungsausbeuten, verzerrten ATI Strukturen und einer Asymmetrie in der Photoelektronenwinkelverteilung in der Polarisations und Propagationsrichtung wider. Es wird beobachtet, dass die nicht-Dipoleffekte mit der Intensität, Wellenlänge und Pulsdauer zunehmen. Es werden Ergebnisse sowohl für das Wasserstoffatom als auch das Heliumatom gezeigt.<br>The development of free-electron lasers and new generation light sources is enabling the realisation of high intensities and short pulse durations. In the weak-field intensity regime, the electric dipole approximation has been quite successful in describing the light-matter interaction dynamics reproducing many of the experimentally observed features. But at the unprecedented intensities and x-ray wavelengths produced by the new light sources, the electric dipole approximation is likely to break down. The role of higher multipole-order terms in the interaction Hamiltonian, associated with the radiation pressure, is then expected to become important in the accurate description of the interaction dynamics. This study extends the solution of the non-relativistic time dependent Schrödinger equation for a single active electron system interacting with short intense laser pulses beyond the standard dipole approximation. This is realized using both the Taylor and the Rayleigh plane-wave multipole expansion series of the spatial retardation term. The inclusion of higher multipole-order terms of the interaction is expected to increase the validity and accuracy of the calculated observables relative to the experimental measurements. In addition, it is shown that for equivalent laser parameters the Rayleigh multipole expansion series is more accurate and efficient in numerical convergence. The investigated non-dipole effects manifest in both differential and total ionization probabilities in form of the increased ion yields, the distorted above-threshold-ionization structure, and asymmetry of the photoelectron angular distribution in both polarization and propagation directions. The non-dipole effects are seen to increase with intensity, wavelength, and pulse duration. The results for hydrogen as well as helium atom are presented in this study.
APA, Harvard, Vancouver, ISO, and other styles
19

Zapata, Abellán Felipe. "Electron dynamics induced by single and multiphoton processes in atoms and molecules." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS431.

Full text
Abstract:
Cette thèse contribue aux développements de méthodes numériques utilisées pour reproduire la dynamique électronique induite par des processus à un et plusieurs photons dans les atomes et molécules. Dans le domaine perturbatif, la photoexcitation et la photoionisation ont été étudiées à l'aide de la théorie de la fonctionnelle de la densité à séparation de portée, dans le but de prendre en compte les effets d'interaction électron-électron. De plus, dans le domaine non-perturbatif, les spectres au-delà du seuil d'ionisation et les spectres de génération d'harmoniques d'ordres élevés ont été simulés en utilisant différentes représentations de la fonction d'onde dépendante du temps du système étudié. Cette étude ouvre la possibilité d'explorer des processus matière-rayonnement dans des systèmes plus complexes<br>The present PhD thesis contributes to the development of numerical methods used to reproduce the electron dynamics induced by single and multiphoton processes in atoms and molecules. In the perturbative regime, photoexcitation and photoionization have been studied in atoms with range-separated density-functional theory, in order to take into account the electron-electron interaction effects. Moreover, in the non-perturbative regime, above-threshold ionization and high-harmonic generation spectra have been simulated using different representations for the time-dependent wave function for the purpose of describing the continuum states of the irradiated system. Our studies open the possibility of exploring matter-radiation processes in more complex systems
APA, Harvard, Vancouver, ISO, and other styles
20

"Solvable Time-Dependent Models in Quantum Mechanics." Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.8843.

Full text
Abstract:
abstract: In the traditional setting of quantum mechanics, the Hamiltonian operator does not depend on time. While some Schrödinger equations with time-dependent Hamiltonians have been solved, explicitly solvable cases are typically scarce. This thesis is a collection of papers in which this first author along with Suslov, Suazo, and Lopez, has worked on solving a series of Schrödinger equations with a time-dependent quadratic Hamiltonian that has applications in problems of quantum electrodynamics, lasers, quantum devices such as quantum dots, and external varying fields. In particular the author discusses a new completely integrable case of the time-dependent Schrödinger equation in R^n with variable coefficients for a modified oscillator, which is dual with respect to the time inversion to a model of the quantum oscillator considered by Meiler, Cordero-Soto, and Suslov. A second pair of dual Hamiltonians is found in the momentum representation. Our examples show that in mathematical physics and quantum mechanics a change in the direction of time may require a total change of the system dynamics in order to return the system back to its original quantum state. The author also considers several models of the damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the dynamics of the time-dependent Schrödinger equation with variable quadratic Hamiltonians. The Green functions are explicitly found in terms of elementary functions and the corresponding gauge transformations are discussed. The factorization technique is applied to the case of a shifted harmonic oscillator. The time-evolution of the expectation values of the energy related operators is determined for two models of the quantum damped oscillators under consideration. The classical equations of motion for the damped oscillations are derived for the corresponding expectation values of the position operator. Finally, the author constructs integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.<br>Dissertation/Thesis<br>Ph.D. Applied Mathematics for the Life and Social Sciences 2011
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Yum-Min, and 李允民. "Parallel Solver for Three-dimensional Cartesian-grid Based Time-Dependent Schrödinger Equation and Its Applications in Laser-Molecule Interaction Study with Single-Action-electron Assumption." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/04845407827280731085.

Full text
Abstract:
博士<br>國立交通大學<br>機械工程系所<br>97<br>A parallelized three-dimensional Cartesian-grid based time-dependent Schrödinger equation (TDSE) solver for molecules with single active electron assumption, assuming freezing the motion of nucleus is presented in this thesis. An explicit stagger-time algorithm is employed for time integration of the TDSE, in which the real and imaginary parts of the wave function are defined at alternative times, while a cell-centered finite-volume method is utilized for spatial discretization of the TDSE on Cartesian grids. The TDSE solver is then parallelized using domain decomposition method on distributed memory machines by applying a multi-level graph-partitioning technique. The solver is validated, using a H2+ molecule system, both by observing total electron probability and total energy conservation without laser interaction, and by comparing the ionization rates with previous 2D-axisymmetric simulation results with an aligned incident laser pulse. Parallel efficiency of this TDSE solver is presented and discussed, in which the parallel efficiency can be as high as 75% using 128 processors. Finally, examples of temporal evolution of probability distribution of laser incidence onto a H2+ molecule at inter-nuclei distance of 9 a.u. (��= 0�a and 90�a) and spectral intensities of harmonic generation at inter-nuclei distance of 2 a.u. (��= 0�a, 30�a, 60�a and 90�a) and the angle effect of laser incidence on ionization rate of N2, O2 and CO2 molecules are presented to demonstrate the capability of the current TDSE solver.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography