To see the other types of publications on this topic, follow the link: Time-domain terahertz spectroscopy.

Journal articles on the topic 'Time-domain terahertz spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Time-domain terahertz spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ciccarelli, Chiara, Hannah Joyce, Jason Robinson, et al. "Terahertz Time-Domain Spectroscopy." Scientific Video Protocols 1, no. 1 (2020): 1–4. http://dx.doi.org/10.32386/scivpro.000006.

Full text
Abstract:
Time-Domain terahertz spectroscopy (THz TDS) has attracted attention from many scientific disciplines as it enables accessing the gap between electronic and optical techniques. One application is to probe spintronic dynamics in sub-picosecond time scale. Here, we discuss principles and technical aspects of a typical THz TDS setup. We also show an example of terahertz time-domain data obtained from a Co/Pt thin film calibrant, which is a well-studied spintronic structure emitting strong THz radiation. See video at https://youtu.be/X7vrvQcmy8c.
APA, Harvard, Vancouver, ISO, and other styles
2

Hui Zhao, Hui Zhao, Lu Tian Lu Tian, Kun Zhao Kun Zhao, et al. "Identification of pour point depressant by terahertz time-domain spectroscopy." Chinese Optics Letters 9, s1 (2011): s10505–310507. http://dx.doi.org/10.3788/col201109.s10505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yiming Zhu, Yiming Zhu, and Songlin Zhuang Songlin Zhuang. "Terahertz electromagnetic waves emitted from semiconductor investigated using terahertz time domain spectroscopy (Invited Paper)." Chinese Optics Letters 9, no. 11 (2011): 110007–13. http://dx.doi.org/10.3788/col201109.110007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scheller, Maik, and Martin Koch. "Terahertz quasi time domain spectroscopy." Optics Express 17, no. 20 (2009): 17723. http://dx.doi.org/10.1364/oe.17.017723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yano, Kaori, and Toshiaki Hattori. "Improving a Terahertz Time-Domain Spectroscopy Apparatus Using Neodymium Magnets." International Letters of Chemistry, Physics and Astronomy 62 (November 2015): 10–14. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.62.10.

Full text
Abstract:
The signal-to-noise ratio obtained from terahertz time-domain spectroscopy is significantly affected by the low available power of terahertz waves. We constructed a terahertz-wave source with emission power enhanced by a magnetic field. The emitter is composed of an InAs wafer and two neodymium magnets. The emitter was irradiated by femtosecond laser pulses. The data quality of terahertz spectroscopic measurements was evaluated, and reduction of error in the data obtained due to the terahertz power enhancement was observed.
APA, Harvard, Vancouver, ISO, and other styles
6

Dinovitser, Alex, Dimitar G. Valchev, and Derek Abbott. "Terahertz time-domain spectroscopy of edible oils." Royal Society Open Science 4, no. 6 (2017): 170275. http://dx.doi.org/10.1098/rsos.170275.

Full text
Abstract:
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test
APA, Harvard, Vancouver, ISO, and other styles
7

SAKAI, Kiyomi, and Masanori HANGYO. "Terahertz Time Domain Spectroscopy and Imaging." Review of Laser Engineering 30, no. 7 (2002): 376–84. http://dx.doi.org/10.2184/lsj.30.376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rubano, Andrea, Sen Mou, Lorenzo Marrucci, and Domenico Paparo. "Terahertz Hyper-Raman Time-Domain Spectroscopy." ACS Photonics 6, no. 6 (2019): 1515–23. http://dx.doi.org/10.1021/acsphotonics.9b00265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kwang-Su Lee, Toh-Ming Lu, and X. C. Zhang. "Tera Tool [terahertz time-domain spectroscopy]." IEEE Circuits and Devices Magazine 18, no. 6 (2002): 23–28. http://dx.doi.org/10.1109/mcd.2002.1175757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KUžEL, PETR, ALEXEY PASHKIN, MARTIN KEMPA, FILIP KADLEC, STANISLAV KAMBA, and JAN PETZELT. "Time-Domain Terahertz Spectroscopy of SrBi2Ta2O9." Ferroelectrics 300, no. 1 (2004): 125–29. http://dx.doi.org/10.1080/00150190490443785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Walther, Markus, Mark R. Freeman, and Frank A. Hegmann. "Metal-wire terahertz time-domain spectroscopy." Applied Physics Letters 87, no. 26 (2005): 261107. http://dx.doi.org/10.1063/1.2158025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Scheller, Maik, Stefan F. Dürrschmidt, Matthias Stecher, and Martin Koch. "Terahertz quasi-time-domain spectroscopy imaging." Applied Optics 50, no. 13 (2011): 1884. http://dx.doi.org/10.1364/ao.50.001884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Molter, Daniel, Manuel Trierweiler, Frank Ellrich, Joachim Jonuscheit, and Georg Von Freymann. "Interferometry-aided terahertz time-domain spectroscopy." Optics Express 25, no. 7 (2017): 7547. http://dx.doi.org/10.1364/oe.25.007547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Castro-Camus, Enrique. "Polarization-Resolved Terahertz Time-Domain Spectroscopy." Journal of Infrared, Millimeter, and Terahertz Waves 33, no. 4 (2011): 418–30. http://dx.doi.org/10.1007/s10762-011-9856-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Qijun Liang, Qijun Liang, Gregor Klatt Gregor Klatt, Nico Kraub Nico Kraub, Oleksii Kukharenko Oleksii Kukharenko, and Thomas Dekorsy Thomas Dekorsy. "Origin of potential errors in the quantitative determination of terahertz optical properties in time-domain terahertz spectroscopy." Chinese Optics Letters 13, no. 9 (2015): 093001–93005. http://dx.doi.org/10.3788/col201513.093001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Molter, Daniel, Daniel Hübsch, Thorsten Sprenger, et al. "Mail Inspection Based on Terahertz Time-Domain Spectroscopy." Applied Sciences 11, no. 3 (2021): 950. http://dx.doi.org/10.3390/app11030950.

Full text
Abstract:
One of the most prominent applications of terahertz time-domain spectroscopy is the spectral investigation of materials covered by visibly opaque objects. Therefore, terahertz waves are well suited to inspect the content of mail. We report on our work on mail inspection in this spectral range including machine design, optical layouts, data analysis, and implementations.
APA, Harvard, Vancouver, ISO, and other styles
17

Hongfei, ZHANG, SU Bo, HE Jingsuo, and ZHANG Cunlin. "Ultra-fast terahertz time domain spectroscopy system." Journal of Applied Optics 40, no. 2 (2019): 41–45. http://dx.doi.org/10.5768/jao201940.0201008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Deng Yu-Qiang, Xing Qi-Rong, Lang Li-Ying, Chai Lu, Wang Qing-Yue, and Zhang Zhi-Gang. "Wavelet-transform in terahertz time-domain spectroscopy." Acta Physica Sinica 54, no. 11 (2005): 5224. http://dx.doi.org/10.7498/aps.54.5224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nagai, Masaya, and Koichiro Tanaka. "Terahertz time-domain spectroscopy with reflection geometry." Review of Laser Engineering 33, Supplement (2005): 14–15. http://dx.doi.org/10.2184/lsj.33.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang Wenai, 王文爱, 刘. 维. Liu Wei, 杨. 茜. Yang Xi, and 刘亦文 Liu Yiwen. "Terahertz Time-Domain Spectroscopy of Anhydrous Glucose." Chinese Journal of Lasers 43, no. 11 (2016): 1111001. http://dx.doi.org/10.3788/cjl201643.1111001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

CHEN, Lei, and Shingo OISHI. "Terahertz Time-Domain Spectroscopy of Organic Gases." Review of Laser Engineering 34, no. 3 (2006): 251–54. http://dx.doi.org/10.2184/lsj.34.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Molter, D., G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin. "Step-scan time-domain terahertz magneto-spectroscopy." Optics Express 20, no. 6 (2012): 5993. http://dx.doi.org/10.1364/oe.20.005993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nazarov, M. M., A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin. "Terahertz time-domain spectroscopy of biological tissues." Quantum Electronics 38, no. 7 (2008): 647–54. http://dx.doi.org/10.1070/qe2008v038n07abeh013851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Naftaly, Mira, and Robert E. Miles. "Terahertz Time-Domain Spectroscopy for Material Characterization." Proceedings of the IEEE 95, no. 8 (2007): 1658–65. http://dx.doi.org/10.1109/jproc.2007.898835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pashkin, A., M. Kempa, H. Němec, F. Kadlec, and P. Kužel. "Phase-sensitive time-domain terahertz reflection spectroscopy." Review of Scientific Instruments 74, no. 11 (2003): 4711–17. http://dx.doi.org/10.1063/1.1614878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Naftaly, M., J. F. Molloy, G. V. Lanskii, K. A. Kokh, and Yu M. Andreev. "Terahertz time-domain spectroscopy for textile identification." Applied Optics 52, no. 19 (2013): 4433. http://dx.doi.org/10.1364/ao.52.004433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

You, Borwen, Ja-Yu Lu, Tze-An Liu, Jin-Long Peng, and Ci-Ling Pan. "Subwavelength plastic wire terahertz time-domain spectroscopy." Applied Physics Letters 96, no. 5 (2010): 051105. http://dx.doi.org/10.1063/1.3279154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

van Exter, Martin, Ch Fattinger, and D. Grischkowsky. "Terahertz time-domain spectroscopy of water vapor." Optics Letters 14, no. 20 (1989): 1128. http://dx.doi.org/10.1364/ol.14.001128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ung, Benjamin S. Y., Jining Li, Hungyen Lin, Bernd M. Fischer, Withawat Withayachumnankul, and Derek Abbott. "Dual-Mode Terahertz Time-Domain Spectroscopy System." IEEE Transactions on Terahertz Science and Technology 3, no. 2 (2013): 216–20. http://dx.doi.org/10.1109/tthz.2013.2241427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Reid, Caroline B., George Reese, Adam P. Gibson, and Vincent P. Wallace. "Terahertz Time-Domain Spectroscopy of Human Blood." IEEE Transactions on Terahertz Science and Technology 3, no. 4 (2013): 363–67. http://dx.doi.org/10.1109/tthz.2013.2267414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Reid, C. B., G. Reese, A. P. Gibson, and V. P. Wallace. "Terahertz Time-Domain Spectroscopy of Human Blood." IEEE Journal of Biomedical and Health Informatics 17, no. 4 (2013): 774–78. http://dx.doi.org/10.1109/jbhi.2013.2255306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Withayachumnankul, Withawat, Bernd M. Fischer, Hungyen Lin, and Derek Abbott. "Uncertainty in terahertz time-domain spectroscopy measurement." Journal of the Optical Society of America B 25, no. 6 (2008): 1059. http://dx.doi.org/10.1364/josab.25.001059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shi, Changcheng, Yuting Ma, Jin Zhang, et al. "Terahertz time-domain spectroscopy of chondroitin sulfate." Biomedical Optics Express 9, no. 3 (2018): 1350. http://dx.doi.org/10.1364/boe.9.001350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ge, Min, Hongwei Zhao, Te Ji, Xiaohan Yu, Wenfeng Wang, and Wenxin Li. "Terahertz time-domain spectroscopy of some pentoses." Science in China Series B 49, no. 3 (2006): 204–8. http://dx.doi.org/10.1007/s11426-006-0204-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Labaune, J., J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, and G. A. Mourou. "Papyrus imaging with terahertz time domain spectroscopy." Applied Physics A 100, no. 3 (2010): 607–12. http://dx.doi.org/10.1007/s00339-010-5693-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhang, Zhengwei, Yan Zhang, Guozhong Zhao, and Cunlin Zhang. "Terahertz time-domain spectroscopy for explosive imaging." Optik 118, no. 7 (2007): 325–29. http://dx.doi.org/10.1016/j.ijleo.2006.03.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Theuer, Michael, and Joseph S. Melinger. "High Resolution Waveguide Terahertz Time-Domain Spectroscopy." Journal of Infrared, Millimeter, and Terahertz Waves 32, no. 11 (2011): 1267–84. http://dx.doi.org/10.1007/s10762-011-9816-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mittleman, D. M., R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss. "Gas sensing using terahertz time-domain spectroscopy." Applied Physics B: Lasers and Optics 67, no. 3 (1998): 379–90. http://dx.doi.org/10.1007/s003400050520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shi, Wei, Chengang Dong, Lei Hou, Zhiyang Xing, Qian Sun, and Lihao Zhang. "Investigation of aging characteristics in explosive using terahertz time-domain spectroscopy." International Journal of Modern Physics B 33, no. 24 (2019): 1950272. http://dx.doi.org/10.1142/s0217979219502722.

Full text
Abstract:
The terahertz absorption spectrum of the five aging explosive samples (PETN, RDX, HMX, LLM-105 and TATB) was measured and calculated by Terahertz time-domain spectroscopy system (THz-TDS) and air-biased coherent detection system (ZAP-ABCD), respectively. In this paper, compared with the unaging explosive, each aging explosive sample’s terahertz time-domain spectra were obtained and the terahertz absorption spectra were calculated by using Fourier transform and Lambert’s law. The results show that there are several terahertz absorption peaks which were called “fingerprint spectra” for different
APA, Harvard, Vancouver, ISO, and other styles
40

Park, Hochong, and Joo-Hiuk Son. "Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy." Sensors 21, no. 4 (2021): 1186. http://dx.doi.org/10.3390/s21041186.

Full text
Abstract:
Terahertz imaging and time-domain spectroscopy have been widely used to characterize the properties of test samples in various biomedical and engineering fields. Many of these tasks require the analysis of acquired terahertz signals to extract embedded information, which can be achieved using machine learning. Recently, machine learning techniques have developed rapidly, and many new learning models and learning algorithms have been investigated. Therefore, combined with state-of-the-art machine learning techniques, terahertz applications can be performed with high performance that cannot be a
APA, Harvard, Vancouver, ISO, and other styles
41

Tych, Katarzyna M., Andrew D. Burnett, Christopher D. Wood, et al. "Applying broadband terahertz time-domain spectroscopy to the analysis of crystalline proteins: a dehydration study." Journal of Applied Crystallography 44, no. 1 (2010): 129–33. http://dx.doi.org/10.1107/s0021889810043372.

Full text
Abstract:
The application of terahertz time-domain spectroscopy and imaging to the study of proteins in crystalline form is demonstrated. Terahertz time-domain spectroscopy is particularly sensitive to the long-range ordering of molecules, with proven utility for the spectroscopy of crystalline biological small molecules. Here, the terahertz time-domain absorption response of a macromolecular protein single crystal is investigated for the first time. In particular, the effect of dehydration on the terahertz absorption coefficient of tetragonal hen egg white lysozyme crystals is reported.
APA, Harvard, Vancouver, ISO, and other styles
42

SHAN, JIE, AJAY NAHATA, and TONY F. HEINZ. "TERAHERTZ TIME-DOMAIN SPECTROSCOPY BASED ON NONLINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 11, no. 01 (2002): 31–48. http://dx.doi.org/10.1142/s0218863502000845.

Full text
Abstract:
We present a brief review of the use of nonlinear optics for broadband terahertz (THz) time-domain spectroscopy with femtosecond laser pulses. The generation of THz pulses is accomplished by optical rectification and coherent detection by electro-optic sampling or field-induced second-harmonic generation. The approach permits exceptional time response, as well as the possibility for multichannel detection schemes.
APA, Harvard, Vancouver, ISO, and other styles
43

Mamrashev, Alexander, Fedor Minakov, Lev Maximov, Nazar Nikolaev, and Pavel Chapovsky. "Correction of Optical Delay Line Errors in Terahertz Time-Domain Spectroscopy." Electronics 8, no. 12 (2019): 1408. http://dx.doi.org/10.3390/electronics8121408.

Full text
Abstract:
One of the key elements of terahertz time-domain spectrometers is the optical delay line. Usually it consists of a motorized translation stage and a corner reflector mounted on its top. Errors in the positioning of the translation stage lead to various distortions of the measured waveform of terahertz pulses and, therefore, terahertz spectra. In this paper, the accuracy of position measurements is improved by using an optical encoder. Three types of systematic errors are found: Increasing and periodic offsets of the translation stage position, as well as a drift of its initial position in a se
APA, Harvard, Vancouver, ISO, and other styles
44

Chengzhen Lu, Chengzhen Lu, Chen Liu Chen Liu, Erliang Cui Erliang Cui, Jia Li Jia Li, Wei Liu Wei Liu, and Ping Sun Ping Sun. "Analysis on the characteristics of animal tissues based on the Terahertz time domain spectroscopy system." Chinese Optics Letters 10, s1 (2012): S13201–313204. http://dx.doi.org/10.3788/col201210.s13201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

TONOUCHI, Masayoshi, Masato SUZUKI, Iwao KAWAYAMA, et al. "Organic Crystals for Terahertz Time Domain Spectroscopy Source." Review of Laser Engineering 37, no. 5 (2009): 355–60. http://dx.doi.org/10.2184/lsj.37.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Igawa, Hikaru, Tatsuya Mori, and Seiji Kojima. "Terahertz time-domain spectroscopy of congruent LiNbO3and LiTaO3crystals." Japanese Journal of Applied Physics 53, no. 5S1 (2014): 05FE01. http://dx.doi.org/10.7567/jjap.53.05fe01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Han, P. Y., and X.-C. Zhang. "Free-space coherent broadband terahertz time-domain spectroscopy." Measurement Science and Technology 12, no. 11 (2001): 1747–56. http://dx.doi.org/10.1088/0957-0233/12/11/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kitagawa, J., Y. Kadoya, M. Tsubota, F. Iga, and T. Takabatake. "Terahertz time-domain spectroscopy of photoinduced carriers in." Journal of Magnetism and Magnetic Materials 310, no. 2 (2007): 913–15. http://dx.doi.org/10.1016/j.jmmm.2006.10.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dorney, Timothy D., Richard G. Baraniuk, and Daniel M. Mittleman. "Material parameter estimation with terahertz time-domain spectroscopy." Journal of the Optical Society of America A 18, no. 7 (2001): 1562. http://dx.doi.org/10.1364/josaa.18.001562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cheville, R. A., and D. Grischkowsky. "Far-infrared terahertz time-domain spectroscopy of flames." Optics Letters 20, no. 15 (1995): 1646. http://dx.doi.org/10.1364/ol.20.001646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!