Academic literature on the topic 'Time-optimal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time-optimal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Time-optimal"
Iurchenko, Maryna Evheniivna, and Natalia Andriivna Marchenko. "MODEL OF DETERMINING THE OPTIMAL SUPPLY TIME OF PRODUCTS." SCIENTIFIC BULLETIN OF POLISSIA 2, no. 1(13) (2018): 60–63. http://dx.doi.org/10.25140/2410-9576-2018-2-1(13)-60-63.
Full textMostafa, El-Sayed M. E. "COMPUTATIONAL DESIGN OF OPTIMAL DISCRETE-TIME OUTPUT FEEDBACK CONTROLLERS." Journal of the Operations Research Society of Japan 51, no. 1 (2008): 15–28. http://dx.doi.org/10.15807/jorsj.51.15.
Full textÇoşkun, Filiz, Zeynep Ceyda Sayalı, Emine Gürbüz, and Fuat Balcı. "Optimal time discrimination." Quarterly Journal of Experimental Psychology 68, no. 2 (February 2015): 381–401. http://dx.doi.org/10.1080/17470218.2014.944921.
Full textGallice, Andrea. "Optimal stealing time." Theory and Decision 80, no. 3 (June 2, 2015): 451–62. http://dx.doi.org/10.1007/s11238-015-9507-y.
Full textHuang, Yung-Fu. "Optimal Cycle Time and Optimal Payment Time under Supplier Credit." Journal of Applied Sciences 4, no. 4 (September 15, 2004): 630–35. http://dx.doi.org/10.3923/jas.2004.630.635.
Full textZheng, S. Q., and M. Sun. "Constructing optimal search trees in optimal time." IEEE Transactions on Computers 48, no. 7 (July 1999): 738–43. http://dx.doi.org/10.1109/12.780881.
Full textMakimoto, Naoki. "OPTIMAL TIME TO INVEST UNDER UNCERTAINTY WITH A SCALE CHANGE." Journal of the Operations Research Society of Japan 51, no. 3 (2008): 225–40. http://dx.doi.org/10.15807/jorsj.51.225.
Full textChen, Rong, and Yuanguo Zhu. "AN OPTIMAL CONTROL MODEL FOR UNCERTAIN SYSTEMS WITH TIME-DELAY." Journal of the Operations Research Society of Japan 56, no. 4 (2013): 243–56. http://dx.doi.org/10.15807/jorsj.56.243.
Full textUllah, Najeeb, Faizullah Khan, Abdul Ali Khan, Surat Khan, Abdul Wahid Tareen, Muhammad Saeed, and Akbar Khan. "Optimal Real-time Static and Dynamic Air Quality Monitoring System." Indian Journal of Science and Technology 13, no. 1 (January 20, 2020): 1–12. http://dx.doi.org/10.17485/ijst/2020/v13i01/148375.
Full textGitizadeh, R., I. Yaesh, and J. Z. Ben-Asher. "Discrete-Time Optimal Guidance." Journal of Guidance, Control, and Dynamics 22, no. 1 (January 1999): 171–75. http://dx.doi.org/10.2514/2.7622.
Full textDissertations / Theses on the topic "Time-optimal"
Guo, Gaoyue. "Continuous-time Martingale Optimal Transport and Optimal Skorokhod Embedding." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX038/document.
Full textThis PhD dissertation presents three research topics, the first two being independent and the last one relating the first two issues in a concrete case.In the first part we focus on the martingale optimal transport problem on the Skorokhod space, which aims at studying systematically the tightness of martingale transport plans. Using the S-topology introduced by Jakubowski, we obtain the desired tightness which yields the upper semicontinuity of the primal problem with respect to the marginal distributions, and further the first duality. Then, we provide also two dual formulations that are related to the robust superhedging in financial mathematics, and we establish the corresponding dualities by adapting the dynamic programming principle and the discretization argument initiated by Dolinsky and Soner.The second part of this dissertation addresses the optimal Skorokhod embedding problem under finitely-many marginal constraints. We formulate first this optimization problem by means of probability measures on an enlarged space as well as its dual problems. Using the classical convex duality approach together with the optimal stopping theory, we obtain the duality results. We also relate these results to the martingale optimal transport on the space of continuous functions, where the corresponding dualities are derived for a special class of reward functions. Next, We provide an alternative proof of the monotonicity principle established in Beiglbock, Cox and Huesmann, which characterizes the optimizers by their geometric support. Finally, we show a stability result that is twofold: the stability of the optimization problem with respect to target marginals and the relation with another optimal embedding problem.The last part concerns the application of stochastic control to the martingale optimal transport with a payoff depending on the local time, and the Skorokhod embedding problem. For the one-marginal case, we recover the optimizers for both primal and dual problems through Vallois' solutions, and show further the optimality of Vallois' solutions, which relates the martingale optimal transport and the optimal Skorokhod embedding. As for the two-marginal case, we obtain a generalization of Vallois' solution. Finally, a special multi-marginal case is studied, where the stopping times given by Vallois are well ordered
Crawley, David George. "Time optimal arithmetic for VLSI." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239081.
Full textOlanders, David. "Optimal Time-Varying Cash Allocation." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273626.
Full textEn betalning är den mest fundamentala aspekten av handel som involverar kapital. De senaste åren har utvecklingen av nya betalmedel ökat drastiskt då världen fortsatt att utvecklas genom digitaliseringen. Utvecklingen har lett till en ökad efterfrågan på digitala betalningslösningar som kan hantera handel över hela världen. Då handel idag kan ske när som helst oberoende av var betalaren och betalningsmottagaren befinner sig, måste systemet som genomför betalningen alltid vara tillgängligt för att kunna förmedla handel mellan olika parter. Detta kräver att betalningssystemet alltid måste ha medel tillgängligt i efterfrågade länder och valutor för att handeln ska kunna genomföras. Den här uppsatsen fokuserar på hur kapital kostnadseffektivt kan omallokeras i ett betalsystem för att säkerställa att handel alltid är tillgängligt. Traditionellt har omallokeringen av kapital gjorts på ett regelbaserat sätt, vilket inte tagit hänsyn till kostnadsdimensionen och därigenom enbart fokuserat på själva omallokeringen. Den här uppsatsen använder metoder för att optimalt omallokera kapital baserat på kostnaderna för omallokeringen. Därigenom skapas en möjlighet att flytta kapital på ett avsevärt mer kostnadseffektivt sätt. När omallokeringsbesluten formuleras matematiskt som ett optimeringsproblem är kostnadsfunktionen formulerad som ett linjärt program med både Booleska och reella begränsningar av variablerna. Detta gör att traditionella lösningsmetoder för linjära program inte är användningsbara för att finna den optimala lösningen, varför vidareutveckling av tradtionella metoder tillsammans med mer avancerade metoder använts. Modellen utvärderades baserat på ett stort antal simuleringar som jämförde dess prestanda med det regelbaserade systemet. Den utvecklade modellen presterar en signfikant kostnadsreduktion i jämförelse med det regelbaserade systemet och överträffar därigenom det traditionellt använda systemet. Framtida arbete bör fokusera på att expandera modellen genom att utöka de potentiella överföringsmöjligheterna, att ta ökad hänsyn till osäkerhet genom en bayesiansk hantering, samt slutligen att integrera samtliga kostnadsaspekter i nätverket.
Hazell, Andrew. "Discrete-time optimal preview control." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/8472.
Full textSezgin, Alp Ozge. "Continuous Time Mean Variance Optimal Portfolios." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613824/index.pdf.
Full texts one period mean-variance portfolio selection problem. However, it is criticized because of its one period static nature. Further, the estimation of the stock price expected return is a particularly hard problem. For this purpose, there are a lot of studies solving the mean-variance portfolio optimization problem in continuous time. To solve the estimation problem of the stock price expected return, in 1992, Black and Litterman proposed the Bayesian asset allocation method in discrete time. Later on, Lindberg has introduced a new way of parameterizing the price dynamics in the standard Black-Scholes and solved the continuous time mean-variance portfolio optimization problem. In this thesis, firstly we take up the Lindberg'
s approach, we generalize the results to a jump-diffusion market setting and we correct the proof of the main result. Further, we demonstrate the implications of the Lindberg parameterization for the stock price drift vector in different market settings, we analyze the dependence of the optimal portfolio from jump and diffusion risk, and we indicate how to use the method. Secondly, we present the Lagrangian function approach of Korn and Trautmann and we derive some new results for this approach, in particular explicit representations for the optimal portfolio process. In addition, we present the L2-projection approach of Schweizer for the continuous time mean-variance portfolio optimization problem and derive the optimal portfolio and the optimal wealth processes for this approach. While, deriving these results as the underlying model, the market parameterization of Lindberg is chosen. Lastly, we compare these three different optimization frameworks in detail and their attractive and not so attractive features are highlighted by numerical examples.
Schenker, Walter. "Time-optimal control of mechanical systems /." [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10307.
Full textBen-Asher, Joseph Z. "Time optimal slewing of flexible spacecraft." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53910.
Full textPh. D.
Riffer, Jennifer Lynn. "Time-optimal control of discrete-time systems with known waveform disturbances." [Milwaukee, Wis.] : e-Publications@Marquette, 2009. http://epublications.marquette.edu/theses_open/18.
Full textKötter, Mirko. "Optimal investment in time inhomogeneous Poisson models." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979754747.
Full textFedyszak-Koszela, Anna. "On the optimal stopping time of learning." Licentiate thesis, Mälardalen University, School of Education, Culture and Communication, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-1531.
Full textThe goal of this thesis is to study the economics of computational learning. Attention is also paid to applications of computational learning models, especially Valiant's so-called `probably approximately correctly' (PAC) learning model, in econometric situations.
Specifically, an economically reasonable stopping time model of learning is the subject of two attached papers. In the rst paper, Paper A, the economics of PAC learning are considered. It is shown how a general form of the optimal stopping time bounds can be achieved using the PAC convergence rates for a `pessimistic-rational' learner in the most standard binary case of passive supervised PAC model of finite Vapnik-Chervonenkis (VC) dimension.
The second paper, Paper B, states precisely and improves the ideas introduced in Paper A and tests them in a specific and mathematically simple case. Using the maxmin procedure of Gilboa and Schmeidler the bounds for the stopping time are expressed in terms of the largest expected error of recall, and thus, effectively, in terms of the least expected reward. The problem of locating a real number θ by testing whether xi ≤ θ , with xi drawn from an calculated for a range of term rates, sample costs and rewards/penalties from a recall ae included. The standard econometric situations, such as product promotion, market research, credit risk assessment, and bargaining and tenders, where such bounds could be of interest, are pointed.
These two papers are the essence of this thesis, and form it togheter with an introduction to the subject of learning.
Målet med denna avhandling är att studera optimering av inlärning när det finns kostnader. Speciellt studerar jag Valiants så kallade PAC-inlärningsmodell (Probably Approximately Correctly), ofta använd inom datavetenskap. I två artiklar behandlar jag hur länge, ur ekonomisk synvinkel, inlärningsperioden bör fortsätta.
I den första artikeln visar vi hur en generell form av begränsningar av den optimala inlärningsperioden kan fås med hjälp av PAC-konvergenshastigheten för en ’pessimistiskt rationell’ studerande (i det vanligaste binära fallet av passiv PAC-inlärningsmodell med ändlig VC-dimension).
I den andra artikeln fördjupar och förbättrar vi idéerna från den första artikeln, och testar dem i en specifik situation som är matematiskt enkel. Med hjälp av Gilboa – Schmeidlers max - minprocedur uttrycker vi begränsningarna av den optimala inlärningsperioden som funktion av det största förväntade felet och därmed som funktion av den minsta förväntade belöningen. Vi diskuterar problemet med att hitta ett reellt tal θ genom testning av huruvida xi ≤ θ, där xi dras från en okänd fördelning. Här tar vi också upp exempel på begränsningar av inlärningsperioden, beräknade för en mängd av diskontovärden, stickprovskostnader och belöning/straff för erinran, samt en del vanliga ekonometriska situationer där sådana begränsningar är av intresse, såsom marknadsföring av produkter, marknadsanalys, kreditriskskattning och offertförhandling.
Avhandlingen består i huvuddel av dessa två artiklar samt en kort introduktion till ekonomiska, matematiska och datavetenskapliga inlärningsmodeller.
Books on the topic "Time-optimal"
Smith, Lones A. Time consistent optimal stopping. Cambridge, Mass: Dept. of Economics, Massachusetts Institute of Technology, 1997.
Find full textBuuren, Stef van. Optimal scaling of time series. Leiden, The Netherlands: DSWO Press, University of Leiden, 1990.
Find full textRomero, Luis F. Jiménez. Optimal control of time-delay systems. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Find full textWilbaut, Manoëlla. 5 keys to optimal time management. Oxford, UK: Management Books 2000 Ltd, 2013.
Find full textZhang, Xiaodong. Optimal control of time-delay systems. Ottawa: National Library of Canada, 1994.
Find full textVirk, G. S. A real-time distributed optimal autopilot. Sheffield: University of Sheffield, Dept. ofControl Engineering, 1990.
Find full textBenesty, Jacob, and Jingdong Chen. Optimal Time-Domain Noise Reduction Filters. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19601-0.
Full textWang, Gengsheng, Lijuan Wang, Yashan Xu, and Yubiao Zhang. Time Optimal Control of Evolution Equations. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95363-2.
Full textInfinite dimensional linear control systems: The time optimal and norm optimal problems. Amsterdam: Elsevier, 2005.
Find full textBertsekas, Dimitri P. Stochastic optimal control: The discrete time case. Belmont, Mass: Athena Scientific, 1996.
Find full textBook chapters on the topic "Time-optimal"
Jazar, Reza N. "Time Optimal Control." In Theory of Applied Robotics, 607–40. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-68964-7_14.
Full textMesterton-Gibbons, Mike. "Time-optimal control." In The Student Mathematical Library, 149–58. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/stml/050/18.
Full textWang, Gengsheng, Lijuan Wang, Yashan Xu, and Yubiao Zhang. "Time Optimal Control Problems." In Time Optimal Control of Evolution Equations, 37–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95363-2_2.
Full textAgrachev, Andrei A., and Yuri L. Sachkov. "Linear Time-Optimal Problem." In Control Theory from the Geometric Viewpoint, 211–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06404-7_15.
Full textJazar, Reza N. "★ Time Optimal Control." In Theory of Applied Robotics, 791–826. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1750-8_14.
Full textGeorgiev, Svetlin G. "Linear Time-Optimal Control." In Fuzzy Dynamic Equations, Dynamic Inclusions, and Optimal Control Problems on Time Scales, 701–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76132-5_11.
Full textMa, Zhongjing, and Suli Zou. "Discrete-Time Optimal Control Problems." In Optimal Control Theory, 277–341. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6292-5_7.
Full textChui, Charles K., and Guanrong Chen. "Minimum-Time Optimal Control Problems." In Linear Systems and Optimal Control, 94–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61312-8_9.
Full textZhang, Hehong, Gaoxi Xiao, Yunde Xie, Wenzhong Guo, and Chao Zhai. "Discrete Time Optimal Control Algorithm." In Lecture Notes in Electrical Engineering, 17–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9384-0_3.
Full textNovales, Alfonso, Esther Fernández, and Jesús Ruiz. "Optimal Growth. Continuous Time Analysis." In Economic Growth, 101–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68669-9_3.
Full textConference papers on the topic "Time-optimal"
Sassenburg, Hans, and Egon Berghout. "Optimal release time." In the 2006 international workshop. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1137702.1137714.
Full textZhou, Ling, and Xiangwen Li. "Optimal, Linear-Time Models." In 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/meic-15.2015.7.
Full textVan Loock, Wannes, Goele Pipeleers, and Jan Swevers. "Time-optimal quadrotor flight." In 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669253.
Full textJuan, Y. C., and P. T. Kabamba. "Optimal Discrete Time Tracking." In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790460.
Full textZhang, Chi, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang. "Time-optimal Qubit mapping." In ASPLOS '21: 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3445814.3446706.
Full textBoonlong, Kittipong, Nachol Chaiyaratana, and Suwat Kuntanapreeda. "Time Optimal and Time-Energy Optimal Control of Satellite Attitude Using Genetic Algorithms." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33436.
Full textMeilander, Will C. "Optimal real-time DB management." In Southeastcon 2008. IEEE, 2008. http://dx.doi.org/10.1109/secon.2008.4494304.
Full textBu, Dan, Yufan Liu, Jinzhong Guo, Qinghua Chen, and Tao Zheng. "Optimal Holding Time in Telemarketing." In 2010 International Conference on Management and Service Science (MASS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmss.2010.5575591.
Full textZiolko, Pietrzyk, and Dyras. "Time-optimal control of hemodialysis." In Proceedings of IEEE International Conference on Control and Applications CCA-94. IEEE, 1994. http://dx.doi.org/10.1109/cca.1994.381464.
Full textAwerbuch, Baruch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Varghese. "Time optimal self-stabilizing synchronization." In the twenty-fifth annual ACM symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/167088.167256.
Full textReports on the topic "Time-optimal"
Bianchi, Javier, and Enrique Mendoza. Optimal Time-Consistent Macroprudential Policy. Cambridge, MA: National Bureau of Economic Research, December 2013. http://dx.doi.org/10.3386/w19704.
Full textChien, YiLi, and Yi Wen. Time-Inconsistent Optimal Quantity of Debt. Federal Reserve Bank of St. Louis, 2020. http://dx.doi.org/10.20955/wp.2020.037.
Full textChari, V. V., and Patrick Kehoe. Bailouts, Time Inconsistency, and Optimal Regulation. Cambridge, MA: National Bureau of Economic Research, June 2013. http://dx.doi.org/10.3386/w19192.
Full textDebortoli, Davide, Ricardo Nunes, and Pierre Yared. Optimal Time-Consistent Government Debt Maturity. Cambridge, MA: National Bureau of Economic Research, October 2014. http://dx.doi.org/10.3386/w20632.
Full textReister, D. B., and S. M. Lenhart. Time optimal paths for high speed maneuvering. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6836048.
Full textReister, D. B., and S. M. Lenhart. Time optimal paths for high speed maneuvering. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10116250.
Full textFirestone, Ryan Michael. Optimal Real-time Dispatch for Integrated Energy Systems. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/918499.
Full textCalvo, Guillermo, and Maurice Obstfeld. Optimal Time-Consistent Fiscal Policy with Uncertain Lifetimes. Cambridge, MA: National Bureau of Economic Research, March 1985. http://dx.doi.org/10.3386/w1593.
Full textReister, D. Time optimal trajectories for a two wheeled robot. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6924295.
Full textZinn, Ben T., Eugene Lubarsky, and Yedidia Neumeier. Real-Time Control for Optimal Liquid Rocket Combustor Performance. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada443134.
Full text