To see the other types of publications on this topic, follow the link: Time-optimal.

Journal articles on the topic 'Time-optimal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Time-optimal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Iurchenko, Maryna Evheniivna, and Natalia Andriivna Marchenko. "MODEL OF DETERMINING THE OPTIMAL SUPPLY TIME OF PRODUCTS." SCIENTIFIC BULLETIN OF POLISSIA 2, no. 1(13) (2018): 60–63. http://dx.doi.org/10.25140/2410-9576-2018-2-1(13)-60-63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mostafa, El-Sayed M. E. "COMPUTATIONAL DESIGN OF OPTIMAL DISCRETE-TIME OUTPUT FEEDBACK CONTROLLERS." Journal of the Operations Research Society of Japan 51, no. 1 (2008): 15–28. http://dx.doi.org/10.15807/jorsj.51.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Çoşkun, Filiz, Zeynep Ceyda Sayalı, Emine Gürbüz, and Fuat Balcı. "Optimal time discrimination." Quarterly Journal of Experimental Psychology 68, no. 2 (February 2015): 381–401. http://dx.doi.org/10.1080/17470218.2014.944921.

Full text
Abstract:
In the temporal bisection task, participants categorize experienced stimulus durations as short or long based on their similarity to previously acquired reference durations. Reward maximization in this task requires integrating endogenous timing uncertainty as well as exogenous probabilities of the reference durations into temporal judgements. We tested human participants on the temporal bisection task with different short and long reference duration probabilities (exogenous probability) in two separate test sessions. Incorrect categorizations were not penalized in Experiment 1 but were penalized in Experiment 2, leading to different levels of stringency in the reward functions that participants tried to maximize. We evaluated the judgements within the framework of optimality. Our participants adapted their choice behaviour in a nearly optimal fashion and earned nearly the maximum possible expected gain they could attain given their level of endogenous timing uncertainty and exogenous probabilities in both experiments. These results point to the optimality of human temporal risk assessment in the temporal bisection task. The long categorization response times (RTs) were overall faster than short categorization RTs, and short but not long categorization RTs were modulated by reference duration probability manipulations. These observations suggested an asymmetry between short and long categorizations in the temporal bisection task.
APA, Harvard, Vancouver, ISO, and other styles
4

Gallice, Andrea. "Optimal stealing time." Theory and Decision 80, no. 3 (June 2, 2015): 451–62. http://dx.doi.org/10.1007/s11238-015-9507-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Yung-Fu. "Optimal Cycle Time and Optimal Payment Time under Supplier Credit." Journal of Applied Sciences 4, no. 4 (September 15, 2004): 630–35. http://dx.doi.org/10.3923/jas.2004.630.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, S. Q., and M. Sun. "Constructing optimal search trees in optimal time." IEEE Transactions on Computers 48, no. 7 (July 1999): 738–43. http://dx.doi.org/10.1109/12.780881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Makimoto, Naoki. "OPTIMAL TIME TO INVEST UNDER UNCERTAINTY WITH A SCALE CHANGE." Journal of the Operations Research Society of Japan 51, no. 3 (2008): 225–40. http://dx.doi.org/10.15807/jorsj.51.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Rong, and Yuanguo Zhu. "AN OPTIMAL CONTROL MODEL FOR UNCERTAIN SYSTEMS WITH TIME-DELAY." Journal of the Operations Research Society of Japan 56, no. 4 (2013): 243–56. http://dx.doi.org/10.15807/jorsj.56.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ullah, Najeeb, Faizullah Khan, Abdul Ali Khan, Surat Khan, Abdul Wahid Tareen, Muhammad Saeed, and Akbar Khan. "Optimal Real-time Static and Dynamic Air Quality Monitoring System." Indian Journal of Science and Technology 13, no. 1 (January 20, 2020): 1–12. http://dx.doi.org/10.17485/ijst/2020/v13i01/148375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gitizadeh, R., I. Yaesh, and J. Z. Ben-Asher. "Discrete-Time Optimal Guidance." Journal of Guidance, Control, and Dynamics 22, no. 1 (January 1999): 171–75. http://dx.doi.org/10.2514/2.7622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Smith, Lones. "Time-consistent optimal stopping." Economics Letters 56, no. 3 (November 1997): 277–79. http://dx.doi.org/10.1016/s0165-1765(97)00174-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Paulen, Radoslav, Miroslav Fikar, Greg Foley, Zoltán Kovács, and Peter Czermak. "Time-optimal batch diafiltration*." IFAC Proceedings Volumes 45, no. 15 (2012): 804–9. http://dx.doi.org/10.3182/20120710-4-sg-2026.00070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Spearman, Mark L., and Rachel Q. Zhang. "Optimal Lead Time Policies." Management Science 45, no. 2 (February 1999): 290–95. http://dx.doi.org/10.1287/mnsc.45.2.290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bajcinca, Naim. "Time optimal cyclic crystallization." Computers & Chemical Engineering 58 (November 2013): 381–89. http://dx.doi.org/10.1016/j.compchemeng.2013.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Odonde, J. S. O. "Time-domain optimal filtering." Thermochimica Acta 207 (October 1992): 305–12. http://dx.doi.org/10.1016/0040-6031(92)80144-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vukovic, Ognjen. "Time Optimal Control in Time Series Movement." Journal of Applied Mathematics and Physics 03, no. 09 (2015): 1122–25. http://dx.doi.org/10.4236/jamp.2015.39139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Danilin, A. R., and O. O. Kovrizhnykh. "Asymptotics of the optimal time in a singular perturbed linear time-optimal problem." Proceedings of the Steklov Institute of Mathematics 271, S1 (October 2010): 53–65. http://dx.doi.org/10.1134/s0081543810070059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Susana, Mejia, and Hassan Andrés Ramirez. "Determining the optimal selling time of cattle: A stochastic dynamic programming approach." Agricultural Economics (Zemědělská ekonomika) 62, No. 11 (November 7, 2016): 517–27. http://dx.doi.org/10.17221/215/2015-agricecon.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Herrmann, Leopold. "Optimal oscillatory time for a class of second order nonlinear dissipative ODE." Applications of Mathematics 37, no. 5 (1992): 369–82. http://dx.doi.org/10.21136/am.1992.104517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hurtado, John E., and John L. Junkins. "Optimal Near-Minimum-Time Control." Journal of Guidance, Control, and Dynamics 21, no. 1 (January 1998): 172–74. http://dx.doi.org/10.2514/2.4214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chiranjeevi, Tirumalasetty, and Raj Biswas. "Discrete-Time Fractional Optimal Control." Mathematics 5, no. 2 (April 19, 2017): 25. http://dx.doi.org/10.3390/math5020025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kulczycki, P. "Time-Optimal Stochastic Positional Control." IFAC Proceedings Volumes 26, no. 2 (July 1993): 423–28. http://dx.doi.org/10.1016/s1474-6670(17)48299-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Desouky, Mohammed A. A., and Ossama Abdelkhalik. "Time-Optimal Magnetic Attitude Detumbling." Journal of Spacecraft and Rockets 57, no. 3 (May 2020): 549–64. http://dx.doi.org/10.2514/1.a34583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rémillard, Bruno, and Sylvain Rubenthaler. "Optimal hedging in discrete time." Quantitative Finance 13, no. 6 (June 2013): 819–25. http://dx.doi.org/10.1080/14697688.2012.745012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hodzic, E., and Weijia Shang. "On time optimal supernode shape." IEEE Transactions on Parallel and Distributed Systems 13, no. 12 (December 2002): 1220–33. http://dx.doi.org/10.1109/tpds.2002.1158261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Katanyutaveetip, Dechanuchit. "Real-time optimal multicast routing." Computer Communications 25, no. 14 (September 2002): 1297–304. http://dx.doi.org/10.1016/s0140-3664(02)00033-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Singhose, W. E., W. P. Seering, and Neil C. Singer. "Time-Optimal Negative Input Shapers." Journal of Dynamic Systems, Measurement, and Control 119, no. 2 (June 1, 1997): 198–205. http://dx.doi.org/10.1115/1.2801233.

Full text
Abstract:
Input shaping reduces residual vibration in computer controlled machines by convolving a sequence of impulses with a desired system command. The resulting shaped input is then used to drive the system. The impulse sequence has traditionally contained only positively valued impulses. However, when the impulses are allowed to have negative amplitudes, the rise time can be improved. Unfortunately, excitation of unmodeled high modes and overcurrenting of the actuators may accompany the improved rise time. Solutions to the problem of high-mode excitation and overcurrenting are presented. Furthermore, a simple look-up method is presented that facilitates the design of negative input shapers. The performance of negative shapers is evaluated experimentally on two systems; one driven by a piezo actuator and the other equipped with DC motors.
APA, Harvard, Vancouver, ISO, and other styles
28

Mazo, Manuel, and Paulo Tabuada. "Symbolic approximate time-optimal control." Systems & Control Letters 60, no. 4 (April 2011): 256–63. http://dx.doi.org/10.1016/j.sysconle.2011.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Newman, W. S. "Robust near time-optimal control." IEEE Transactions on Automatic Control 35, no. 7 (July 1990): 841–44. http://dx.doi.org/10.1109/9.57026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Christiansen, Anders Roy, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. "Optimal-Time Dictionary-Compressed Indexes." ACM Transactions on Algorithms 17, no. 1 (December 31, 2020): 1–39. http://dx.doi.org/10.1145/3426473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shet, K. C., and B. V. Rao. "Linear Time-Varying Optimal Filtering." IETE Technical Review 3, no. 12 (December 1986): 597–605. http://dx.doi.org/10.1080/02564602.1986.11438045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Grubb, Howard, and S. Van Buuren. "Optimal Scaling of Time Series." Journal of the Royal Statistical Society. Series A (Statistics in Society) 155, no. 1 (1992): 179. http://dx.doi.org/10.2307/2982684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Klein, Paul, and Jose-Victor Rios-Rull. "Time-consistent optimal fiscal policy*." International Economic Review 44, no. 4 (November 2003): 1217–45. http://dx.doi.org/10.1111/1468-2354.t01-1-00107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kaya, C. Yalçin, and J. Lyle Noakes. "Computations and time-optimal controls." Optimal Control Applications and Methods 17, no. 3 (July 1996): 171–85. http://dx.doi.org/10.1002/(sici)1099-1514(199607/09)17:3<171::aid-oca571>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

CAPPELLO, PETER, OMER EGECIOGLU, and CHRIS SCHEIMAN. "PROCESSOR-TIME-OPTIMAL SYSTOLIC ARRAYS." Parallel Algorithms and Applications 15, no. 3-4 (December 2000): 167–99. http://dx.doi.org/10.1080/01495730008947355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Colonius, Hans, and Adele Diederich. "Optimal Time Windows of Integration." i-Perception 2, no. 8 (October 2011): 816. http://dx.doi.org/10.1068/ic816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Spirkl, W., and H. Ries. "Optimal finite-time endoreversible processes." Physical Review E 52, no. 4 (October 1, 1995): 3485–89. http://dx.doi.org/10.1103/physreve.52.3485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bianchi, Javier, and Enrique G. Mendoza. "Optimal Time-Consistent Macroprudential Policy." Journal of Political Economy 126, no. 2 (April 2018): 588–634. http://dx.doi.org/10.1086/696280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tang, Yujie, Krishnamurthy Dvijotham, and Steven Low. "Real-Time Optimal Power Flow." IEEE Transactions on Smart Grid 8, no. 6 (November 2017): 2963–73. http://dx.doi.org/10.1109/tsg.2017.2704922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wei, B. W. Y., and C. D. Thompson. "Area-time optimal adder design." IEEE Transactions on Computers 39, no. 5 (May 1990): 666–75. http://dx.doi.org/10.1109/12.53579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

TORKEY, F. A., and P. A. W. WALKER. "Time optimal self-tuning controller." International Journal of Control 48, no. 2 (August 1988): 449–68. http://dx.doi.org/10.1080/00207178808906190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, W., and D. Elliott. "Stochastic time-optimal control problems." IEE Proceedings D Control Theory and Applications 135, no. 6 (1988): 395. http://dx.doi.org/10.1049/ip-d.1988.0059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kobylanski, Magdalena, Marie-Claire Quenez, and Elisabeth Rouy-Mironescu. "Optimal multiple stopping time problem." Annals of Applied Probability 21, no. 4 (August 2011): 1365–99. http://dx.doi.org/10.1214/10-aap727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chang, S. K., F. Albuyeh, M. L. Gilles, G. E. Marks, and K. Kato. "Optimal real-time voltage control." IEEE Transactions on Power Systems 5, no. 3 (1990): 750–58. http://dx.doi.org/10.1109/59.65902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Baumgart, Matthew D., and Lucy Y. Pao. "Discrete time-optimal command shaping." Automatica 43, no. 8 (August 2007): 1403–9. http://dx.doi.org/10.1016/j.automatica.2007.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rasova, S. S., and B. P. Harlamov. "Optimal local first exit time." Journal of Mathematical Sciences 159, no. 3 (May 22, 2009): 327–40. http://dx.doi.org/10.1007/s10958-009-9445-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vinh, N. X., P. Lu, R. M. Howe, and E. G. Gilbert. "Optimal interception with time constraint." Journal of Optimization Theory and Applications 66, no. 3 (September 1990): 361–90. http://dx.doi.org/10.1007/bf00940927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kobylanski, Magdalena, Marie-Claire Quenez, and Elisabeth Rouy-Mironescu. "Optimal double stopping time problem." Comptes Rendus Mathematique 348, no. 1-2 (January 2010): 65–69. http://dx.doi.org/10.1016/j.crma.2009.11.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bayraktar, Erhan, and H. Vincent Poor. "Optimal time to change premiums." Mathematical Methods of Operations Research 68, no. 1 (September 19, 2007): 125–58. http://dx.doi.org/10.1007/s00186-007-0182-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Danilin, A. R., and O. O. Kovrizhnykh. "Asymptotics of the optimal time in a time-optimal problem with two small parameters." Proceedings of the Steklov Institute of Mathematics 288, S1 (April 2015): 46–53. http://dx.doi.org/10.1134/s0081543815020066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography