To see the other types of publications on this topic, follow the link: Time-Resolved spectroscopie.

Journal articles on the topic 'Time-Resolved spectroscopie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Time-Resolved spectroscopie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mottin, Stéphane, Pierre Laporte, Michel Jouvet, and Raymond Cespuglio. "Spectroscopie d émission du noyau Raphe Dorsalis chez le rat non anesthésié sous excitation laser UV 300-355 nm." Ann. Phys. 22 (October 15, 1997): 179–80. https://doi.org/10.5281/zenodo.439014.

Full text
Abstract:
La spectroscopie d émission de fluorescence du noyau Raphe Dorsalis a été étudiée à différentes longueurs d onde d excitation dans la gamme 300-330 nm et aussi à 355 nm chez le rat libre de tous mouvements et éveillé. Les résultats expérimentaux montrent des changements importants du spectre d émission .
APA, Harvard, Vancouver, ISO, and other styles
2

Ramstein, Stéphane, and Stéphane Mottin. "Spectroscopie résolue en temps par continuum femtoseconde. Applications en neurobiologie." J. Phys. IV 108 (March 1, 2003): 127–30. https://doi.org/10.5281/zenodo.439020.

Full text
Abstract:
La spectroscopie résolue en temps utilisant un laser blanc femtoseconde est appliquée à la mesure in vivo des principaux absorbeurs du cerveau. Après génération adéquate du continuum de lumière blanche femtoseconde (50mW/[580-756nm] à 1 Hz), cette source se propage dans la calvaria, les méninges et le cortex chez le rat anesthésié. La transmission est étudiée sur 7mm de distance entre l impact laser et la fibre optique de collection. Le signal transmis est analysé dans la fenêtre 580-760nm, par un spectromètre couplé à une caméra à balayage de fente permettant la décorrélation de l absorption
APA, Harvard, Vancouver, ISO, and other styles
3

Yakovlev, V. "Time-resolved luminescence spectroscopy study of CsI:Eu crystal." Functional Materials 20, no. 4 (2013): 451–56. http://dx.doi.org/10.15407/fm20.04.451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramstein, Stéphane, and Stéphane Mottin. "Optimisation de l'émission du continuum femtoseconde." J. Phys. IV 127 (June 1, 2005): 111–15. https://doi.org/10.5281/zenodo.439024.

Full text
Abstract:
Un dispositif de spectroscopie avec résolution du temps de vol des photons en milieu diffus a été développé. Celui-ci repose sur l utilisation d un continuum de lumière blanche généré par focalisation d un laser amplifié (830 nm, 1 kHz, 0.5 W, 170 fs) dans de l eau déminéralisée. Afin d optimiser spectralement et en puissance la source blanche sur la fenêtre spectrale 600-800 nm, une étude de la mise en forme spatio-temporelle avant autofocalisation de l impulsion laser par le milieu a été menée. Cette mise en forme est effectuée de manière spatiale en changeant la focale de la lentille de foc
APA, Harvard, Vancouver, ISO, and other styles
5

Liu Fan, 刘璠, 姚旭日 Yao Xuri, 刘雪峰 Liu Xuefeng та 翟光杰 Zhai Guangjie. "基于压缩感知的单光子时间分辨成像光谱技术". Laser & Optoelectronics Progress 58, № 10 (2021): 1011016. http://dx.doi.org/10.3788/lop202158.1011016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gaft, Michael, Harold Seigel, Gerard Panczer, and Renata Reisfeld. "Laser-induced time-resolved luminescence spectroscopy of Pb2+ in minerals." European Journal of Mineralogy 14, no. 6 (2002): 1041–48. http://dx.doi.org/10.1127/0935-1221/2002/0014-1041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DAI Zijie, 戴子杰, 康黎星 KANG Lixing, 龚诚 GONG Cheng, 刘政 LIU Zheng та 刘伟伟 LIU Weiwei. "PtSe2薄膜的时间分辨太赫兹光谱特性研究(特邀)". ACTA PHOTONICA SINICA 50, № 8 (2021): 0850206. http://dx.doi.org/10.3788/gzxb20215008.0850206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qingli Zhou, Qingli Zhou, and Xicheng Zhang Xicheng Zhang. "Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics (Invited Paper)." Chinese Optics Letters 9, no. 11 (2011): 110006–9. http://dx.doi.org/10.3788/col201109.110006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang Tong, 张童, 刘东远 Liu Dongyuan та 高峰 Gao Feng. "基于MC模型和Nelder‑Mead单纯形算法的时域组织光谱学". Chinese Journal of Lasers 51, № 3 (2024): 0307203. http://dx.doi.org/10.3788/cjl231142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang Jianfeng, 王建凤, 李永鹏 Li Yongpeng, 马骁楠 Ma Xiaonan та 朱伟钢 Zhu Weigang. "飞秒时间分辨吸收光谱在有机太阳能电池研究的应用进展". Laser & Optoelectronics Progress 62, № 9 (2025): 0900010. https://doi.org/10.3788/lop241723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fabelinskii, Immanuil L. "Time-resolved spectroscopy." Uspekhi Fizicheskih Nauk 152, no. 8 (1987): 722. http://dx.doi.org/10.3367/ufnr.0152.198708y.0722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fabelinskiĭ, Immanuil L. "Time-resolved spectroscopy." Soviet Physics Uspekhi 30, no. 8 (1987): 755–56. http://dx.doi.org/10.1070/pu1987v030n08abeh002959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Clark, R. J. H., R. E. Hester, and T. L. Gustafson. "Time Resolved Spectroscopy." Vibrational Spectroscopy 1, no. 1 (1990): 106–8. http://dx.doi.org/10.1016/0924-2031(90)80018-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Beddard, G. S. "Time resolved spectroscopy." Spectrochimica Acta Part A: Molecular Spectroscopy 47, no. 2 (1991): 311. http://dx.doi.org/10.1016/0584-8539(91)80104-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kim, Wooyul. "(Invited) Operando Spectroscopic Analysis for Understanding Interfacial Photo/Electrocatalytic Processes." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 3949. https://doi.org/10.1149/ma2024-02593949mtgabs.

Full text
Abstract:
Observing key intermediates directly on the catalyst surface poses a significant challenge in various photo/electrocatalytic processes, including CO2 reduction and O2 reduction reactions. To gain a comprehensive understanding of the reaction mechanisms, it is essential to conduct combined studies utilizing complementary tools such as electrochemical characterization, computational calculations, and operando spectroscopies. Among these, time-resolved attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) stands out as particularly suited for investigating ele
APA, Harvard, Vancouver, ISO, and other styles
16

YAGI, Toshirou. "Time-Resolved Phonon Spectroscopy." Journal of the Spectroscopical Society of Japan 44, no. 5 (1995): 281–91. http://dx.doi.org/10.5111/bunkou.44.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Görlach, Ekkehard, Hansruedi Gygax, Paolo Lubini, and Urs P. Wild. "Time resolved fluorescence spectroscopy." Proceedings / Indian Academy of Sciences 103, no. 3 (1991): 395–400. http://dx.doi.org/10.1007/bf02842096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jones, W. J. "Time-Resolved Vibrational Spectroscopy." Optica Acta: International Journal of Optics 33, no. 9 (1986): 1096. http://dx.doi.org/10.1080/716099710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Atkinson, George H. "Time-Resolved Vibrational Spectroscopy." Journal of Physical Chemistry A 104, no. 18 (2000): 4129. http://dx.doi.org/10.1021/jp001015m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bakker, Huib, Stephen R. Meech, and Edwin J. Heilweil. "Time-Resolved Vibrational Spectroscopy." Journal of Physical Chemistry A 122, no. 18 (2018): 4389. http://dx.doi.org/10.1021/acs.jpca.7b12769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Millar, David P. "Time-resolved fluorescence spectroscopy." Current Opinion in Structural Biology 6, no. 5 (1996): 637–42. http://dx.doi.org/10.1016/s0959-440x(96)80030-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Erdmann, M., O. Rubner, Z. Shen, and V. Engel. "Time-resolved photoelectron spectroscopy:." Journal of Organometallic Chemistry 661, no. 1-2 (2002): 191–97. http://dx.doi.org/10.1016/s0022-328x(02)01822-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ajb. "Time-resolved Vibrational Spectroscopy." Journal of Molecular Structure 131, no. 1-2 (1985): 185. http://dx.doi.org/10.1016/0022-2860(85)85117-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Andreoni, Alessandra. "Time-resolved fluorescence spectroscopy." Journal of Photochemistry and Photobiology B: Biology 9, no. 3-4 (1991): 379–80. http://dx.doi.org/10.1016/1011-1344(91)80178-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nogueira, Juan Jose, Alice Corani, Nahhas Amal El, et al. "Sequential Proton-Coupled Electron Transfer Mediates Excited-StateDeactivation of a Eumelanin Building Block." Journal of Physical Chemistry Letters 8 (February 14, 2017): 1004–8. https://doi.org/10.5281/zenodo.14775013.

Full text
Abstract:
Skin photoprotection is commonly believed to rely on the photochemistry of 5,6-dihydroxyindole (DHI)- and 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-based eumelanin building blocks. Attempts to elucidate the underlying excited-state relaxation mechanisms have been partly unsuccessful due to the marked instability to oxidation. We report a study of the excited-state deactivation of DHI using steady-state and time-resolved fluorescence accompanied by high-level quantum-chemistry calculations including solvent effects. Spectroscopic data show that deactivation of the lowest excited state of DH
APA, Harvard, Vancouver, ISO, and other styles
26

Yuzawa, Tetsuro, Chihiro Kato, Michael W. George, and Hiro-O. Hamaguchi. "Nanosecond Time-Resolved Infrared Spectroscopy with a Dispersive Scanning Spectrometer." Applied Spectroscopy 48, no. 6 (1994): 684–90. http://dx.doi.org/10.1366/000370294774368947.

Full text
Abstract:
A nanosecond time-resolved infrared spectroscopic system based on a dispersive scanning spectrometer has been constructed. This is an advanced version of a similar system reported in a previous paper; the time resolution has been improved from 1 μs to 50 ns and the sensitivity from 10−4 in intensity changes to 10−6. These have been achieved by the use of a high-temperature ceramic infrared light source, a photovoltaic MCT detector, and a low-noise, wide-band preamplifier developed specifically for the present purpose. Time-resolved infrared spectra of a few samples of photochemical and photobi
APA, Harvard, Vancouver, ISO, and other styles
27

Maklygina, Yu S., I. D. Romanishkin, A. S. Skobeltsin, et al. "Time-resolved fluorescence imaging technique for rat brain tumors analysis." Journal of Physics: Conference Series 2058, no. 1 (2021): 012028. http://dx.doi.org/10.1088/1742-6596/2058/1/012028.

Full text
Abstract:
Abstract The paper presents a new approach to assessing the state of tissues that differ in phenotype and in the degree of immunocompetent cells activity using photosensitizers (PS) and time-resolved fluorescence analysis methods. The main attention is paid to the detection of differences between tumor cells and tumor-associated macrophages (TAM) using spectroscopic and microscopic methods by the fluorescent kinetics signal and the difference in the accumulation of PS (the accumulation is several times greater in macrophages). The results of the PS photoluminescence study were obtained using t
APA, Harvard, Vancouver, ISO, and other styles
28

Bickerton, Steven, Carles Badenes, Thomas Hettinger, Timothy Beers, and Sonya Huang. "Time-Resolved Spectroscopy with SDSS." Proceedings of the International Astronomical Union 7, S285 (2011): 289–90. http://dx.doi.org/10.1017/s1743921312000816.

Full text
Abstract:
AbstractWe present a brief technical outline of the newly-formed project, “Detection of Spectroscopic Differences over Time” (DS/DT). Our collaboration is using individual exposures from the SDSS spectroscopic archive to produce a uniformly-processed set of time-resolved spectra. Here we provide an overview of the properties and processing of the available data, and highlight the wide range of time base-lines present in the archive.
APA, Harvard, Vancouver, ISO, and other styles
29

Maíz Apellániz, J., R. H. Barbá, S. Simón-Díaz, et al. "Lucky Spectroscopy, an equivalent technique to Lucky Imaging." Astronomy & Astrophysics 615 (July 2018): A161. http://dx.doi.org/10.1051/0004-6361/201832885.

Full text
Abstract:
Context. Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. Aims. We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. Methods. We obtained a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions. We selected those with the best characteristics, extracted the spectra using multiple-profile fitting, and combined the results to derive spatially separated spectra. Results. We demonstrate the usefulness of Lucky Spectroscopy b
APA, Harvard, Vancouver, ISO, and other styles
30

TORIUMI, Hirokazu. "FT-IR time-resolved spectroscopy." Journal of the Spectroscopical Society of Japan 37, no. 4 (1988): 289–90. http://dx.doi.org/10.5111/bunkou.37.289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

IWATA, Koichi, and Hiro-o. HAMAGUCHI. "Picosecond Time-resolved Raman Spectroscopy." Journal of the Spectroscopical Society of Japan 44, no. 2 (1995): 61–73. http://dx.doi.org/10.5111/bunkou.44.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pophristic, Milan, Frederick H. Long, Chuong Tran, and Ian T. Ferguson. "Time-Resolved Spectroscopy of InGaN." MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 803–9. http://dx.doi.org/10.1557/s109257830000510x.

Full text
Abstract:
We have used time-resolved photoluminescence (PL), with 400 nm (3.1 eV) excitation, to examine InxGa1−xN/GaN light-emitting diodes (LEDs) before the final stages of processing at room temperature. We have found dramatic differences in the time-resolved kinetics between dim, bright and super bright LED devices. The lifetime of the emission for dim LEDs is quite short, 110 ± 20 ps at photoluminescence (PL) maximum, and the kinetics are not dependent upon wavelength. This lifetime is short compared to bright and super bright LEDs, which we have examined under similar conditions. The kinetics of b
APA, Harvard, Vancouver, ISO, and other styles
33

Helbing, Jan, and Mathias Bonmarin. "Time-Resolved Chiral Vibrational Spectroscopy." CHIMIA International Journal for Chemistry 63, no. 3 (2009): 128–33. http://dx.doi.org/10.2533/chimia.2009.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Millers, D., L. Grigorjeva, V. Pankratov, S. Chernov, and A. Watterich. "Time-resolved spectroscopy of ZnWO4." Radiation Effects and Defects in Solids 155, no. 1-4 (2001): 317–21. http://dx.doi.org/10.1080/10420150108214131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Greetham, G. M., D. Sole, I. P. Clark, A. W. Parker, M. R. Pollard, and M. Towrie. "Time-resolved multiple probe spectroscopy." Review of Scientific Instruments 83, no. 10 (2012): 103107. http://dx.doi.org/10.1063/1.4758999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Betz, Timo, and Cécile Sykes. "Time resolved membrane fluctuation spectroscopy." Soft Matter 8, no. 19 (2012): 5317–26. http://dx.doi.org/10.1039/c2sm00001f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chernikov, Alexej, Thomas Feldtmann, Sangam Chatterjee, Martin Koch, Mackillo Kira, and Stephan W. Koch. "Time-resolved phonon-sideband spectroscopy." Solid State Communications 150, no. 37-38 (2010): 1733–36. http://dx.doi.org/10.1016/j.ssc.2010.07.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Böhmer, Martin, Michael Wahl, Hans-Jürgen Rahn, Rainer Erdmann, and Jörg Enderlein. "Time-resolved fluorescence correlation spectroscopy." Chemical Physics Letters 353, no. 5-6 (2002): 439–45. http://dx.doi.org/10.1016/s0009-2614(02)00044-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stolow, Albert, Arthur E. Bragg, and Daniel M. Neumark. "Femtosecond Time-Resolved Photoelectron Spectroscopy." Chemical Reviews 104, no. 4 (2004): 1719–58. http://dx.doi.org/10.1021/cr020683w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Spoonhower, J. P., and M. S. Burberry. "Time-resolved spectroscopy of BaFBr:Eu2+." Journal of Luminescence 43, no. 4 (1989): 221–26. http://dx.doi.org/10.1016/0022-2313(89)90005-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

ISHIDA, Yukiaki. "Ultrafast Time-Resolved Photoemission Spectroscopy." Hyomen Kagaku 37, no. 1 (2016): 31–36. http://dx.doi.org/10.1380/jsssj.37.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, S. H., B. Fain, and C. Y. Yeh. "Ultrafast time-resolved fluorescence spectroscopy." Physical Review A 41, no. 5 (1990): 2718–29. http://dx.doi.org/10.1103/physreva.41.2718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Plakhotnik, Taras, and Daniel Walser. "Time Resolved Single Molecule Spectroscopy." Physical Review Letters 80, no. 18 (1998): 4064–67. http://dx.doi.org/10.1103/physrevlett.80.4064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Khaqan Ali Khan, Muhammad Irfan Jamil, Haji Muhammad, Zohaib Ahmad, and Imran Hussain. "Atomic-Level Dynamics in Chemical Reactions: A Time-Resolved Spectroscopic Approach." Indus Journal of Social Sciences 3, no. 1 (2025): 896–906. https://doi.org/10.59075/ijss.v3i1.906.

Full text
Abstract:
In recent decades, there have been incredible advances in time-resolved spectroscopic techniques, allowing further comprehension of ultrafast chemical reaction dynamics. Time-resolved high-harmonic spectroscopy (TR-HHS) and Coulomb explosion imaging have provided the unique opportunity to measure fast processes such as ring-opening reactions and conical intersection pathways with exquisite temporal resolution. For instance, TR-HHS has been used to explore the photochemical ring-opening reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene, whereby the electronically excited state interconverts to
APA, Harvard, Vancouver, ISO, and other styles
45

Saito, Mitsunori, Takahiro Koketsu, and Yusuke Itai. "Time-space conversion for time-resolved spectroscopy." OSA Continuum 2, no. 5 (2019): 1726. http://dx.doi.org/10.1364/osac.2.001726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Moffat, Anthony F. J. "Time-resolved optical-UV spectroscopy of colliding wind effects." Symposium - International Astronomical Union 193 (1999): 278–88. http://dx.doi.org/10.1017/s0074180900205548.

Full text
Abstract:
It is in the ultraviolet-optical domain where the strongest known emission lines arise in hot star winds. In the case of hot-star binaries, culminating in the relatively common, strong-wind WR+O systems, similar line-emission is seen in the cooling flows downstream from the highly compressed, X-ray emitting heads of the bow shock regions produced when the two winds collide. Time-resolved UV-optical spectroscopy of these flows around a complete orbit can provide important constraints not only on the colliding wind process itself, but also on the winds and the orbit. Spectroscopic wind-wind coll
APA, Harvard, Vancouver, ISO, and other styles
47

Ebihara, Ken, Hiroaki Takahashi, and Isao Noda. "Nanosecond Two-Dimensional Resonance Raman Correlation Spectroscopy of Benzil Radical Anion." Applied Spectroscopy 47, no. 9 (1993): 1343–44. http://dx.doi.org/10.1366/0003702934067405.

Full text
Abstract:
Nanosecond two-dimensional resonance Raman spectroscopy was used to investigate the photochemistry of the production and decay of the radical anion of benzil in various solvents. A newly developed correlation formalism was applied to a set of time-resolved resonance Raman spectra of the benzil radical anion to generate two-dimensional Raman spectra. Unlike the 2D correlation method previously developed for IR spectroscopy, which was based on signals induced by a sinusoidally varying external perturbation, the new correlation formalism is generally applicable to the studies of any transient spe
APA, Harvard, Vancouver, ISO, and other styles
48

Mouchet, M., S. F. Van Amerongen, J. M. Bonnet-Bidaud, and J. P. Osborne. "Time-Resolved Optical Spectroscopy of AM Her X-Ray Sources." International Astronomical Union Colloquium 93 (1987): 613–24. http://dx.doi.org/10.1017/s025292110010541x.

Full text
Abstract:
AbstractWe present high-time resolution spectroscopy of two AM Her sources E1405−451 and E1013−477. For E1405−451, the Balmer emission lines profiles can be divided into a narrow component and a broad one. The amplitudes of the radial velocity curves of these components are respectively 265±30 km/s and 390±50 km/s. The orientation of the column determined from polarimetry is not compatible with the broad component being formed in the lowest parts of the column. Photometric and spectroscopic results on E1013−477 do not confirm the previous reported 103 min. period. Rapid variability (<1.5h)
APA, Harvard, Vancouver, ISO, and other styles
49

Satoh, Azusa, Mamoru Kitaura, Kei Kamada, Akimasa Ohnishi, Minoru Sasaki, and Kazuhiko Hara. "Time-resolved photoluminescence spectroscopy of Ce:Gd3Al2Ga3O12crystals." Japanese Journal of Applied Physics 53, no. 5S1 (2014): 05FK01. http://dx.doi.org/10.7567/jjap.53.05fk01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ostensen, R. "Time resolved spectroscopy of Balloon 090100001." Communications in Asteroseismology 150 (2007): 265–66. http://dx.doi.org/10.1553/cia150s265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!