Academic literature on the topic 'Time Series DBMS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time Series DBMS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Time Series DBMS"
Fischer, Ulrike, Lars Dannecker, Laurynas Siksnys, Frank Rosenthal, Matthias Boehm, and Wolfgang Lehner. "Towards Integrated Data Analytics: Time Series Forecasting in DBMS." Datenbank-Spektrum 13, no. 1 (October 20, 2012): 45–53. http://dx.doi.org/10.1007/s13222-012-0108-4.
Full textLiu, Haicheng, Peter van Oosterom, Theo Tijssen, Tom Commandeur, and Wen Wang. "Managing large multidimensional hydrologic datasets: A case study comparing NetCDF and SciDB." Journal of Hydroinformatics 20, no. 5 (May 10, 2018): 1058–70. http://dx.doi.org/10.2166/hydro.2018.136.
Full textLuu, Do Ngoc, Nguyen Ngoc Phien, and Duong Tuan Anh. "Tuning Parameters in Deep Belief Networks for Time Series Prediction through Harmony Search." International Journal of Machine Learning and Computing 11, no. 4 (August 2021): 274–80. http://dx.doi.org/10.18178/ijmlc.2021.11.4.1047.
Full textFarhan, Ahmad, Yeni Sumantri, and Purnama Budi Santoso. "Rancangan Sistem Informasi Berbasis Web Untuk Mengatasi Perbaikan Mesin Menggunakan Group Tecnologhy." JAMI: Jurnal Ahli Muda Indonesia 1, no. 2 (December 31, 2020): 53–61. http://dx.doi.org/10.46510/jami.v1i2.30.
Full textPark, Keun-Tae, and Jun-Geol Baek. "Time Series Prediction using ARIMA and DBNs with MODWT." Journal of the Korean Institute of Industrial Engineers 43, no. 6 (December 31, 2017): 474–81. http://dx.doi.org/10.7232/jkiie.2017.43.6.474.
Full textZenati, Athmen, and Yang-Kyoo Han. "Synthesis and characteristics of novel azo-based diblock copolymers and their self-assembly behavior via solvents and thermal annealing." e-Polymers 17, no. 6 (October 26, 2017): 523–35. http://dx.doi.org/10.1515/epoly-2017-0042.
Full textOrtega-Hernandez, Alejandro, Raphael Acayaba, Chad Verwold, Cassiana Carolina Montagner, and Susana Y. Kimura. "Emerging investigator series: emerging disinfection by-product quantification method for wastewater reuse: trace level assessment using tandem mass spectrometry." Environmental Science: Water Research & Technology 7, no. 2 (2021): 285–97. http://dx.doi.org/10.1039/d0ew00947d.
Full textRowan, D. M., M. A. Tucker, B. J. Shappee, and J. J. Hermes. "Detections and constraints on white dwarf variability from time-series GALEX observations." Monthly Notices of the Royal Astronomical Society 486, no. 4 (April 20, 2019): 4574–89. http://dx.doi.org/10.1093/mnras/stz1116.
Full textZhang, Jiao, Yanhui Wang, and Dezhen Wang. "Period Multiplication in a Continuous Time Series of Radio-Frequency DBDs at Atmospheric Pressure." Communications in Computational Physics 11, no. 4 (April 2012): 1226–35. http://dx.doi.org/10.4208/cicp.150710.051110s.
Full textChen, Junfei, Qiongji Jin, and Jing Chao. "Design of Deep Belief Networks for Short-Term Prediction of Drought Index Using Data in the Huaihe River Basin." Mathematical Problems in Engineering 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/235929.
Full textDissertations / Theses on the topic "Time Series DBMS"
Warrén, Linus, and Daniel Tallkvist. "Time Series databaser för sensorsystem : En experimentell studie av prestanda för Time Series databaser för sensorsystem som grundas på: NoSQL eller RDBMS." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43763.
Full textSyfte – I problembeskrivningen framgår att det finns brist på vetenskapligt underlag för vilken sorts databas som är optimal att använda för ett sensorsystem. Det saknas jämförelser av prestanda mellan olika databaser och datamodeller i större sensorsystem. Studiens syfte är: ”Att rekommendera en databas och tillhörande databasmodell som är optimerad för ett sensorsystem” Metod – Studien inleds med en litteraturstudie för att genom teorin välja databas och databasmodeller som ska ingå i studien. För att uppnå syftet har en kvantitativ ansats valts. Studien följer de steg som Shari Lawrence Pfleeger definierar som en experimentell studie inom mjukvaruutveckling. Fyra fördefinierade fall används för att jämföra databaserna med olika databasmodeller som erhållits i litteraturstudien. Resultat - Litteraturstudien visar att Time Series DBMS är den databasmodell som rekommenderas att användas i ett sensorsystem. Studiens resultat visar att TimescaleDB presterar bättre än InfluxDB i fyra av fyra fördefinierade fall. Nollhypotesen som har ställts upp förkastas och en mothypotes antas vid 1% signifikansnivå. Implikationer - Studiens implikationer är att öka och fylla vissa kunskapshål kring Time Series DBMS, specifikt TimescaleDB och InfluxDB för sensorsystem. Resultatet kan tillämpas och användas när liknande sensorsystem skall implementeras. Enligt experimentets resultat visar det att TimescaleDB är bättre än InfluxDB för sensorsystem med liknande struktur. Begränsningar – Två Time Series DBMS (TimescaleDB och InfluxDB) ingår i denna studie som experimenten utfördes på. Experimenten utföres i Azure och var begränsade av de 10 vCPU:erna ett standardkonto har tillgång till att använda. Det fanns inte tillgång till ett stort antal beacons för att generera data till experimenten, så filer med motsvarande data skapades för att simulera beacons. Nyckelord - Time Series DBMS, NoSQL, RDBMS, TimescaleDB, InfluxDB, Sensorsystem
Battaglia, Bruno. "Studio e valutazione di database management system per la gestione di serie temporali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17270/.
Full textBook chapters on the topic "Time Series DBMS"
Young, Peter C. "Data-Based Mechanistic (DBM) Modelling." In Recursive Estimation and Time-Series Analysis, 357–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21981-8_12.
Full textEnright, Catherine G., Michael G. Madden, Niall Madden, and John G. Laffey. "Clinical Time Series Data Analysis Using Mathematical Models and DBNs." In Artificial Intelligence in Medicine, 159–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22218-4_20.
Full textSantos, Ricardo Jorge, Jorge Bernardino, and Marco Vieira. "Using Data Masking for Balancing Security and Performance in Data Warehousing." In Handbook of Research on Computational Intelligence for Engineering, Science, and Business, 384–409. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2518-1.ch015.
Full textDiao, Qian, Jianye Lu, Wei Hu, Yimin Zhang, and Gary Bradski. "DBN Models for Visual Tracking and Prediction." In Bayesian Network Technologies, 176–93. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59904-141-4.ch009.
Full textKhan, Latifur, Dennis McLeod, and Cyrus Shahabi. "An Adaptive Probe-Based Technique to Optimize Join Queries in Distributed Internet Databases." In Human Computer Interaction Development & Management, 93–116. IGI Global, 2002. http://dx.doi.org/10.4018/978-1-931777-13-1.ch006.
Full textConference papers on the topic "Time Series DBMS"
Telnarova, Zdenka. "Time series patterns and language support in DBMS." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992236.
Full textLee, Doyup. "Anomaly Detection in Multivariate Non-stationary Time Series for Automatic DBMS Diagnosis." In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2017. http://dx.doi.org/10.1109/icmla.2017.0-126.
Full textKim, Jaein, Chorwon Kim, Byunghee Son, Jihyoung Ryu, and Sungchang Kim. "A study on Time-series DBMS Application for EdgeX-based lightweight edge gateway." In 2020 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2020. http://dx.doi.org/10.1109/ictc49870.2020.9289173.
Full textKuremoto, Takashi, Masanao Obayashi, Kunikazu Kobayashi, Takaomi Hirata, and Shingo Mabu. "Forecast chaotic time series data by DBNs." In 2014 7th International Congress on Image and Signal Processing (CISP). IEEE, 2014. http://dx.doi.org/10.1109/cisp.2014.7003950.
Full textChen, Leitao, Laura Schaefer, and Xiaofeng Cai. "An Accurate Unstructured Finite Volume Discrete Boltzmann Method." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87136.
Full text