Academic literature on the topic 'TIRF'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TIRF.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TIRF"
Treves, Susan, and Francesco Zorzato. "TIRF." Imaging & Microscopy 11, no. 3 (August 2009): 52–53. http://dx.doi.org/10.1002/imic.200990065.
Full textTruskey, G. A., J. S. Burmeister, E. Grapa, and W. M. Reichert. "Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances." Journal of Cell Science 103, no. 2 (October 1, 1992): 491–99. http://dx.doi.org/10.1242/jcs.103.2.491.
Full textFu, Yan, Peter W. Winter, Raul Rojas, Victor Wang, Matthew McAuliffe, and George H. Patterson. "Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching." Proceedings of the National Academy of Sciences 113, no. 16 (April 1, 2016): 4368–73. http://dx.doi.org/10.1073/pnas.1516715113.
Full textFoylan, S., W. B. Amos, J. Dempster, L. Kölln, C. G. Hansen, M. Shaw, and G. McConnell. "MesoTIRF: A prism-based Total Internal Reflection Fluorescence illuminator for high resolution, high contrast imaging of large cell populations." Applied Physics Letters 122, no. 11 (March 13, 2023): 113701. http://dx.doi.org/10.1063/5.0133032.
Full textLin, Jia, and Adam D. Hoppe. "Uniform Total Internal Reflection Fluorescence Illumination Enables Live Cell Fluorescence Resonance Energy Transfer Microscopy." Microscopy and Microanalysis 19, no. 2 (March 11, 2013): 350–59. http://dx.doi.org/10.1017/s1431927612014420.
Full textLanni, F., A. S. Waggoner, and D. L. Taylor. "Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy." Journal of Cell Biology 100, no. 4 (April 1, 1985): 1091–102. http://dx.doi.org/10.1083/jcb.100.4.1091.
Full textMorelo Pereira, Douglas Jahir, and Diocelina Torres Castro. "Técnicas e indicadores de rendimiento financiero aplicados al estado de resultados en empresas comerciales y de servicios colombianas." Cuadernos de Contabilidad 22 (August 19, 2021): 1–21. http://dx.doi.org/10.11144/javeriana.cc22.tirf.
Full textGingell, D., O. S. Heavens, and J. S. Mellor. "General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography." Journal of Cell Science 87, no. 5 (June 1, 1987): 677–93. http://dx.doi.org/10.1242/jcs.87.5.677.
Full textEllefsen, Kyle L., Joseph L. Dynes, and Ian Parker. "Spinning-Spot Shadowless TIRF Microscopy." PLOS ONE 10, no. 8 (August 26, 2015): e0136055. http://dx.doi.org/10.1371/journal.pone.0136055.
Full textBalaa, Karla, Emmanuel Fort, and Nikon Instruments. "Surface Plasmon Enhanced TIRF Imaging." Imaging & Microscopy 11, no. 4 (October 30, 2009): 55–56. http://dx.doi.org/10.1002/imic.200990091.
Full textDissertations / Theses on the topic "TIRF"
Gortari, Antu Nehuen. "Metasurfaces for bioimaging." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS416/document.
Full textIn recent years there has been a significant effort to push electromagnetic metasurfaces with the ability to abruptly change light properties into visible wavelengths. These advancements have opened a new range of possibilities to reshape light using ultra-thin optical devices and there is one field that is starting to gather attention: bioimaging. One technique particularly well suited for the study of molecules near a cell membrane is Total Internal Reflection Fluorescence (TIRF) microscopy, which relies on an evanescence field created by light being totally internally reflected within a glass substrate due to its high incidence angle. As of today, TIRF is generally implemented using bulky high-NA, small field of view oil objectives.In this project we present the realization of metasurface-based TIRF microscopy substrates consisting of periodic 2D arrays of asymmetric structures fabricated in titanium dioxide on borosilicate glass. These patterns, as small as 48nm, were optimized through rigorous coupled-wave analysis to couple 50-90% of the incoming normally incident light into the first diffraction order, which outputs at an angle that suffices total internal reflection in water and eliminates the requirement for high NA objectives or prisms to achieve TIRF. Being able to utilize lower-magnification air objectives and having a large evanescence field area provide unique TIRF conditions not accessible by traditional methods. Additionally, these structures are compatible with soft UV nanoimprint lithography, for cost-effective scale production, to give TIRF’s high contrast, low photodamage and low photobleaching capabilities to inexpensive wide-field microscopes
Burgess, Helen Jane. "A bioelectrochemical FRET switch : combined total internal reflection (TIRF) microscopy and electrochemistry." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437177.
Full textUhlig, Katja. "Untersuchungen PEG-basierter thermo-responsiver Polymeroberflächen zur Steuerung der Zelladhäsion." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4778/.
Full textModern methods for single-cell analysis are becoming increasingly sensitive. At the same time, requirements for the sample material are on the rise. Today, sample preparation of adherent cells usually includes steps of enzymatic treatment to digest surface proteins thus, inducing cell detachment from culture substrates. This strongly limits the application of different techniques like patch clamp or labelling of extracellular domains of membrane proteins for flow cytometry. Therefore, a new cell detachment method is urgently required. In the present work, new PEG-based thermo-responsive polymers are used for cell culture for the first time. Here, non-destructive detachment of different cell lines from polymer-coated surfaces is realised by controlled temperature reduction. The surface functionality is systematically optimised by varying the concentration of the coating solutions, by artificial surface coating of a cell adhesion-mediating protein (fibronectin) and by co-adsorption of a cell adhesion-mediating peptide (RGD). For detailed analysis of the cell detachment process, TIRF microscopy is used to directly visualise the cell contacts on the thermo-responsive surfaces. Using this technique allows both the quantification and analysis of the reduction of the cell adhesion area during sample cooling. Furthermore, for several cell lines, different behaviours in cell detachment are observed. Cells that have close contact to their substrate like MCF-7 breast cancer cell line and CHO-K1 ovary cells increase the distance between cell membrane and surface, but there is only little decrease of cell-substrate adhesion area. In contrast, L929 fibroblasts reduce the cell adhesion area drastically. Furthermore, the hypothesis that the cell detachment is an active process is shown by lowering the cell metabolism by temperature reduction to 4 °C and by the cell traces that are left behind after rinsing the surfaces. A combination of TIRAF and TIRF enables visualising the cell adhesion area and actin structures. Measuring both parameters simultaneously opens up new possibilities to correlate intracellular and cell detachment processes on thermo-responsive surfaces.
Ries, Jonas. "Advanced Fluorescence Correlation Techniques to Study Membrane Dynamics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1219846317196-73420.
Full textFluoreszenz-Korrelations-Spektroskopie (FCS) ist eine mächtige Methode, um wichtige physikalische Parameter wie Konzentrationen, Diffusionskoeffizienten, Diffusionsarten oder Bindungsparameter in Lösung und in Modell- oder Zellmembranen zu bestimmen. In nichtidealen Systemen ist FCS fehleranfällig. In dieser Arbeit entwickeln wir mehrere neuartige Realisierungen von FCS, welche diese Fehlerquellen umgehen und die genaue und quantitative Messung dynamischer Parameter in Membranen ermöglichen. Zwei-Fokus FCS mit Kamera-Detektion erlaubt eine genaue und kalibrationsfreie Messung von Diffusionskoeffizienten. Konfokale FCS mit einem Laserscanningmikroskop besitzt eine bislang unerreichte Positionsgenauigkeit, welche uns erstmals dynamische Messungen in Bakterienmembranen mit FCS ermöglichte. Scanning FCS mit einem Scanweg senkrecht zur Membran ermöglicht eine Korrektur von Instabilitäten und damit lange Messzeiten, die zur Bestimmung langsamer Diffusionskoeffizienten notwendig sind. Eine Erweiterung zur kalibrationsfreien Messung von Diffusionskoeffizienten mit Zwei-Fokus Scanning FCS und von Bindungsparametern mit Zwei-Farben Scanning FCS ist einfach. Mit diesen Methoden konnten wir in Systemen messen, die bislang FCS nicht zugänglich waren, so in Hefezellmembranen oder in Membranen lebender Zebrafischembryonen. Line-scan FCS besitzt einen Scanweg parallel zur Membran. Die parallele Messung entlang der ganzen Linie führt zu einer deutlichen Verbesserung der Statistik und damit zu kurzen Messzeiten. Die Kenntnis der Scangeschwindigkeit dient einer internen Kalibration und erlaubt eine akkurate Bestimmung von Diffusionskoeffizienten und Konzentrationen innerhalb weniger Sekunden, kaum beeinflusst vom Bleichen von Fluorophoren. Beide Arten von Scanning FCS können mit einem kommerziellen Laserscanningmikroskop realisiert werden. Häufig kann bei FCS Messungen ein fluoreszierender Hintergrund nicht vermieden werden. Hier ist eine hohe Oberflächenselektivitiät nötig, welche effizient mit einem neuartigen Objektiv erreicht werden kann. Dieses Supercritical Angle-Objektiv erzeugt ein sehr flaches und lateral begrenztes Detektionsvolumen. Eine weitere Methode mit einer ähnlich guten Oberflächenselektivität ist FCS mit Anregung über totale interne Reflektion (TIR-FCS). Bislang war eine quantitative Analyse der TIR-FCS Daten kaum möglich, da keine ausreichend genaue theoretische Beschreibung existierte. In dieser Arbeit entwickeln wir ein akkurates Modell, welches quantitative Messungen mit TIR-FCS erlaubt. Die hier entwickelten neuartgien FCS-Techniken ermöglichen die Untersuchung biologischer Fragestellungen, welche bislang keiner anderen Methode zugänglich sind
Nathwani, Bhavik Bharat. "Developing luminescent nanoprobes for labeling focal adhesion complex proteins and performing combined AFM-TIRF imaging of these conjugates." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85904.
Full textBethea, Tomika R. C. "Silica Colloidal Crystals as Porous Substrates for Total Internal Reflection Fluorescence Microscopy." Thesis, The University of Arizona, 2006. http://hdl.handle.net/10150/193371.
Full textTassinari, Andrea 1991. "In vitro reconstitution of the collective activities of motor protein complexes." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/670056.
Full textTschmelak, Jens M. [Verfasser]. "New ultra-sensitive immunoassays for (Total Internal Reflectance Fluorescence) TIRF-based biosensors / Jens M Tschmelak." Aachen : Shaker, 2005. http://d-nb.info/1186578238/34.
Full textFaure, Laura. "La machinerie de motilité de Myxococcus xanthus : caractérisation d'une nouvelle famille de moteurs moléculaires dans l'enveloppe bactérienne." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0011/document.
Full textTwo energy sources are present in cells: the ATP and the Proton Motive Force, produced in the cytoplasm and inner membrane respectively. Active processes in the outer membrane or on the surface of Gram negative bacteria require the presence of a proteic machinery to transduce the forces from their production site, in the cytoplasm or inner membrane, to their usage site. During my thesis I have studied one of these machineries: the motility machinery (Agl-Glt) of Myxococcus xanthus. More precisely, I try to understand how the components of this transmembrane machinery interact with each other to promote cell motility. I have shown that the assembly of the motility machinery at the leading pole requires the formation of a cytoplasmic platform onto which the Agl-Glt machinery is going to nucleate. The inner-membrane motor complex moves intracellularly along a right-handed path in the cell and becomes stationary at focal adhesion sites on the surface through the connection of the motor to the outer membrane proteins of the complex. This powers the left-handed helical motion of the bacteria. Finally, this study reveals the existence of a dynamic transmembrane machinery which associates the bacterial cytoskeleton to a linear motor to promote cell movement. The homology between the systems tells us that this type of motor is likely to be found associate with other function than cell motility
Nassereddine, Aya. "Surface patterning strategies to dissect T-Cell adhesion and actin organisation." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0458.
Full textFor an efficient immune response, an optimal interaction between T-cells and antigen presenting cells (APC) is required; it takes the form of a cell-cell contact involving different scales ranging from the molecular (1-10 nm) to the cellular (1-10 micrometer). The ligation of the special T cell receptors (TCR) to its ligands on an APC, leads to larger scale molecular reorganisation leading first to formation of TCR micro-clusters, and later to cell-scale restructuring of both the membrane and the cytoskeleton. Patterning an artificial substrate with ligand-clusters that in turn induce TCR-clustering is an important tool to understand the link between the organisation of TCR and its ligand, the organisation of the actin cytoskeleton and the impact of both on overall cell behavior including adhesion and signaling. We developed a new nanotechnology based substrate (ligand-dot size down to 250 nm) and also used an alternative strategy based on colloidal self-assembly (700 or 400 nm) to show that TCR is clearly clustered on 700 nm dots but not on smaller 400 nm dots. Actin is homogeneously distributed in the form of a network in most cells but in a few of them, it appears as dots that co-localize with the ligand clusters. Finer observation using stochastic optical reconstruction microscopy indicates that the dots may in fact be sites where actin bundles cross each other forming nodes that are not visible at lower resolution. This work confirms a close link between T cell receptor organisation and actin structure
Books on the topic "TIRF"
INSA NEW-ICTE '96 (1996 New Delhi, India). Information technology in education and research: Proceedings of INSA NEW-ICTE '96 (INSA, New Delhi) and UNESCO-CICT Workshop (TIRF, Mumbai). Edited by Govil Rekha, Singhi Navin M, Indian National Science Academy, and UNESCO-CICT Workshop (1997 : Bombay, India). New Delhi: Indian National Science Academy, 1998.
Find full textGiapponi, Thomas. Tire Forensic Investigation Analyzing Tire Failure. Warrendale, PA: SAE International, 2008. http://dx.doi.org/10.4271/r-387.
Full textTire forensic investigation: Analyzing tire failure. Warrendale, Pa: SAE International, 2009.
Find full textGurusami, M. Rakkappa Pothilinga. Tiru. Vi. Ka.: Tiru. Vi. Kaliyāṇacuntara Mutaliyār. New Delhi: Cākittiya Akkātemi, 1998.
Find full textTiff gear: The autobiography of Tiff Needell. Newbury Park, CA: Haynes Publishing, 2012.
Find full textTiff gear: The autobiography of Tiff Needell. Sparkford, Yeovil, Somerset: Haynes, 2011.
Find full textBook chapters on the topic "TIRF"
Taylor, Donald. "TIRF REMS Access Program." In Managing Cancer Breakthrough Pain, 89–92. Tarporley: Springer Healthcare Ltd., 2013. http://dx.doi.org/10.1007/978-1-908517-83-8_6.
Full textSapsford, Kim E., and Frances S. Ligler. "TIRF Array Biosensor for Environmental Monitoring." In Optical Sensors, 359–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09111-1_14.
Full textGrawenhoff, Julia, Sebastian Baumann, and Sebastian P. Maurer. "In Vitro Reconstitution of Kinesin-Based, Axonal mRNA Transport." In Methods in Molecular Biology, 547–68. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1990-2_29.
Full textBreitsprecher, Dennis, Antje K. Kiesewetter, Joern Linkner, and Jan Faix. "Analysis of Actin Assembly by In Vitro TIRF Microscopy." In Methods in Molecular Biology, 401–15. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-198-1_27.
Full textStoppin-Mellet, Virginie, Nassiba Bagdadi, Yasmina Saoudi, and Isabelle Arnal. "Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy." In Methods in Molecular Biology, 77–91. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-0716-0219-5_6.
Full textHo, Chih-Hu, Vladimir Hlady, Chen-Ze Hu, and E. Kurt Dolence. "Assaying Primary Amines on Modified Polymer Surfaces Using TIRF Spectroscopy." In Surface Modification of Polymeric Biomaterials, 97–105. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1953-3_12.
Full textNagamatsu, Shinya, and Mica Ohara-Imaizumi. "Imaging Exocytosis of Single Insulin Secretory Granules With TIRF Microscopy." In Methods in Molecular Biology, 259–68. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-178-9_20.
Full textJang, Erika, Siavash Ghaffari, and Warren L. Lee. "Quantifying Endothelial Transcytosis with Total Internal Reflection Fluorescence Microscopy (TIRF)." In Methods in Molecular Biology, 115–24. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2051-9_7.
Full textSchmidt-Marcec, Sharol, Austin Ross, and Andrei Smertenko. "Quantification of Microtubule-Bundling Activity of MAPs Using TIRF Microscopy." In The Plant Cytoskeleton, 1–12. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2867-6_1.
Full textXu, Xuehua, Peter Johnson, and Susette C. Mueller. "Breast Cancer Cell Movement: Imaging Invadopodia by TIRF and IRM Microscopy." In Methods in Molecular Biology, 209–25. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-198-1_14.
Full textConference papers on the topic "TIRF"
Huang, Xiaoshuai, Yongxiao li, Weijian Zong, Xiaolu Zheng, Yi Wu, Shiqun Zhao, and liangyi Chen. "MEMS-Based Shadowless-illuminated variable-angle TIRF (SIVA-TIRF)." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.ath1j.3.
Full textRuckstuhl, Thomas, Michael Rankl, and Stefan Seeger. "Confocal TIRF microscopy of single molecules." In Biomedical Optics 2003, edited by Dan V. Nicolau, Joerg Enderlein, Robert C. Leif, and Daniel L. Farkas. SPIE, 2003. http://dx.doi.org/10.1117/12.485713.
Full textSaxe, Steven G., and David L. Wortman. "Reflective Performance Of Total Internal Reflection Film (TIRF)." In 31st Annual Technical Symposium, edited by Carl M. Lampert. SPIE, 1987. http://dx.doi.org/10.1117/12.941904.
Full textSoubies, Emmanuel, Sebastien Schaub, Agata Radwanska, Ellen Van Obberghen-Schilling, Laure Blanc-Feraud, and Gilles Aubert. "A framework for multi-angle TIRF microscope calibration." In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493355.
Full textMouttou, Anita, Yousra Toumi, Fabien Lemarchand, Cihan Koc, Antonin Moreau, Delphine Muriaux, Guillaume Demésy, Julien Lumeau, Cyril Favard, and Aude L. Lereu. "Improved TIRF imaging through resonant dielectric multilayer optimization." In Active Photonic Platforms (APP) 2023, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2676378.
Full textBlandin, P., S. Lévêque-Fort, S. Lécart, P. Zeller, Z. Lenkei, F. Druon, and P. Georges. "Development of a TIRF-FLIM microscope for biomedical applications." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ecbo.2007.6630_10.
Full textKner, P., B. Chhun, E. Griffis, L. Winoto, L. Shao, and M. G. L. Gustafsson. "Live TIRF microscopy at 100nm resolution through structured illumination." In SPIE BiOS: Biomedical Optics, edited by Jose-Angel Conchello, Carol J. Cogswell, and Tony Wilson. SPIE, 2009. http://dx.doi.org/10.1117/12.812351.
Full textBlandin, P., S. Lévêque-Fort, S. Lécart, P. Zeller, Z. Lenkei, F. Druon, and P. Georges. "Development of a TIRF-FLIM microscope for biomedical applications." In European Conference on Biomedical Optics, edited by Tony Wilson and Ammasi Periasamy. SPIE, 2007. http://dx.doi.org/10.1117/12.728429.
Full textKim, J. W., and K. Kim. "Response-Based Evaluation of Design Sloshing Loads for Membrane-Type LNG Carriers." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29746.
Full textWu, Xiangping, Xiaofang Liu, Wenglong Xu, Dandan Yan, and Yongli Chen. "Particle filtering for tracking of GLUT4 vesicles in TIRF microscpy." In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Jianguo Liu, Kunio Doi, Aaron Fenster, and S. C. Chan. SPIE, 2009. http://dx.doi.org/10.1117/12.831433.
Full textReports on the topic "TIRF"
Lula, J. W., and G. W. Bohnert. Scrap tire recycling. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/491404.
Full textParsons, G., J. Rafferty, and S. Zilles. Tag Image File Format (TIFF) - image/tiff MIME Sub-type Registration. RFC Editor, March 1998. http://dx.doi.org/10.17487/rfc2302.
Full textParsons, G., and J. Rafferty. Tag Image File Format (TIFF) - image/tiff MIME Sub-type Registration. RFC Editor, September 2002. http://dx.doi.org/10.17487/rfc3302.
Full textNAVAL POSTGRADUATE SCHOOL MONTEREY CA. Land Vehicle Tire Qualification. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada489076.
Full textVinkovich, Richard. Land Vehicle Tire Qualification. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada496846.
Full textAl-Qadi, Imad, Jaime Hernandez, Angeli Jayme, Mojtaba Ziyadi, Erman Gungor, Seunggu Kang, John Harvey, et al. The Impact of Wide-Base Tires on Pavement—A National Study. Illinois Center for Transportation, October 2021. http://dx.doi.org/10.36501/0197-9191/21-035.
Full textBauman, B. D. High Value Scrap Tire Recycle. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/895571.
Full textZamecnik, Robert. Tire Pyrolysis Feasibility Study Approach. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1482998.
Full textTielking, John T. Aircraft Tire/Pavement Pressure Distribution. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada279100.
Full textMcIntyre, L., G. Parsons, and J. Rafferty. Tag Image File Format Fax eXtended (TIFF-FX) - image/tiff-fx MIME Sub-type Registration. RFC Editor, September 2002. http://dx.doi.org/10.17487/rfc3250.
Full text