Academic literature on the topic 'Tissue engineering. Articular cartilage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tissue engineering. Articular cartilage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tissue engineering. Articular cartilage"
Athanasiou, Kyriacos A., Eric M. Darling, and Jerry C. Hu. "Articular Cartilage Tissue Engineering." Synthesis Lectures on Tissue Engineering 1, no. 1 (January 2009): 1–182. http://dx.doi.org/10.2200/s00212ed1v01y200910tis003.
Full textLu, Lichun, Richard G. Valenzuela, and Michael J. Yaszemski. "Articular Cartilage Tissue Engineering." e-biomed: The Journal of Regenerative Medicine 1, no. 7 (August 31, 2000): 99–114. http://dx.doi.org/10.1089/152489000420113.
Full textGetgood, A., R. Brooks, L. Fortier, and N. Rushton. "Articular cartilage tissue engineering." Journal of Bone and Joint Surgery. British volume 91-B, no. 5 (May 2009): 565–76. http://dx.doi.org/10.1302/0301-620x.91b5.21832.
Full textSah, Robert L., David Amiel, and Richard D. Coutts. "Tissue engineering of articular cartilage." Current Opinion in Orthopaedics 6, no. 6 (December 1995): 52–60. http://dx.doi.org/10.1097/00001433-199512000-00011.
Full textGarcía-Couce, Jomarien, Amisel Almirall, Gastón Fuentes, Eric Kaijzel, Alan Chan, and Luis J. Cruz. "Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering." Current Pharmaceutical Design 25, no. 17 (September 4, 2019): 1915–32. http://dx.doi.org/10.2174/1381612825666190708184745.
Full textCHANG, CHIH-HUNG, FENG-HUEI LIN, TZONG-FU KUO, and HWA-CHANG LIU. "CARTILAGE TISSUE ENGINEERING." Biomedical Engineering: Applications, Basis and Communications 17, no. 02 (April 25, 2005): 61–71. http://dx.doi.org/10.4015/s101623720500010x.
Full textLee, Cynthia R., and Myron Spector. "Status of articular cartilage tissue engineering." Current Opinion in Orthopaedics 9, no. 6 (December 1998): 88–94. http://dx.doi.org/10.1097/00001433-199812000-00015.
Full textJabbari, Esmaiel. "Developmentally Inspired Approach to Cartilage Tissue Engineering." Advances in Science and Technology 102 (October 2016): 31–36. http://dx.doi.org/10.4028/www.scientific.net/ast.102.31.
Full textCamarero-Espinosa, Sandra, Barbara Rothen-Rutishauser, E. Johan Foster, and Christoph Weder. "Articular cartilage: from formation to tissue engineering." Biomaterials Science 4, no. 5 (2016): 734–67. http://dx.doi.org/10.1039/c6bm00068a.
Full textMitskevich, V. A. "Tissue engineering possibilities in articular cartilage regeneration." Rheumatology Science and Practice, no. 3 (June 15, 2003): 49. http://dx.doi.org/10.14412/1995-4484-2003-1361.
Full textDissertations / Theses on the topic "Tissue engineering. Articular cartilage"
Getgood, Alan Martin John. "Articular cartilage tissue engineering." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608764.
Full textPérez, Olmedilla Marcos. "Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/58987.
Full text[ES] El cartílago articular es un tejido compuesto por condrocitos rodeados por una densa matriz extracelular (MEC). La MEC se compone principalmente de colágeno tipo II y de proteoglicanos. La función principal del cartílago articular es proporcionar una superficie lubricada para las articulaciones. Las lesiones en el cartílago articular son comunes y pueden derivar a osteoartritis. El cartílago articular no tiene vasos sanguíneos, nervios o vasos linfáticos y, por tanto, tiene una capacidad limitada de auto-reparación. La ingeniería tisular (IT) es un área prometedora en la regeneración de cartílago. En la IT se utilizan "andamiajes" (scaffolds) tridimensionales (3D) como soportes para el cultivo celular y tisular. Los scaffolds proporcionan una estructura que facilita la adhesión y la expansión de los condrocitos, manteniendo un fenotipo condrocítico limitando su desdiferenciación; que es el mayor problema en los sistemas bidimensionales (2D). La adhesión celular a los scaffolds depende de las características físicas y químicas de su superficie (morfología, rigidez, contenido de agua en equilibrio, tensión superficial, hidrofilicidad, presencia de cargas eléctricas). El objetivo general de esta tesis fue estudiar la influencia de diferentes tipos de biomateriales en la respuesta de los condrocitos en cultivo in vitro. Los scaffolds deben tener una estructura porosa interconectada para permitir el desarrollo celular a través de toda la estructura 3D, potenciando que los condrocitos mantengan su fenotipo, así como permitiendo entrada de nutrientes y eliminación de desechos metabólicos. Se estudió el efecto de la hidrofilicidad y de la arquitectura de poro. Se cuantificó la viabilidad celular, la proliferación y la expresión de agrecano. Cuando los condrocitos humanos se cultivaron en sustratos poliméricos donde los grupos hidrófilos se distribuyeron de manera homogénea, la adhesión, la proliferación y la viabilidad disminuyó con el contenido de grupos hidrófilo. Sin embargo, los copolímeros en los que los dominios hidrófilos e hidrófobos se alternaban mostraron mejores resultados que los homopolímeros correspondientes. Se sintetizaron series de scaffolds bioestables y series biodegradables con diferente hidrofilicidad y porosidad utilizando plantillas de microesferas sinterizadas. Se obtuvieron arquitecturas de poros regulares y reproducibles. Las células colonizaron el scaffold en su totalidad cuando los poros y la interconexión entre ellos era lo suficientemente grande. Se evaluó la rediferenciación condrogénica de condrocitos autólogos humanos, previamente expandidos en monocapa, sembrados en un scaffold biodegradable de policaprolactona (PCL). Se demostró que los condrocitos cultivados en scaffolds de PCL con medio sin suero bovino fetal (FBS), se rediferenciaban de manera eficiente; expresando un fenotipo condrocítico, caracterizado por su capacidad de sintetizar proteínas de la MEC específicas de cartílago hialino. Se estudió la influencia de la hidrofilicidad y la conectividad de los poros de los scaffolds de caprolactona sobre la adhesión de los condrocitos a las paredes de los poros, su capacidad proliferativa y la composición de MEC sintetizada. Se observó que un mínimo de 70% de porosidad era necesario para permitir la siembra de los condrocitos en el scaffold y su posterior viabilidad. El número de células aumentaba a medida que aumentaba la porosidad del scaffold. Los resultados sugieren que parte de las células que se adherían a las paredes internas de los poros mantenían el fenotipo desdiferenciado de condrocitos cultivados en monocapa, mientras que otros se rediferenciaban. En conclusión, los resultados de esta tesis aportan un avance en el campo de la regeneración de cartílago articular utilizando técnicas de IT. Los estudios realizados proporcionan directrices sobre la composición, la porosidad y la hidrofilicidad más adecuada para l
[CAT] El cartílag articular és un teixit format per condròcits envoltats per una densa matriu extracel·lular (MEC). La MEC es compon principalment de col·lagen tipus II i de proteoglicans. La funció principal del cartílag articular és proporcionar una superfície lubricada a les articulacions. Les lesions en el cartílag articular són comuns i poden derivar en osteoartritis. El cartílag articular no té vasos sanguinis, nervis ni vasos limfàtics i, per tant, té una capacitat limitada d'auto-reparació. L'enginyeria tissular (IT) és una àrea prometedora en la regeneració del cartílag. A la IT s'utilitzen "bastiments" (scaffolds) tridimensionals (3D) com a suports per al cultiu cel·lular i tissular. Els scaffolds proporcionen una estructura que facilita l'adhesió i l'expansió dels condròcits, mantenint un fenotip condrocític limitant la seua desdiferenciació; que és el major problema en els sistemes bidimensionals (2D). L'adhesió cel·lular als scaffolds depèn de les característiques físiques i químiques de la superfície (morfologia, rigidesa, contingut d'aigua en equilibri, tensió superficial, hidrofilicitat i presència de càrregues elèctriques). L'objectiu general d'aquesta tesi va ser estudiar la influència de diferents tipus de biomaterials en la resposta dels condròcits en cultiu in vitro. Els scaffolds han de tindre una estructura porosa interconnectada per a permetre el desenvolupament cel·lular a través de tota l'estructura 3D, potenciant que els condròcits mantinguen el seu fenotip així com permetent l'entrada de nutrients i l'eliminació de productes metabòlics. S'ha estudiat l'efecte de la hidrofilicitat i de l'arquitectura de porus dels scaffolds. Es va quantificar la viabilitat cel·lular, la proliferació i l'expressió de agrecà. Quan els condròcits humans es van cultivar en substrats polimèrics en els quals els grups hidròfils es van distribuir de manera homogènia, l'adhesió, la proliferació i la viabilitat van disminuir amb el contingut de grups hidròfils. No obstant això, els copolímers en els quals els dominis hidròfils i hidròfobs s'alternaven van mostrar millors resultats que els homopolímers corresponents. Es van sintetitzar sèries de scaffolds bioestables i sèries biodegradables amb diferent hidrofilicitat i porositat utilitzant plantilles de microesferes sinteritzades. Es van obtindre arquitectures de porus regulars i reproduïbles. Les cèl·lules van colonitzar el scaffold en la seua totalitat quan els porus i la interconnexió entre ells era suficientment gran. Es van avaluar la rediferenciació condrogènica de condròcits autòlegs humans, prèviament expandits en monocapa, en un scaffold biodegradable de policaprolactona (PCL). Es va demostrar que els condròcits cultivats en scaffolds de PCL sense sèrum boví fetal (FBS) es rediferenciaven de manera eficient, expressant un fenotip condrocític caracteritzat per la seua capacitat de sintetitzar proteïnes de la MEC específiques de cartílag hialí. També es va estudiar la influència de la hidrofilicitat i la connectivitat dels porus dels scaffolds de caprolactona sobre l'adhesió dels condròcits a les parets dels porus, la seua capacitat proliferativa i la composició de MEC sintetitzada. Es va observar que un mínim del 70% de porositat sembla ser necessari per permetre la sembra dels condròcits i la seua posterior viabilitat en el scaffold. El nombre de cèl·lules augmentava a mesura que augmentava la porositat del scaffold. Els resultats suggereixen que part de les cèl·lules que s'adherien a les parets internes dels porus mantenien el fenotip desdiferenciat de condròcits cultivats en monocapa, mentre que altres es rediferenciaven. En conclusió, els resultats d'aquesta tesi proporcionen informació valuosa en el camp de la regeneració de cartílag utilitzant tècniques d'IT. Els estudis realitzats proporcionen directrius sobre la composició, la porositat i la hidrofilicitat m
Pérez Olmedilla, M. (2015). Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58987
TESIS
Senior, Richard. "Optimising culture conditions for tissue engineering large articular cartilage constructs." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7716/.
Full textBliss, Cody Larry. "Sensate Scaffolds for Articular Cartilage Repair." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/194815.
Full textVickers, Scott M. (Scott Mitchell) 1978. "Cell-seeded type II collagen scaffolds for articular cartilage tissue engineering." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38926.
Full textIncludes bibliographical references (p. 149-164).
Defects in articular cartilage exhibit little spontaneous healing response, in part due to the limited number of chondrocytes available to infiltrate the defect and the absence of a provisional fibrin scaffold to accommodate cell migration into the lesion. One variable related to tissue engineering strategies employing cell-seeded scaffolds to treat such defects is the amount of cartilage formed in the construct prior to implantation. The objectives of this thesis were to evaluate effects of scaffold cross-link density and bioreactor culture environment on chondrogenesis in cell-seeded type II collagen scaffolds in vitro, and to begin to test effects of implant compositional maturity (viz. glycosaminoglycan, GAG, content) on chondral defect repair. Scaffold cross-link density, a determinant of cell-mediated scaffold contraction and degradation, affected chondrogenesis; scaffolds of low cross-link density that experienced contraction exhibited greater cartilaginous tissue formation compared to highly cross-linked scaffolds that resisted contraction. In addition to tissue-level effects on histogenesis, cross-link density was found to direct phenotypic differentiation at the cellular level. When employing marrow-derived stem cells as an alternative to chondrocytes, scaffolds with lower cross-link densities (and thus less resistance to contraction and degradation) favored chondrocytic differentiation.
(cont.) In comparison to these findings, bioreactor culture of chondrocyte-seeded scaffolds demonstrated little benefit over static culture with respect to histogenesis within the first 2 weeks of culture. To begin to investigate effects of implant maturity on in vivo repair outcome, chondrocyte-seeded type II collagen scaffolds achieving 30% of the GAG content in native cartilage were implanted in chondral defects in a caprine model. Repair tissue evaluated at 15 weeks consisted primarily of fibrocartilage and small amounts of hyaline tissue. Implantation of the construct reduced fibrous tissue formation compared to controls, but did not significantly affect other outcome variables. Future animal investigations will evaluate effects of implanting constructs with GAG contents 50% and 75% of that in normal cartilage. An additional study evaluated a construct comprised of a non-cell-seeded type II collagen scaffold and a bone graft substitute for treating osteochondral defects in a goat model. These implants qualitatively improved bone formation, but did not significantly improve repair of cartilage compared to controls.
by Scott M. Vickers.
Ph.D.
Mahajan, Harshal Prabhakar. "Evaluation of chitosan gelatin complex scaffolds for articular cartilage tissue engineering." Master's thesis, Mississippi State : Mississippi State University, 2005. http://sun.library.msstate.edu/ETD-db/ETD-browse/browse.
Full textAkmal, Mohammed. "The use of dynamic culture devices in articular cartilage tissue engineering." Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1444064/.
Full textBoyer, Sam. "Characterisation of articular cartilage progenitor cells : potential use in tissue engineering." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56057/.
Full textSteele, Joseph Allan McKinnon. "Development of scaffolds incorporating zonal complexity for articular cartilage tissue engineering." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/52781.
Full textNam, Jin. "Electrospun polycaprolactone scaffolds under strain and their application in cartilage tissue engineering." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1157828634.
Full textBooks on the topic "Tissue engineering. Articular cartilage"
Athanasiou, K. A. Articular cartilage tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2010.
Find full textDoran, Pauline M., ed. Cartilage Tissue Engineering. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2938-2.
Full textBock, Gregory, and Jamie Goode, eds. Tissue Engineering of Cartilage and Bone. Chichester, UK: John Wiley & Sons, Ltd, 2003. http://dx.doi.org/10.1002/0470867973.
Full textSaris, Daniël. Joint homeostasis in tissue engineering for cartilage repair. Utrecht: Universiteit Utrecht, Faculteit Geneeskunde, 2002.
Find full textHu, Yu-Chen. Gene Therapy for Cartilage and Bone Tissue Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53923-7.
Full textBueno, Ericka M. Biologic foundations for skeletal tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Find full textKhan, Wasim S. Stem cells and cartilage tissue engineering approaches to orthopaedic surgery. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textRegenerative medicine and biomaterials for the repair of connective tissues. Oxford: Woodhead Pub., 2010.
Find full text1964-, Hendrich Christian, Nöth Ulrich 1967-, and Eulert Jochen, eds. Cartilage surgery and future perspectives. Berlin: Springer, 2003.
Find full textFarr, Jack, James P. Stannard, and James L. Cook. Articular Cartilage Injury of the Knee: Basic Science to Surgical Repair. Thieme Medical Publishers, Incorporated, 2013.
Find full textBook chapters on the topic "Tissue engineering. Articular cartilage"
Fu, Jiayin, Pengfei He, and Dong-An Wang. "Articular Cartilage Tissue Engineering." In Tissue Engineering for Artificial Organs, 243–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527689934.ch8.
Full textMasuda, Koichi, and Robert L. Sah. "Tissue Engineering of Articular Cartilage." In Culture of Cells for Tissue Engineering, 157–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471741817.ch7.
Full textMow, Van C., and Farshid Guilak. "Deformation of Chondrocytes within the Extracellular Matrix of Articular Cartilage." In Tissue Engineering, 128–45. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4615-8186-4_13.
Full textO'Byrne, Elizabeth, Theodore Pellas, and Didier Laurent. "Qualitative and Quantitative in vivo Assessment of Articular Cartilage Using Magnetic Resonance Imaging." In Tissue Engineering of Cartilage and Bone, 190–202. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/0470867973.ch14.
Full textAteshian, Gerard A. "Mixture Theory for Modeling Biological Tissues: Illustrations from Articular Cartilage." In Studies in Mechanobiology, Tissue Engineering and Biomaterials, 1–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41475-1_1.
Full textGuo, X. Edward, Helen H. Lu, Morakot Likhitpanichkul, and Van C. Mow. "The Role of Biomechanics in Functional Tissue Engineering for Articular Cartilage." In Frontiers in Biomedical Engineering, 37–60. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8967-3_3.
Full textRoseti, Livia, and Brunella Grigolo. "Host Environment: Scaffolds and Signaling (Tissue Engineering) Articular Cartilage Regeneration: Cells, Scaffolds, and Growth Factors." In Bio-orthopaedics, 87–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54181-4_7.
Full textSmith, David W., Bruce S. Gardiner, Lihai Zhang, and Alan J. Grodzinsky. "Cartilage Tissue Homeostasis." In Articular Cartilage Dynamics, 65–243. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_2.
Full textSmith, David W., Bruce S. Gardiner, Lihai Zhang, and Alan J. Grodzinsky. "Cartilage Tissue Dynamics." In Articular Cartilage Dynamics, 245–309. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1474-2_3.
Full textKinner, B., R. M. Capito, and M. Spector. "Regeneration of Articular Cartilage." In Advances in Biochemical Engineering/Biotechnology, 91–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b100001.
Full textConference papers on the topic "Tissue engineering. Articular cartilage"
Bian, Liming, Kenneth W. Ng, Eric G. Lima, Prakash S. Jayabalan, Aaron M. Stoker, James L. Cook, Gerard A. Ateshian, and Clark T. Hung. "Functional Tissue Engineering of Articular Cartilage With Adult Chondrocytes." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206731.
Full textTakai, Erica, X. Edward Guo, Helen H. Lu, Michelle A. LeRoux, Priya Raina, Gerard A. Ateshian, and Clark T. Hung. "Strategy for Tissue Engineering of Osteochondral Constructs." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33595.
Full textMeyer, Eric G., Conor T. Buckley, and Daniel J. Kelly. "The Effect of Cyclic Hydrostatic Pressure on the Functional Development of Cartilaginous Tissues Engineered Using Bone Marrow Derived Mesenchymal Stem Cells." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53634.
Full textPark, Seonghun, Ramaswamy Krishnan, Steven B. Nicoll, and Gerard A. Ateshian. "Cartilage Interstitial Fluid Load Support in Unconfined Compression." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32620.
Full textChan, D. D., K. D. Butz, E. A. Nauman, D. A. Dickerson, and C. P. Neu. "Altered Internal Strain Distributions in Adult Ovine Cartilage Before and After Full-Thickness Cartilage Defect." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80412.
Full textAlegre-Aguarón, Elena, Sonal R. Sampat, Perry J. Hampilos, J. Chloë Bulinski, James L. Cook, Lewis M. Brown, and Clark T. Hung. "Biomarker Identification Under Growth Factor Priming for Cartilage Tissue Engineering." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80374.
Full textCarmona-Moran, Carlos A., and Timothy M. Wick. "A Novel Multi-Stimuli Bioreactor for Tissue Engineering Cartilage." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14586.
Full textKlisch, Stephen M., Suzanne E. Holtrichter, Robert L. Sah, and Andrew Davol. "A Bimodular Second-Order Orthotropic Stress Constitutive Equation for Cartilage." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59475.
Full textChen, Howard, and Ibrahim T. Ozbolat. "Development of a Multi-Arm Bioprinter for Hybrid Tissue Engineering." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1025.
Full textEmura, Ryo, Atsushi Ogawa, Kei Saito, Wataru Ando, Norimasa Nakamura, and Hiromichi Fujie. "Effect of Compressive Load on the Mechanical Property of a Stem Cell Based Self-Assembled Tissue Derived From Synovium." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205893.
Full textReports on the topic "Tissue engineering. Articular cartilage"
Huard, Johnny. Articular Cartilage Repair Through Muscle Cell-Based Tissue Engineering. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada552048.
Full text