Journal articles on the topic 'Tissue engineering. Colloids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tissue engineering. Colloids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zboromirska-Wnukiewicz, Beata, Witold Wnukiewicz, Krzysztof Kogut, et al. "Implant materials modified by colloids." Materials Science-Poland 34, no. 1 (2016): 33–37. http://dx.doi.org/10.1515/msp-2016-0006.
Full textElveren, Beste, Ümit Hakan Yildiz, and Ahu Arslan Yildiz. "Utilization of Near IR Absorbing Gold Nanocolloids by Green Synthesis." Materials Science Forum 915 (March 2018): 213–19. http://dx.doi.org/10.4028/www.scientific.net/msf.915.213.
Full textBealer, Elizabeth J., Shola Onissema-Karimu, Ashley Rivera-Galletti, et al. "Protein–Polysaccharide Composite Materials: Fabrication and Applications." Polymers 12, no. 2 (2020): 464. http://dx.doi.org/10.3390/polym12020464.
Full textAbrougui, Mariem Mekni, Ezzeddine Srasra, Modesto T. Lopez-Lopez, and Juan D. G. Duran. "Rheology of magnetic colloids containing clusters of particle platelets and polymer nanofibres." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2171 (2020): 20190255. http://dx.doi.org/10.1098/rsta.2019.0255.
Full textBhattacharjee, Tapomoy, Steven M. Zehnder, Kyle G. Rowe, et al. "Writing in the granular gel medium." Science Advances 1, no. 8 (2015): e1500655. http://dx.doi.org/10.1126/sciadv.1500655.
Full textSudheesh Kumar, P. T., C. Ramya, R. Jayakumar, Shanti kumar V. Nair, and Vinoth-Kumar Lakshmanan. "Corrigendum to “Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds” [Colloids Surf. B: Biointerfaces 106 (2013) 109–116]." Colloids and Surfaces B: Biointerfaces 179 (July 2019): 517–18. http://dx.doi.org/10.1016/j.colsurfb.2019.04.025.
Full textGuzmán, Eduardo. "Fluid Interfaces." Coatings 10, no. 10 (2020): 1000. http://dx.doi.org/10.3390/coatings10101000.
Full textGerasimenko, Alexander Yu, та Dmitry I. Ryabkin. "Структурные и спектральные особенности композитов на основе белковых сред с одностенными углеродными нанотрубоками". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, № 2 (2019): 191–203. http://dx.doi.org/10.17308/kcmf.2019.21/757.
Full textKeereman, Vincent, Yves Fierens, Christian Vanhove, Tony Lahoutte, and Stefaan Vandenberghe. "Magnetic Resonace–Based Attenuation Correction for Micro–Single-Photon Emission Computed Tomography." Molecular Imaging 11, no. 2 (2012): 7290.2011.00036. http://dx.doi.org/10.2310/7290.2011.00036.
Full textWang, Q., L. Wang, M. S. Detamore, and C. Berkland. "Biodegradable Colloidal Gels as Moldable Tissue Engineering Scaffolds." Advanced Materials 20, no. 2 (2008): 236–39. http://dx.doi.org/10.1002/adma.200702099.
Full textDi Foggia, Michele, Vitaliano Tugnoli, Stefano Ottani, et al. "SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices." Biomolecules 11, no. 7 (2021): 959. http://dx.doi.org/10.3390/biom11070959.
Full textFilipczak, Nina, Satya Siva Kishan Yalamarty, Xiang Li, Muhammad Muzamil Khan, Farzana Parveen, and Vladimir Torchilin. "Lipid-Based Drug Delivery Systems in Regenerative Medicine." Materials 14, no. 18 (2021): 5371. http://dx.doi.org/10.3390/ma14185371.
Full textLee, Jungwoo, Meghan J. Cuddihy, George M. Cater, and Nicholas A. Kotov. "Engineering liver tissue spheroids with inverted colloidal crystal scaffolds." Biomaterials 30, no. 27 (2009): 4687–94. http://dx.doi.org/10.1016/j.biomaterials.2009.05.024.
Full textKwak, Jun‐Goo, and Jungwoo Lee. "Lymphoid Tissue Engineering: Thermoresponsive Inverted Colloidal Crystal Hydrogel Scaffolds for Lymphoid Tissue Engineering (Adv. Healthcare Mater. 6/2020)." Advanced Healthcare Materials 9, no. 6 (2020): 2070016. http://dx.doi.org/10.1002/adhm.202070016.
Full textKwak, Jun‐Goo, and Jungwoo Lee. "Thermoresponsive Inverted Colloidal Crystal Hydrogel Scaffolds for Lymphoid Tissue Engineering." Advanced Healthcare Materials 9, no. 6 (2020): 1901556. http://dx.doi.org/10.1002/adhm.201901556.
Full textJoão, Carlos Filipe C., Joana Marta Vasconcelos, Jorge Carvalho Silva, and João Paulo Borges. "An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering." Tissue Engineering Part B: Reviews 20, no. 5 (2014): 437–54. http://dx.doi.org/10.1089/ten.teb.2013.0402.
Full textSikkema, Rebecca, Blanca Keohan, and Igor Zhitomirsky. "Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering." Polymers 13, no. 18 (2021): 3070. http://dx.doi.org/10.3390/polym13183070.
Full textWang, Qun, Zhen Gu, Syed Jamal, Michael S. Detamore, and Cory Berkland. "Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering." Tissue Engineering Part A 19, no. 23-24 (2013): 2586–93. http://dx.doi.org/10.1089/ten.tea.2013.0075.
Full textEscareno, Noe, Antonio Topete, Pablo Taboada, and Adrian Daneri-Navarro. "Rational Surface Engineering of Colloidal Drug Delivery Systems for Biological Applications." Current Topics in Medicinal Chemistry 18, no. 14 (2018): 1224–41. http://dx.doi.org/10.2174/1568026618666180810145234.
Full textWood, M. A. "Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications." Journal of The Royal Society Interface 4, no. 12 (2006): 1–17. http://dx.doi.org/10.1098/rsif.2006.0149.
Full textPastorino, Laura, Elena Dellacasa, Silvia Scaglione, et al. "Oriented collagen nanocoatings for tissue engineering." Colloids and Surfaces B: Biointerfaces 114 (February 2014): 372–78. http://dx.doi.org/10.1016/j.colsurfb.2013.10.026.
Full textSmith, L. A., and P. X. Ma. "Nano-fibrous scaffolds for tissue engineering." Colloids and Surfaces B: Biointerfaces 39, no. 3 (2004): 125–31. http://dx.doi.org/10.1016/j.colsurfb.2003.12.004.
Full textCaporali, Stefano, Francesco Muniz-Miranda, Alfonso Pedone, and Maurizio Muniz-Miranda. "SERS, XPS and DFT Study of Xanthine Adsorbed on Citrate-Stabilized Gold Nanoparticles." Sensors 19, no. 12 (2019): 2700. http://dx.doi.org/10.3390/s19122700.
Full textKuo, Yung-Chih, and Chun-Wei Chen. "Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering." Colloids and Surfaces B: Biointerfaces 102 (February 2013): 789–94. http://dx.doi.org/10.1016/j.colsurfb.2012.09.013.
Full textDorishetty, Pramod, Naba K. Dutta, and Namita Roy Choudhury. "Bioprintable tough hydrogels for tissue engineering applications." Advances in Colloid and Interface Science 281 (July 2020): 102163. http://dx.doi.org/10.1016/j.cis.2020.102163.
Full textTang, James D., Cameron Mura, and Kyle J. Lampe. "Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering." Journal of the American Chemical Society 141, no. 12 (2019): 4886–99. http://dx.doi.org/10.1021/jacs.8b13363.
Full textProkhorov, Evgen, Gabriel Luna Bárcenas, Beatriz Liliana España Sánchez, et al. "Chitosan-BaTiO3 nanostructured piezopolymer for tissue engineering." Colloids and Surfaces B: Biointerfaces 196 (December 2020): 111296. http://dx.doi.org/10.1016/j.colsurfb.2020.111296.
Full textWalter, Teresa, Alina Gruenewald, Rainer Detsch, Aldo R. Boccaccini, and Nicolas Vogel. "Cell Interactions with Size-Controlled Colloidal Monolayers: Toward Improved Coatings in Bone Tissue Engineering." Langmuir 36, no. 7 (2020): 1793–803. http://dx.doi.org/10.1021/acs.langmuir.9b03308.
Full textHuang, Huei-Yu, Fang-Yu Fan, Yung-Kang Shen та ін. "3D poly-ε-caprolactone/graphene porous scaffolds for bone tissue engineering". Colloids and Surfaces A: Physicochemical and Engineering Aspects 606 (грудень 2020): 125393. http://dx.doi.org/10.1016/j.colsurfa.2020.125393.
Full textMartínez-Mejía, Gabriela, Nadia Adriana Vázquez-Torres, Andrés Castell-Rodríguez, José Manuel del Río, Mónica Corea, and Rogelio Jiménez-Juárez. "Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions." Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (October 2019): 123658. http://dx.doi.org/10.1016/j.colsurfa.2019.123658.
Full textTatiana, Nistor Manuela, Vasile Cornelia, Rodica Tatia, and Chiriac Aurica. "Hybrid collagen/pNIPAAM hydrogel nanocomposites for tissue engineering application." Colloid and Polymer Science 296, no. 9 (2018): 1555–71. http://dx.doi.org/10.1007/s00396-018-4367-y.
Full textZarrintaj, Payam, Aleksandra M. Urbanska, Saman Seyed Gholizadeh, Vahabodin Goodarzi, Mohammad Reza Saeb, and Masoud Mozafari. "A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications." Journal of Colloid and Interface Science 516 (April 2018): 57–66. http://dx.doi.org/10.1016/j.jcis.2018.01.044.
Full textDonaldson, Elizabeth, Janet Cuy, Prabha Nair, and Buddy Ratner. "Poly(vinyl alcohol)-Amino Acid Hydrogels Fabricated into Tissue Engineering Scaffolds by Colloidal Gas Aphron Technology." Macromolecular Symposia 227, no. 1 (2005): 115–22. http://dx.doi.org/10.1002/masy.200550911.
Full textLapworth, James W., Paul V. Hatton, Rebecca L. Goodchild, and Stephen Rimmer. "Thermally reversible colloidal gels for three-dimensional chondrocyte culture." Journal of The Royal Society Interface 9, no. 67 (2011): 362–75. http://dx.doi.org/10.1098/rsif.2011.0308.
Full textNguyen, Trinh Duy, Phu Thuong Nhan Nguyen, Thien Hien Tran, Md Rafiqul Islam, Kwon Taek Lim, and Long Giang Bach. "A Precised Surface Modification of Hydroxyapatite with Poly(methylmethacrylate) for Tissue Engineering & Regenerative Medicine." Asian Journal of Chemistry 31, no. 3 (2019): 545–50. http://dx.doi.org/10.14233/ajchem.2019.21616.
Full textAli, Mustafa Ghazali, Hamouda M. Mousa, Fanny Blaudez, et al. "Dual nanofiber scaffolds composed of polyurethane- gelatin/nylon 6- gelatin for bone tissue engineering." Colloids and Surfaces A: Physicochemical and Engineering Aspects 597 (July 2020): 124817. http://dx.doi.org/10.1016/j.colsurfa.2020.124817.
Full textYang, Hui, Huichang Gao, and Yingjun Wang. "Hollow hydroxyapatite microsphere: a promising carrier for bone tissue engineering." Journal of Microencapsulation 33, no. 5 (2016): 421–26. http://dx.doi.org/10.1080/02652048.2016.1202347.
Full textHaidar, Ziyad S. "Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine." Polymers 2, no. 3 (2010): 323–52. http://dx.doi.org/10.3390/polym2030323.
Full textJoão, Carlos, Rute Almeida, Jorge Silva, and João Borges. "A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering." Materials Letters 185 (December 2016): 407–10. http://dx.doi.org/10.1016/j.matlet.2016.09.030.
Full textChen, Weiming, Jun Ma, Lei Zhu, et al. "Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering." Colloids and Surfaces B: Biointerfaces 142 (June 2016): 165–72. http://dx.doi.org/10.1016/j.colsurfb.2016.02.050.
Full textAwasthi, Ganesh Prasad, Vignesh Krishnamoorthi Kaliannagounder, Jeesoo Park, et al. "Assembly of porous graphitic carbon nitride nanosheets into electrospun polycaprolactone nanofibers for bone tissue engineering." Colloids and Surfaces A: Physicochemical and Engineering Aspects 622 (August 2021): 126584. http://dx.doi.org/10.1016/j.colsurfa.2021.126584.
Full textBilal and Iqbal. "Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector." Marine Drugs 18, no. 1 (2019): 7. http://dx.doi.org/10.3390/md18010007.
Full textFrajkorová, Františka, Esther Molero, and Begoña Ferrari. "Electrophoretic Deposition of Gelatin/Hydroxyapatite Composite Coatings onto a Stainless Steel Substrate." Key Engineering Materials 654 (July 2015): 195–99. http://dx.doi.org/10.4028/www.scientific.net/kem.654.195.
Full textWaseeq Ur Rehman, Muhammad Asim, Shah Hussain, Shahid Ali Khan, and Sher Bahadar Khan. "Hydrogel: A Promising Material in Pharmaceutics." Current Pharmaceutical Design 26, no. 45 (2020): 5892–908. http://dx.doi.org/10.2174/1381612826666201118095523.
Full textTrang, Châu Thể Liễu, Đặng Thị Thanh Nhàn, Lê Thị Hòa, and Nguyễn Đức Cường. "CHITIN LIQUID CRYSTAL- DERIVED SPONGE- LIKE AEROGEL." Hue University Journal of Science: Natural Science 127, no. 1A (2018): 83. http://dx.doi.org/10.26459/hueuni-jns.v127i1a.4509.
Full textNga, Nguyen Kim, Luu Truong Giang, Tran Quang Huy, Pham Hung Viet, and Claudio Migliaresi. "Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering." Colloids and Surfaces B: Biointerfaces 116 (April 2014): 666–73. http://dx.doi.org/10.1016/j.colsurfb.2013.11.001.
Full textChen, Jingdi, Yujue Zhang, Panpan Pan, Tiantang Fan, Mingmao Chen, and Qiqing Zhang. "In situ strategy for bone repair by facilitated endogenous tissue engineering." Colloids and Surfaces B: Biointerfaces 135 (November 2015): 581–87. http://dx.doi.org/10.1016/j.colsurfb.2015.08.019.
Full textWang, Yi, Wenguo Cui, Joshua Chou, Shizhu Wen, Yulong Sun, and Hongyu Zhang. "Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering." Colloids and Surfaces B: Biointerfaces 172 (December 2018): 90–97. http://dx.doi.org/10.1016/j.colsurfb.2018.08.032.
Full textHou, Ruixia, Xingyuan Wang, Qianqian Wei, et al. "Biological properties of a bionic scaffold for esophageal tissue engineering research." Colloids and Surfaces B: Biointerfaces 179 (July 2019): 208–17. http://dx.doi.org/10.1016/j.colsurfb.2019.03.072.
Full textSowjanya, J. A., J. Singh, T. Mohita, et al. "Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering." Colloids and Surfaces B: Biointerfaces 109 (September 2013): 294–300. http://dx.doi.org/10.1016/j.colsurfb.2013.04.006.
Full text