Academic literature on the topic 'Tissue engineering techniques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tissue engineering techniques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tissue engineering techniques"

1

Amini, M., J. Hisdal, and H. Kalvøy. "Applications of bioimpedance measurement techniques in tissue engineering." Journal of Electrical Bioimpedance 9, no. 1 (December 31, 2018): 142–58. http://dx.doi.org/10.2478/joeb-2018-0019.

Full text
Abstract:
Abstract Rapid development in the field of tissue engineering necessitates implementation of monitoring methods for evaluation of the viability and characteristics of the cell cultures in a real-time, non-invasive and non-destructive manner. Current monitoring techniques are mainly histological and require labeling and involve destructive tests to characterize cell cultures. Bioimpedance measurement technique which benefits from measurement of electrical properties of the biological tissues, offers a non-invasive, label-free and real-time solution for monitoring tissue engineered constructs. This review outlines the fundamentals of bioimpedance, as well as electrical properties of the biological tissues, different types of cell culture constructs and possible electrode configuration set ups for performing bioimpedance measurements on these cell cultures. In addition, various bioimpedance measurement techniques and their applications in the field of tissue engineering are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Sica, Gigliola. "Stem Cells and Tissue Engineering Techniques." Urologia Journal 80, no. 1 (January 2013): 11–19. http://dx.doi.org/10.5301/ru.2013.10762.

Full text
Abstract:
The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.
APA, Harvard, Vancouver, ISO, and other styles
3

Schade, Ronald, Thomas Weiß, Albrecht Berg, Matthias Schnabelrauch, and Klaus Liefeith. "Two-Photon Techniques in Tissue Engineering." International Journal of Artificial Organs 33, no. 4 (January 2010): 219–27. http://dx.doi.org/10.1177/039139881003300406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rider, Patrick, Željka Perić Kačarević, Said Alkildani, Sujith Retnasingh, and Mike Barbeck. "Bioprinting of tissue engineering scaffolds." Journal of Tissue Engineering 9 (January 2018): 204173141880209. http://dx.doi.org/10.1177/2041731418802090.

Full text
Abstract:
Bioprinting is the process of creating three-dimensional structures consisting of biomaterials, cells, and biomolecules. The current additive manufacturing techniques, inkjet-, extrusion-, and laser-based, create hydrogel structures for cellular encapsulation and support. The requirements for each technique, as well as the technical challenges of printing living cells, are discussed and compared. This review encompasses the current research of bioprinting for tissue engineering and its potential for creating tissue-mimicking structures.
APA, Harvard, Vancouver, ISO, and other styles
5

Kang, Moon Sung, Seok Hyun Lee, Won Jung Park, Ji Eun Lee, Bongju Kim, and Dong-Wook Han. "Advanced Techniques for Skeletal Muscle Tissue Engineering and Regeneration." Bioengineering 7, no. 3 (August 26, 2020): 99. http://dx.doi.org/10.3390/bioengineering7030099.

Full text
Abstract:
Tissue engineering has recently emerged as a novel strategy for the regeneration of damaged skeletal muscle tissues due to its ability to regenerate tissue. However, tissue engineering is challenging due to the need for state-of-the-art interdisciplinary studies involving material science, biochemistry, and mechanical engineering. For this reason, electrospinning and three-dimensional (3D) printing methods have been widely studied because they can insert embedded muscle cells into an extracellular-matrix-mimicking microenvironment, which helps the growth of seeded or laden cells and cell signals by modulating cell–cell interaction and cell–matrix interaction. In this mini review, the recent research trends in scaffold fabrication for skeletal muscle tissue regeneration using advanced techniques, such as electrospinning and 3D bioprinting, are summarized. In conclusion, the further development of skeletal muscle tissue engineering techniques may provide innovative results with clinical potential for skeletal muscle regeneration.
APA, Harvard, Vancouver, ISO, and other styles
6

Yilgor, Caglar, Pinar Yilgor Huri, and Gazi Huri. "Tissue Engineering Strategies in Ligament Regeneration." Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/374676.

Full text
Abstract:
Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.
APA, Harvard, Vancouver, ISO, and other styles
7

Warren, Stephen M., Kenton D. Fong, Constance M. Chen, Elizabeth G. Loboa, Catherine M. Cowan, H. Peter Lorenz, and Michael T. Longaker. "Tools and Techniques for Craniofacial Tissue Engineering." Tissue Engineering 9, no. 2 (April 2003): 187–200. http://dx.doi.org/10.1089/107632703764664666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Greenberger, Joel S. "Combinatorial Cell Culture Techniques in Tissue Engineering." e-biomed: The Journal of Regenerative Medicine 1, no. 10 (October 24, 2000): 137–39. http://dx.doi.org/10.1089/152489000750009802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villalona, Gustavo A., Brooks Udelsman, Daniel R. Duncan, Edward McGillicuddy, Rajendra F. Sawh-Martinez, Narutoshi Hibino, Christopher Painter, et al. "Cell-Seeding Techniques in Vascular Tissue Engineering." Tissue Engineering Part B: Reviews 16, no. 3 (June 2010): 341–50. http://dx.doi.org/10.1089/ten.teb.2009.0527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BADYLAK, STEPHEN F. "In VivoStudies to Evaluate Tissue Engineering Techniques." Annals of the New York Academy of Sciences 961, no. 1 (June 2002): 302–4. http://dx.doi.org/10.1111/j.1749-6632.2002.tb03107.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Tissue engineering techniques"

1

Mozafari, M., Farshid Sefat, and A. Atala. "Handbook of Tissue Engineering Scaffolds: Volume two." Elsevier, 2019. http://hdl.handle.net/10454/18386.

Full text
Abstract:
No
This title provides a comprehensive and authoritative review on recent advancements in the application and use of composite scaffolds in tissue engineering. Chapters focus on specific tissue/organ (mostly on the structure and anatomy), the materials used for treatment, natural composite scaffolds, synthetic composite scaffolds, fabrication techniques, innovative materials and approaches for scaffolds preparation, host response to the scaffolds, challenges and future perspectives, and more. Bringing all the information together in one major reference, the authors systematically review and summarise recent research findings, thus providing an in-depth understanding of scaffold use in different body systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Pérez, Olmedilla Marcos. "Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/58987.

Full text
Abstract:
[EN] Articular cartilage is a tissue that consists of chondrocytes surrounded by a dense extracellular matrix (ECM). The ECM is mainly composed of type II collagen and proteoglycans. The main function of articular cartilage is to provide a lubricated surface for articulation. Articular cartilage damage is common and may lead to osteoarthritis. Articular cartilage does not have blood vessels, nerves or lymphatic vessels and therefore has limited capacity for intrinsic healing and repair. Tissue engineering (TE) is a powerful approach for healing degenerated cartilage. TE uses three-dimensional (3D) scaffolds as cellular culture supports. The scaffold provides a structure that facilitates chondrocyte adhesion and expansion while maintaining a chondrocytic phenotype and limiting dedifferentiation, which is a problem in two-dimensional (2D) systems. Cell attachment to the scaffolds depends on the physical and chemical characteristics of their surface (morphology, rigidity, equilibrium water content, surface tension, hydrophilicity, presence of electric charges). The primary aim of this thesis was to study the influence of different kinds of biomaterials on the response of chondrocytes to in vitro culture. 3D scaffold constructs must have an interconnected porous structure in order to allow cell development through the network, to maintain their differentiated function, as well as to allow the entry and exit of nutrients and metabolic waste removal. Therefore, the effect of the hydrophilicity and pore architecture of the scaffolds was studied. A series of polymer and copolymer networks with varying hydrophilicity was synthesised and biologically tested in monolayer culture. Cell viability, proliferation and aggrecan expression were quantified. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, adhesion, proliferation and viability decreased with the content of hydrophilic groups. Nevertheless, copolymers in which hydrophilic and hydrophobic domains alternate showed better results than the corresponding homopolymers. Biostable and biodegradable scaffolds with different hydrophilicity and porosity were synthesised using a template of sintered microspheres of controlled size. This technique allows the interconnectivity between pores and their size to be controlled. Periodic and regular pore architectures and reproducible structures were obtained. The mechanical behaviour of the porous samples was significantly different from that of the bulk material of the same composition. Cells fully colonised the scaffolds when the pores' size and their interconnection were sufficiently large. Another objective was to assess the chondrogenic redifferentiation in a biodegradable 3D scaffold of polycaprolactone (PCL) of human autologous chondrocytes previously expanded in monolayer. This study demonstrated that chondrocytes cultured in PCL scaffolds without fetal bovine serum (FBS) efficiently redifferentiated, expressing a chondrocytic phenotype characterised by their ability to synthesise cartilage-specific ECM proteins. The influence that pore connectivity and hydrophilicity of caprolactone-based scaffolds has on the chondrocyte adhesion to the pore walls, proliferation and composition of the ECM produced was studied. The number of cells inside polycaprolactone scaffolds increased as porosity was increased. A minimum of around 70% porosity was necessary for this scaffold architecture to allow seeding and viability of the cells within. The results suggested that some of the cells inside the scaffold adhered to the pore walls and kept the dedifferentiated phenotype, while others redifferentiated. In conclusion, the findings of this thesis provide valuable insight into the field of cartilage regeneration using TE techniques. The studies carried out shed light on the right composition, porosity and hydrophilicity of the scaffolds to be used for optimal cartilage production.
[ES] El cartílago articular es un tejido compuesto por condrocitos rodeados por una densa matriz extracelular (MEC). La MEC se compone principalmente de colágeno tipo II y de proteoglicanos. La función principal del cartílago articular es proporcionar una superficie lubricada para las articulaciones. Las lesiones en el cartílago articular son comunes y pueden derivar a osteoartritis. El cartílago articular no tiene vasos sanguíneos, nervios o vasos linfáticos y, por tanto, tiene una capacidad limitada de auto-reparación. La ingeniería tisular (IT) es un área prometedora en la regeneración de cartílago. En la IT se utilizan "andamiajes" (scaffolds) tridimensionales (3D) como soportes para el cultivo celular y tisular. Los scaffolds proporcionan una estructura que facilita la adhesión y la expansión de los condrocitos, manteniendo un fenotipo condrocítico limitando su desdiferenciación; que es el mayor problema en los sistemas bidimensionales (2D). La adhesión celular a los scaffolds depende de las características físicas y químicas de su superficie (morfología, rigidez, contenido de agua en equilibrio, tensión superficial, hidrofilicidad, presencia de cargas eléctricas). El objetivo general de esta tesis fue estudiar la influencia de diferentes tipos de biomateriales en la respuesta de los condrocitos en cultivo in vitro. Los scaffolds deben tener una estructura porosa interconectada para permitir el desarrollo celular a través de toda la estructura 3D, potenciando que los condrocitos mantengan su fenotipo, así como permitiendo entrada de nutrientes y eliminación de desechos metabólicos. Se estudió el efecto de la hidrofilicidad y de la arquitectura de poro. Se cuantificó la viabilidad celular, la proliferación y la expresión de agrecano. Cuando los condrocitos humanos se cultivaron en sustratos poliméricos donde los grupos hidrófilos se distribuyeron de manera homogénea, la adhesión, la proliferación y la viabilidad disminuyó con el contenido de grupos hidrófilo. Sin embargo, los copolímeros en los que los dominios hidrófilos e hidrófobos se alternaban mostraron mejores resultados que los homopolímeros correspondientes. Se sintetizaron series de scaffolds bioestables y series biodegradables con diferente hidrofilicidad y porosidad utilizando plantillas de microesferas sinterizadas. Se obtuvieron arquitecturas de poros regulares y reproducibles. Las células colonizaron el scaffold en su totalidad cuando los poros y la interconexión entre ellos era lo suficientemente grande. Se evaluó la rediferenciación condrogénica de condrocitos autólogos humanos, previamente expandidos en monocapa, sembrados en un scaffold biodegradable de policaprolactona (PCL). Se demostró que los condrocitos cultivados en scaffolds de PCL con medio sin suero bovino fetal (FBS), se rediferenciaban de manera eficiente; expresando un fenotipo condrocítico, caracterizado por su capacidad de sintetizar proteínas de la MEC específicas de cartílago hialino. Se estudió la influencia de la hidrofilicidad y la conectividad de los poros de los scaffolds de caprolactona sobre la adhesión de los condrocitos a las paredes de los poros, su capacidad proliferativa y la composición de MEC sintetizada. Se observó que un mínimo de 70% de porosidad era necesario para permitir la siembra de los condrocitos en el scaffold y su posterior viabilidad. El número de células aumentaba a medida que aumentaba la porosidad del scaffold. Los resultados sugieren que parte de las células que se adherían a las paredes internas de los poros mantenían el fenotipo desdiferenciado de condrocitos cultivados en monocapa, mientras que otros se rediferenciaban. En conclusión, los resultados de esta tesis aportan un avance en el campo de la regeneración de cartílago articular utilizando técnicas de IT. Los estudios realizados proporcionan directrices sobre la composición, la porosidad y la hidrofilicidad más adecuada para l
[CAT] El cartílag articular és un teixit format per condròcits envoltats per una densa matriu extracel·lular (MEC). La MEC es compon principalment de col·lagen tipus II i de proteoglicans. La funció principal del cartílag articular és proporcionar una superfície lubricada a les articulacions. Les lesions en el cartílag articular són comuns i poden derivar en osteoartritis. El cartílag articular no té vasos sanguinis, nervis ni vasos limfàtics i, per tant, té una capacitat limitada d'auto-reparació. L'enginyeria tissular (IT) és una àrea prometedora en la regeneració del cartílag. A la IT s'utilitzen "bastiments" (scaffolds) tridimensionals (3D) com a suports per al cultiu cel·lular i tissular. Els scaffolds proporcionen una estructura que facilita l'adhesió i l'expansió dels condròcits, mantenint un fenotip condrocític limitant la seua desdiferenciació; que és el major problema en els sistemes bidimensionals (2D). L'adhesió cel·lular als scaffolds depèn de les característiques físiques i químiques de la superfície (morfologia, rigidesa, contingut d'aigua en equilibri, tensió superficial, hidrofilicitat i presència de càrregues elèctriques). L'objectiu general d'aquesta tesi va ser estudiar la influència de diferents tipus de biomaterials en la resposta dels condròcits en cultiu in vitro. Els scaffolds han de tindre una estructura porosa interconnectada per a permetre el desenvolupament cel·lular a través de tota l'estructura 3D, potenciant que els condròcits mantinguen el seu fenotip així com permetent l'entrada de nutrients i l'eliminació de productes metabòlics. S'ha estudiat l'efecte de la hidrofilicitat i de l'arquitectura de porus dels scaffolds. Es va quantificar la viabilitat cel·lular, la proliferació i l'expressió de agrecà. Quan els condròcits humans es van cultivar en substrats polimèrics en els quals els grups hidròfils es van distribuir de manera homogènia, l'adhesió, la proliferació i la viabilitat van disminuir amb el contingut de grups hidròfils. No obstant això, els copolímers en els quals els dominis hidròfils i hidròfobs s'alternaven van mostrar millors resultats que els homopolímers corresponents. Es van sintetitzar sèries de scaffolds bioestables i sèries biodegradables amb diferent hidrofilicitat i porositat utilitzant plantilles de microesferes sinteritzades. Es van obtindre arquitectures de porus regulars i reproduïbles. Les cèl·lules van colonitzar el scaffold en la seua totalitat quan els porus i la interconnexió entre ells era suficientment gran. Es van avaluar la rediferenciació condrogènica de condròcits autòlegs humans, prèviament expandits en monocapa, en un scaffold biodegradable de policaprolactona (PCL). Es va demostrar que els condròcits cultivats en scaffolds de PCL sense sèrum boví fetal (FBS) es rediferenciaven de manera eficient, expressant un fenotip condrocític caracteritzat per la seua capacitat de sintetitzar proteïnes de la MEC específiques de cartílag hialí. També es va estudiar la influència de la hidrofilicitat i la connectivitat dels porus dels scaffolds de caprolactona sobre l'adhesió dels condròcits a les parets dels porus, la seua capacitat proliferativa i la composició de MEC sintetitzada. Es va observar que un mínim del 70% de porositat sembla ser necessari per permetre la sembra dels condròcits i la seua posterior viabilitat en el scaffold. El nombre de cèl·lules augmentava a mesura que augmentava la porositat del scaffold. Els resultats suggereixen que part de les cèl·lules que s'adherien a les parets internes dels porus mantenien el fenotip desdiferenciat de condròcits cultivats en monocapa, mentre que altres es rediferenciaven. En conclusió, els resultats d'aquesta tesi proporcionen informació valuosa en el camp de la regeneració de cartílag utilitzant tècniques d'IT. Els estudis realitzats proporcionen directrius sobre la composició, la porositat i la hidrofilicitat m
Pérez Olmedilla, M. (2015). Tissue engineering techniques to regenerate articular cartilage using polymeric scaffolds [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58987
TESIS
APA, Harvard, Vancouver, ISO, and other styles
3

Kitani, Yoshiharu. "Laryngeal Regeneration Using Tissue Engineering Techniques in a Canine Model." Kyoto University, 2011. http://hdl.handle.net/2433/142085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Francesch, de Castro Laia. "Surface modification of Polymers by plasma polymerization techniques for tissue engineering." Doctoral thesis, Universitat Ramon Llull, 2008. http://hdl.handle.net/10803/9290.

Full text
Abstract:
El treball que es presenta en aquesta tesi pretén contribuir al camp de la ciència de superfícies biològiques, amb el desenvolupament de superfícies adaptades amb cadenes lateral reactives per tal de unir covalentment biomolècul·les d'interès a la superfície.
La polimerització assistida per plasma del recobriments actius és un mètode atractiu per tal d'obtenir cadenes laterals reactives, mitjançant pel·lícules nanomètriques amb densitats de grups funcionals adaptats. Sota control de les condicions experimentals, l'estructura del dipòsit polimèric es pot control i les estructures químiques obtingudes poden variar des de xarxes polimèriques altament funcionalitzades amb baixa reticulació fins a xarxes altament reticulades amb baix contingut funcional.

La recerca descrita en aquesta tesi tracta de la modificació de superfície de diversos substrats per polimerització de plasma. La part essencial del treball es dirigeix cap al funcionalització amb grups èster de pentafluorofenil a la superfície, durant la polimerització per grafting i polimerització de plasma pulsat de pentafluofenil metacrilat. Aquesta classe de grup làbil és de gran interès per a la seva fàcil reactivitat amb molècules amb mines terminals, com pèptids. Altres monòmers comercials també s'han emprat al començament de l'estudi, com a primera aproximació a les tècniques de plasma. La caracterització d'aquestes superfícies s'ha fet a través de tècniques analítiques com FTIR, XPS, AFM o ToF - SIMS entre d'altres.
A més, s'ha dut a terme un estudi per fer a mida el polímer de PFM per a millorar la retenció de la seva estructura, i així com un estudi profund de la seva reactivitat davant de molècules amb amines terminals diferents d'interès, afegint SPR o l'aplicació de sensors microcantiliver a les tècniques de caracterització per aconseguir una millor comprensió de la química i cinètica de la reacció.
Sobre el propòsit d'aconseguir superfícies funcionalitzades útils, s'ha realitzat un patterning de les superfícies amb l'ús de màscares per a capa selectiva de les mostres per controlar les àrees modificades. Això s'ha fet per a l'aplicació d'aquesta pel·lícula a dispositius reals, així com a prova de la seva biocompatibilitat per cultiu cel·lular i per assaigs in vivo.
El trabajo que se presenta en esta tesis pretende contribuir al campo de la ciencia de superficies biológicas, con el desarrollo de superficies adaptadas con cadenas lateral reactivas con el fin de unir covalentemente biomoléculas de interés a la superficie.
La polimerización asistida por plasma de recubrimientos activos es un método atractivo con el fin de obtener cadenas laterales reactivas, mediante películas nanométricas con densidades de grupos funcionales adaptados. Bajo control de las condiciones experimentales, la estructura del depósito polimérico se puede control y las estructuras químicas obtenidas pueden variar desde redes poliméricas altamente funcionalitzadas con baja reticulación hasta redes altamente reticuladas con bajo contenido funcional.

La investigación descrita en esta tesis trata de la modificación de superficie de diversos sustratos por polimerización de plasma. La parte esencial del trabajo se dirige hacia el funcionalización con grupos éster de pentafluorofenilo en la superficie, durante la polimerización por grafting y polimerización de plasma pulsado de pentafluofenilmetacrilato. Esta clase de grupo lábil es de gran interés para su fácil reactividad con moléculas con minas terminales, como péptidos. Otros monómeros comerciales también se han servido al principio del estudio, como primera aproximación a las técnicas de plasma. La caracterización de estas superficies se ha hecho a través de técnicas analíticas como FTIR, XPS, AFM o ToF - SIMS entre otros.
Además, se ha llevado a cabo un estudio para hacer a medida el polímero de PFM para mejorar la retención de su estructura, y así como un estudio profundo de su reactividad delante de moléculas con aminas terminales diferentes de interés, añadiendo SPR o la aplicación de sensores microcantiliver a las técnicas de caracterización para conseguir una mejor comprensión de la química y cinética de la reacción.
Sobre el propósito de conseguir superficies funcionalizadas útiles, se ha realizado un patterning de las superficies con el uso de máscaras para capa selectiva de las muestras para controlar las áreas modificadas. Eso se ha hecho para la aplicación de esta película en dispositivos reales, así como a prueba de su biocompatibillidad por cultivo celular y para ensayos in vivo.
The work presented in this thesis has the main aim to contribute in the field of biological surface science, by developing tailored surfaces with reactive side chains in order to attach desired biomolecules to the surface by a covalent link.
Plasma polymerization of surface active coatings is an attractive method to obtain reactive side chains, by making nanometer thick films of tailored functional group densities. By controlling the experimental conditions, the structure of the polymer deposit can be largely controlled and the chemical structures obtained can range from highly functional polymer networks of low cross link density to polymer networks of low functional group but high cross link densities.

The research described in this thesis deals with the surface modification of various substrates by plasma polymerization. The major part of the work is directed towards the funtionalization with pentafluorophenyl ester groups on the surface, through the grafting polymerization and pulsed plasma polymerization of pentafluophenyl methacrylate. This kind of labile group is of high interest for its easy reactivity to amino terminated molecules, such as peptides. Other commercial monomers were also used at the beginning of the study, as a first approach to the plasma techniques. The characterization of these surfaces is done through several analytical techniques as FTIR, XPS, AFM or ToF-SIMS among others.
Furthermore, a study for tailoring the PFM polymer for better structure retention and deep study of its reactivity in front of different amino terminated molecules of interest was performed, adding SPR or the implementation of microcantilever sensors to the characterization techniques to achieve a better understanding of the chemistry and kinetic of the reaction, in order to achieve the best peptide binding for reliable well characterized bioactive interface..
On the aim of achieving useful functionalized surfaces, a patterning of the surfaces with the use of masks for selective coating of the samples has been performed to control the modified areas. This has been done for application of this film to real devices, as well as to test of its biocompatibility by cell culture and in vivo assays.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yiwei. "Improving 3D matrices for tissue engineering using advanced drug delivery techniques." Thesis, Kingston University, 2007. http://eprints.kingston.ac.uk/20391/.

Full text
Abstract:
Micro/macroporous matrices comprising a continuous phase of poly([epsilon]-caprolactone) . (PCL) and a dispersed phase of water soluble particles (lactose and gelatin) with defined size range (45-90, 90-125 and l25-250[mu]m) were produced by rapid cooling solutions of PCL in acetone followed by solvent extraction from the hardened material. This novel approach enables high loading (29-44% w/w) of particles (lactose and gelatin) to be achieved in PCL matrices by suspension of particulates in the PCL solution prior to casting. Highly efficient protein release (90%) was obtained over time periods of 3 days to 3 weeks by variation of particle loading and particle size range. The good particle distribution throughout the matrix and efficient extraction of the water-soluble phase allows formation of a macroporous structure with defined pore architecture by incorporation of particles of a specific shape and size range. SEM analysis revealed the porous surface morphology. Micro computed tomography (micro-CT) and image analysis enabled visualization of the internal 3-D pore structure, quantification of the frequency distribution of equivalent pore diameter and porosity (%) in peL matrices. Micro/macroporous PCL tubes exhibited a burst strength of 125 to l45MPa under hydrostatic loading at 37[degree]C and good recovery of tube diameter following short-duration flow rates of 1000 ml/min under continuous increasing and pulsatile conditions. Sustained release of incorporated enzymes (lysozyme, collagenase and catalase) occurred over 11 days from the PCL matrices, with retained activity dependent on the particular enzyme used (collagenase 100% at 11 days, lysozyme 75-80% at 11 days, catalase 10-20 % at 5 days). Swiss3T3 fibroblasts exhibited strong attachment and successful colonization of the surface. of PCL matrices over 8 to 15 days in cell culture. These findings demonstrate the potential of micro/macroporous PCL matrices for scaffold production in tissue engineering and for controlling drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
6

Di, Bella Claudia <1978&gt. "Reconstructive Microsurgery and Tissue Engineering in Musculo-Skeletal Oncology - Innovative Techniques." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4307/.

Full text
Abstract:
Tumors involving bone and soft tissues are extremely challenging situations. With the recent advances of multi-modal treatment, not only the type of surgery has moved from amputation to limb-sparing procedures, but also the survivorship has improved considerably and reconstructive techniques have the goal to allow a considerably higher quality of life. In bone reconstruction, tissue engineering strategies are the main area of research. Re-vascularization and re-vitalisation of a massive allograft would considerably improve the outcome of biological reconstructions. Using a rabbit animal model, in this study we showed that, by implanting a vascular pedicle inside a weight bearing massive cortical allograft, the bone regeneration inside the allograft was higher compared to the non-vascularized implants, given the patency of the vascular pedicle. Improvement in the animal model and the addition of Stem Cells and Growth factors will allow a further improvement in the results. In soft tissue tumors, free and pedicled flaps have been proven to be of great help as reconstruction strategies. In this study we analyzed the functional and overall outcome of 14 patients who received a re-innervated vascularized flap. We have demonstrated that the use of the innovative technique of motor re-innervated muscular flaps is effective when the resection involves important functional compartments of the upper or lower limb, with no increase of post-operative complications. Although there was no direct comparison between this type of reconstruction and the standard non-innervated reconstruction, we underlined the remarkable high overall functional scores and patient satisfaction following this procedure.
APA, Harvard, Vancouver, ISO, and other styles
7

Grey, Casey. "Tissue Engineering Scaffold Fabrication and Processing Techniques to Improve Cellular Infiltration." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3652.

Full text
Abstract:
Electrospinning is a technique used to generate scaffolds composed of nano- to micron-sized fibers for use in tissue engineering. This technology possesses several key weaknesses that prevent it from adoption into the clinical treatment regime. One major weakness is the lack of porosity exhibited in most electrospun scaffolds, preventing cellular infiltration and thus hosts tissue integration. Another weakness seen in the field is the inability to physically cut electrospun scaffolds in the frontal plane for subsequent microscopic analysis (current electrospun scaffold analysis is limited to sectioning in the cross-sectional plane). Given this it becomes extremely difficult to associate spatial scaffold dynamics with a specific cellular response. In an effort to address these issues the research presented here will discuss modifications to electrospinning technology, cryosectioning technology, and our understanding of cellular infiltration mechanisms into electrospun scaffolds. Of note, the hypothesis of a potentially significant passive phase of cellular infiltration will be discussed as well as modifications to cell culture protocols aimed at establishing multiple passive infiltration phases during prolonged culture to encourage deep cellular infiltration.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoyt, Kenneth Leon Forsberg Flemming. "Spectral strain estimation techniques for tissue elasticity imaging /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steinmeyer, Joseph D. (Joseph Daly). "Automation of single-cell techniques in neural tissue." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90004.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 125-140).
The highly heterogeneous nature of cells in the context of native tissue environments necessitates the development of tools and techniques that can manipulate and analyze samples with single-cell resolution. While the past decades have seen significant progress in analyzing individual cells in tissue, both electrically and morphologically, the ability to genetically manipulate and biochemically analyze such cells in a high-throughput manner has seen only limited advances, and therefore a significant technological gap in accessing cells with single-cell specificity in tissue remains. We present a system design and workflow that fills in this gal) in technology through the implementation of precision automation and redesign of standard biological techniques, resulting in greatly improved throughput while maintaining single-cell accuracy and precision. This thesis comprises three parts: First we discuss the design and implementation of an expandable computer-controlled automation system enabling the rapid maneuvering and targeting of inicropipettes within tissue environments as well as a methodology for cleaning and reuse of these micropipettes to enable significant gains in throughput. Second we apply this automation to transfecting neurons in brain slices with DNA and RNA for subsequent analysis with greater throughput than previous methods. Third, we apply our automation to collecting the contents of single neurons embedded in relevant tissue environments for molecular analysis. The work presented greatly improves the throughput of traditional single-cell methods of transfection and cell-sampling by between one and two orders of magnitude and fills in a gap in the workflow of the rapidly expanding field of single-cell analysis.
by Joseph D. Steinmeyer.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kuang-Sheng. "Effects of chemotherapy on bone and bone regeneration using tissue engineering techniques." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Tissue engineering techniques"

1

Ishikawa, Takeshi, and Masayuki Yamamoto. Tissue engineering: Fundamentals, techniques and applications. Hauppauge, N.Y: Nova Science Publisher's, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Extreme tissue engineering. Chichester, West Sussex: John Wiley & Sons, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

John, C. K. Tissue culture of economic plants, including genetic engineering techniques. New Delhi: Centre for Science & Technology of the Non-Aligned and Other Developing Countries & Commonwealth Science Council, London, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Freshney, R. Ian. Culture of Cells for Tissue Engineering. New York: John Wiley & Sons, Ltd., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vunjak, Novakovic Gordana, ed. Culture of cells for tissue engineering. New York, NY: Wiley, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peter, Wiesmann Hans, Handschel Jörg, Meyer Thomas, and SpringerLink (Online service), eds. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1935-, Ikada Yoshito, and Okano Teruo, eds. Tissue engineering for therapeutic use 3: Proceedings of the Third International Symposium of Tissue Engineering for Therapeutic Use, Tokyo, 4-5 September 1998. Amsterdam: Elsevier, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1935-, Ikada Yoshito, and Enomoto Shōji 1936-, eds. Tissue engineering for therapeutic use 2: Proceedings of the Second International Symposium of Tissue Engineering for Therapeutic Use, Tokyo, 30-31 October 1997. Amsterdam: Elsevier, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Narayan, Roger, Thomas Boland, and Yuan-Shin Lee. Printed biomaterials: Novel processing and modeling techniques for medicine and surgery. London: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Symposium of Tissue Engineering for Therapeutic Use (4th 1999 Kyoto, Japan). Tissue engineering for therapeutic use 4: Proceedings of the Fourth International Symposium on Tissue Engineering for Therapeutic Use, Kyoto, 23-24th September 1999. Edited by Ikada Yoshito 1935- and Shimizu Yoshihiko. Amsterdam: Elsevier, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Tissue engineering techniques"

1

Park, Heung Jae, and Kyung Hyun Moon. "Modified Tissue Engineering Techniques Using Stem Cells." In Penile Augmentation, 205–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46753-4_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Atala, Anthony. "Tissue Engineering Techniques for Closure of Bladder Exstrophy." In The Exstrophy—Epispadias Complex, 63–64. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3056-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fleming, Braden C., Alison M. Biercevicz, Martha M. Murray, Weiguo Li, and Vincent M. Wang. "Emerging Techniques for Tendon and Ligament MRI." In Magnetic Resonance Imaging in Tissue Engineering, 209–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119193272.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yeow, Tshai Kim, Lim Siew Shee, Yong Leng Chuan, and Chou Pui May. "Enhanced Scaffold Fabrication Techniques for Optimal Characterization." In Tissue Engineering Strategies for Organ Regeneration, 23–50. Boca Raton: CRC Press, Taylor & Francis Group, [2020] |: CRC Press, 2020. http://dx.doi.org/10.4324/9780429422652-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Se-Jun, Wei Zhu, Nathan Castro, and Lijie Grace Zhang. "Biomaterials and 3D Printing Techniques for Neural Tissue Regeneration." In Neural Engineering, 1–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31433-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jell, Gavin, Robin Swain, and Molly M. Stevens. "Raman Spectroscopy: A Tool for Tissue Engineering." In Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, 419–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02649-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Michaelis, Stefanie, Rudolf Robelek, and Joachim Wegener. "Studying Cell–Surface Interactions In Vitro: A Survey of Experimental Approaches and Techniques." In Tissue Engineering III: Cell - Surface Interactions for Tissue Culture, 33–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/10_2011_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pien, N., S. Van Vlierberghe, P. Dubruel, and D. Mantovani. "Chapter 8. Hydrogel Processing Techniques and Vascular Tissue Engineering." In Biomaterials Science Series, 207–37. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839163975-00207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sultana, Naznin. "Fabrication Techniques and Properties of Scaffolds." In Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering, 19–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34802-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basham, Eric, Zhi Yang, Natalia Tchemodanov, and Wentai Liu. "Magnetic Stimulation of Neural Tissue: Techniques and System Design." In Biological and Medical Physics, Biomedical Engineering, 293–351. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77261-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tissue engineering techniques"

1

Jacques, Steven L. "Optical techniques for tissue science and engineering." In International Symposium on Biomedical Optics, edited by Qingming Luo, Britton Chance, Lihong V. Wang, and Steven L. Jacques. SPIE, 1999. http://dx.doi.org/10.1117/12.364368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roslan, M. Riza, N. F. Mohd Nasir, E. M. Cheng, and N. A. M. Amin. "Tissue engineering scaffold based on starch: A review." In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7755010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tah, Arya. "Tissue impedance measurement techniques for cancer and malignant tissue detection." In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). IEEE, 2014. http://dx.doi.org/10.1109/icgccee.2014.6922221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Müller, C., T. Stoppe, S. Anand, C. Mota, S. Danti, L. Moroni, M. Bornitz, and M. Neudert. "Functional properties of eardrum replacement scaffolds from tissue engineering techniques." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duffy and Shuter. "Engineering Techniques To Aid Controlled Tissue Expansion In Reconstructive Surgery." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.589397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duffy, John S., and Mark Shuter. "Engineering techniques to aid controlled tissue expansion in reconstructive surgery." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Müller, C., T. Stoppe, S. Anand, CD Mota, S. Danti, L. Moroni, M. Bornitz, and M. Neudert. "Functional properties of eardrum replacement scaffolds from tissue engineering techniques." In 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dutta Roy, T., J. J. Stone, W. Sun, E. H. Cho, S. J. Lockett, F. W. Wang, and L. Henderson. "Osteoblast Adhesion on Tissue Engineering Scaffolds Made by Bio-Manufacturing Techniques." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82472.

Full text
Abstract:
Scientific exploration into understanding and developing relationships between three-dimensional (3D) scaffolds prepared by rapid prototyping (RP) and cellular response has focused primarily on end results targeting osteoblast proliferation and differentiation. Here at the National Institute of Standards and Technology (NIST), we take a systems approach to developing relationships between material properties and quantitative biological responses. This study in particular focuses on the screening of parameters controlled by RP techniques and their ability to trigger signalling events leading to cell adhesion. This pioneering research in our group also characterizes the in vitro cell-material interactions of 2D films and 3D scaffolds. From there, one can postulate on contributory factors leading to cell migration, proliferation, and differentiation. In summary, we believe that the quantitative information from this fundamental investigation will enhance our knowledge of the interactions between cells and 3D material interfaces with respect to formation of focal adhesions. This work consists of two sections — the application of imaging techniques for 3D characterization of properties and culturing of osteoblasts for size and shape determination. This includes quantifying the number of focal adhesion sites. We are using 3D RP polycaprolactone (PCL) scaffolds as this surrogate model in which to compare 2D to 3D material performance and cell interactions. Using RP bio-manufacturing techniques to fabricate tissue engineering scaffolds allows for control of pore size, strut size, and layer thickness, therefore providing adjustable parameters to study which can potentially influence, or even dynamically modulate, cellular adhesion. Imaging results after culturing for 24 h showed differences in cell morphology and spreading relative to the different structures. The focal adhesion response also varied, indicating an apparent loss of organization in 3D scaffolds compared to 2D surfaces. See Results and Discussion for details.
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, LvSha, and Changyong Liu. "Advantages, Limitations, and Future Trends for Biofabrication Techniques in Tissue Engineering." In First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajagopalan, Srinivasan, Michael J. Yaszemski, and Richard A. Robb. "Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering." In Medical Imaging 2004, edited by J. Michael Fitzpatrick and Milan Sonka. SPIE, 2004. http://dx.doi.org/10.1117/12.535927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography