To see the other types of publications on this topic, follow the link: Titanium niobate.

Journal articles on the topic 'Titanium niobate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Titanium niobate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

De Haart, L. G. J., H. J. Boessenkool, and G. Blasse. "Photoelectrochemical properties of titanium niobate (TiNb2O7) and titanium tantalate (TiTa2O7)." Materials Chemistry and Physics 13, no. 1 (1985): 85–90. http://dx.doi.org/10.1016/0254-0584(85)90029-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, Shufan, Qiang Zhou, Fangfei Li, et al. "High-pressure bandgap engineering and amorphization in TiNb2O7 single crystals." CrystEngComm 24, no. 14 (2022): 2660–66. http://dx.doi.org/10.1039/d2ce00168c.

Full text
Abstract:
Titanium niobate (TiNb2O7) possesses excellent photocatalytic properties, dielectric properties, and lithium-insertion capacity. The bandgap of TiNb2O7 has been engineered by high-pressure up to 47.0 GPa. Its bandgap and color are reversible.
APA, Harvard, Vancouver, ISO, and other styles
3

Uceda, Marianna, Hsien-Chieh Chiu, Jigang Zhou, Raynald Gauvin, Karim Zaghib, and George P. Demopoulos. "Nanoscale assembling of graphene oxide with electrophoretic deposition leads to superior percolation network in Li-ion electrodes: TiNb2O7/rGO composite anodes." Nanoscale 12, no. 45 (2020): 23092–104. http://dx.doi.org/10.1039/d0nr06082h.

Full text
Abstract:
Electrophoretic deposition (EPD) is used to promote homogeneous nanoscale assembly of reduced graphene oxide (rGO) and titanium niobate (TiNb<sub>2</sub>O<sub>7</sub>) composite electrodes and minimize material degradation during cycling.
APA, Harvard, Vancouver, ISO, and other styles
4

Takagaki, Atsushi, Takemi Yoshida, Darling Lu, et al. "Titanium Niobate and Titanium Tantalate Nanosheets as Strong Solid Acid Catalysts." Journal of Physical Chemistry B 108, no. 31 (2004): 11549–55. http://dx.doi.org/10.1021/jp049170e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parfenov M. V., Agruzov P. M., Ilichev I. V., Usikova A. A., and Shamrai A. V. "Mode transformation in hybrid waveguides based on lithium niobate forefficient coupling to a standard single mode fiber." Technical Physics 92, no. 1 (2022): 87. http://dx.doi.org/10.21883/tp.2022.01.52538.220-21.

Full text
Abstract:
Topology of a hybrid waveguide device, which performs aneffective transformation of a standard gradient titanium in-diffusedwaveguide mode to a hybrid waveguide mode, is considered. With its help arather large optical mode with size optimal for coupling with standardsingle-mode fibers can be converted to a mode with a smaller size. Two themost perspective materials for hybrid waveguide fabrication were considered:silicon and titanium dioxide. The theoretical analysis has shown thattransformation efficiency of more than 99% is achievable for waveguidedevices based on titanium dioxide with conta
APA, Harvard, Vancouver, ISO, and other styles
6

Mielewczyk-Gryń, Aleksandra, Piotr Winiarz, Sebastian Wachowski, and Maria Gazda. "High-temperature properties of titanium-substituted yttrium niobate." Journal of Materials Research 34, no. 19 (2019): 3312–18. http://dx.doi.org/10.1557/jmr.2019.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Lichao, Guangyang Gou, Jiamin Chen, et al. "Miniature Fourier Transform Spectrometer Based on Thin-Film Lithium Niobate." Micromachines 14, no. 2 (2023): 458. http://dx.doi.org/10.3390/mi14020458.

Full text
Abstract:
A miniature Fourier transform spectrometer is proposed using a thin-film lithium niobate electro-optical modulator instead of the conventional modulator made by titanium diffusion in lithium niobate. The modulator was fabricated by a contact lithography process, and its voltage-length and optical waveguide loss were 2.26 V·cm and 1.01 dB/cm, respectively. Based on the wavelength dispersion of the half-wave voltage of the fabricated modulator, the emission spectrum of the input signal was retrieved by Fourier transform processing of the interferogram, and the analysis of the experimental data o
APA, Harvard, Vancouver, ISO, and other styles
8

Kaur, Gurjit, Neha Rani, Yaman Parasher, and Prabhjot Singh. "Design and Implementation of Electro-Optic 2×2 Switch and Optical Gates using MZI." Journal of Optical Communications 41, no. 3 (2020): 269–77. http://dx.doi.org/10.1515/joc-2017-0198.

Full text
Abstract:
AbstractMZI switches are well-known devices for high speed communication applications. A lot of researchers have designed MZI switches by using lithium niobate and potassium niobate material. But the major problem of using these type of material includes high insertion losses and required high switching voltage. So, in this research paper we have designed a 2×2 electro-optic switch using optical waveguide designed with Titanium (Ti) diffused in Strontium barium niobate (SBNO3) material which can operate at wavelength of 1.3 um. Results show that the proposed structure gives better output in te
APA, Harvard, Vancouver, ISO, and other styles
9

Chung, H. P., K. H. Huang, S. L. Yang, et al. "Adiabatic light transfer in titanium diffused lithium niobate waveguides." Optics Express 23, no. 24 (2015): 30641. http://dx.doi.org/10.1364/oe.23.030641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dean, S. W., Erin J. Mercer, and Fathi T. Halaweish. "Biodiesel Synthesis via Recyclable Heterogeneous Catalyst: Titanium Niobate Nanosheet." Journal of ASTM International 7, no. 3 (2010): 102659. http://dx.doi.org/10.1520/jai102659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hung, Wei Cheng, Fu-Yu Chu, Chuan-Chieh Lin, Ying-Pin Tsai, and Fu-Li Hsiao. "Titanium diffused lithium niobate grating for planar waveguide coupling." IET Conference Proceedings 2024, no. 22 (2025): 120–21. https://doi.org/10.1049/icp.2024.4204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sebastian, M. T., R. Ratheesh, H. Sreemoolanadhan, Sam Solomon, and P. Mohanan. "Samarium titanium niobate (SmTiNbO6): A new microwave dielectric ceramic." Materials Research Bulletin 32, no. 9 (1997): 1279–84. http://dx.doi.org/10.1016/s0025-5408(97)00095-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rao, Konapala Sambasiva, Prayaga Murali Krishna, Dasari Madhava Prasad, and D. Gangadharudu. "Modulus spectroscopy of lead potassium titanium niobate (Pb0.95K0.1Ti0.25Nb1.8O6) ceramics." Journal of Materials Science 42, no. 13 (2007): 4801–9. http://dx.doi.org/10.1007/s10853-006-0748-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Winiarz, P., A. Mielewczyk-Gryń, S. Wachowski, P. Jasiński, A. Witkowska, and M. Gazda. "Structural and electrical properties of titanium-doped yttrium niobate." Journal of Alloys and Compounds 767 (October 2018): 1186–95. http://dx.doi.org/10.1016/j.jallcom.2018.07.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barabanova, Ekaterina V., Sergej E. Kondratev, and Aleksandra I. Ivanova. "DIELECTRIC PROPERTIES OF SODIUM POTASSIUM NIOBATE TITANATE CERAMICS." Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 3, no. 3/2023 (2023): 33–37. http://dx.doi.org/10.37614/2949-1215.2023.14.3.005.

Full text
Abstract:
The paper considers the preparation of potassium sodium niobate ceramics doped with titanium in an amount of 5 mol. %. The structure and dielectric properties were investigated in the temperature range 30–650 °C. It is shown that acceptor doping leads to a decrease in the grain size. Violation of stoichiometry in the anionic sublattice contributes to a decrease in the relaxation time of thermal ionic polarization compared to the case of nonstoichiometry in the cationic sublattice.
APA, Harvard, Vancouver, ISO, and other styles
16

Chézeau, Laëtitia, Alex Tchinda, Gaël Pierson, et al. "In Vitro Molecular Study of Titanium-Niobium Alloy Biocompatibility." Biomedicines 10, no. 8 (2022): 1898. http://dx.doi.org/10.3390/biomedicines10081898.

Full text
Abstract:
Titanium dental implants have common clinical applications due to their biocompatibility, biophysical and biochemical characteristics. Although current titanium is thought to be safe and beneficial for patients, there are several indications that it may release toxic metal ions or metal nanoparticles from its alloys into the surrounding environment, which could lead to clinically relevant complications including toxic reactions as well as immune dysfunctions. Hence, an adequate selection and testing of medical biomaterial with outstanding properties are warranted. This study was designed to ex
APA, Harvard, Vancouver, ISO, and other styles
17

Saulnier, J., C. Ramus, F. Huet, and M. Carre. "Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate." IEEE Photonics Technology Letters 3, no. 10 (1991): 926–28. http://dx.doi.org/10.1109/68.93265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Karavaev, P. M., I. V. Il’ichev, P. M. Agruzov, A. V. Tronev, and A. V. Shamray. "Polarization separation in titanium-diffused waveguides on lithium niobate substrates." Technical Physics Letters 42, no. 5 (2016): 513–16. http://dx.doi.org/10.1134/s1063785016050266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Huiling, Du, and Yao Xi. "Dielectric relaxation characteristics of bismuth zinc niobate pyrochlores containing titanium." Physica B: Condensed Matter 324, no. 1-4 (2002): 121–26. http://dx.doi.org/10.1016/s0921-4526(02)01284-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Izquierdo, R., C. Lavoie, and M. Meunier. "Excimer laser direct writing of titanium lines on lithium niobate." Applied Physics Letters 57, no. 7 (1990): 647–49. http://dx.doi.org/10.1063/1.104252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Falk, Gilberto S., Tiago Bender Wermuth, João B. Rodrigues Neto, Sergio Yesid Gómez González, and Dachamir Hotza. "Fast-fired, nanograined titanium niobate (TiNb2O7) with enhanced dielectric properties." Materials Science and Engineering: B 261 (November 2020): 114650. http://dx.doi.org/10.1016/j.mseb.2020.114650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Höpker, Jan Philipp, Thomas Gerrits, Adriana Lita, et al. "Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides." APL Photonics 4, no. 5 (2019): 056103. http://dx.doi.org/10.1063/1.5086276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Arvidsson, Gunnar, Kurt Bergvall, and Anders Sjöberg. "Processing of titanium-diffused lithium niobate waveguide devices and waveguide characterization." Thin Solid Films 126, no. 3-4 (1985): 177–84. http://dx.doi.org/10.1016/0040-6090(85)90308-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Тронев, А. В., М. В. Парфенов, Н. А. Соломонов та ін. "Лазерная модификация титановой пленки на поверхности оптических волноводов в ниобате лития". Письма в журнал технической физики 46, № 17 (2020): 51. http://dx.doi.org/10.21883/pjtf.2020.17.49896.18387.

Full text
Abstract:
The availability of thin titanium film laser modification for precise loss control in lithium niobate optical waveguides was demonstrated. A simple ray model of the interaction between a nanosized metal cover on the top surface of a Ti-indiffused channel waveguide and orthogonal optical waveguide modes with changes in optical losses up to 0.95 and 1.05 dB/mm for TE- and TM-polarized modes respectively in case of 5 nm titanium film covering was suggested. The consistency between obtained theoretical losses and results of optical film modification by a 976 nm laser beam with the threshold intens
APA, Harvard, Vancouver, ISO, and other styles
25

Tong, Xiaolin, Min Zhang, Amnon Yariv, and Aharon J. Agranat. "Copper, hydrogen, and titanium incorporation in potassium lithium tantalate niobate single crystals." Applied Physics Letters 70, no. 13 (1997): 1688–90. http://dx.doi.org/10.1063/1.118670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Srivastava, Vivek Kumar, Amrindra Pal, and Sandeep Sharma. "Design of Hamming Code Checker Using Titanium-Diffused Lithium Niobate-Based Waveguide." Fiber and Integrated Optics 38, no. 4 (2019): 218–35. http://dx.doi.org/10.1080/01468030.2019.1621962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ganguly, P., J. C. Biswas, and S. K. Lahiri. "Modelling of titanium indiffused lithium niobate channel waveguide bends: a matrix approach." Optics Communications 155, no. 1-3 (1998): 125–34. http://dx.doi.org/10.1016/s0030-4018(98)00308-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thiele, Frederik, Felix vom Bruch, Victor Quiring, et al. "Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides." Optics Express 28, no. 20 (2020): 28961. http://dx.doi.org/10.1364/oe.399818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sjöberg, Anders, Gunnar Arvidsson, and Andrey A. Lipovskii. "Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate." Journal of the Optical Society of America B 5, no. 2 (1988): 285. http://dx.doi.org/10.1364/josab.5.000285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tronev, A. V., M. V. Parfenov, N. A. Solomonov, et al. "Laser Modification of Titanium Film in Optical Waveguides on Lithium Niobate Substrates." Technical Physics Letters 46, no. 9 (2020): 885–88. http://dx.doi.org/10.1134/s1063785020090114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

de Almeida, Jose M. M. M., Francisco Marinho, Daniel Alexandre, and Cinzia Sada. "Secondary Ion Mass Spectrometry Study of Erbium Titanium Codiffusion in Lithium Niobate." IEEE Photonics Technology Letters 26, no. 13 (2014): 1307–9. http://dx.doi.org/10.1109/lpt.2014.2322500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ganguly, P., D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri. "Simulation of refractive index profiles for titanium indiffused lithium niobate channel waveguides." Fiber and Integrated Optics 15, no. 2 (1996): 135–47. http://dx.doi.org/10.1080/01468039608202265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dhwajam, D. B., J. K. Thomas, K. Joy, and Sam Solomon. "Optical and dielectric properties of lanthanide titanium tantalate and niobate ceramic composites." Journal of Materials Science: Materials in Electronics 22, no. 4 (2010): 384–88. http://dx.doi.org/10.1007/s10854-010-0147-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sun, Xiao Hua, Shuang Hou, Zhi Meng Luo, Cai Hua Huang, and Zong Zhi Hu. "Enhanced the Dielectric and Tunable Properties of BZNT Thin Films through Adjusting Annealing Process." Applied Mechanics and Materials 252 (December 2012): 211–15. http://dx.doi.org/10.4028/www.scientific.net/amm.252.211.

Full text
Abstract:
Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with
APA, Harvard, Vancouver, ISO, and other styles
35

Hashim, K. Z., Md Supar Rohani, and Wan Hairul Anuar Kamaruddin. "Growth and Characterization of Titanium Doped Lithium Niobate Single Crystal Using Czochralski Technique." Solid State Phenomena 268 (October 2017): 205–9. http://dx.doi.org/10.4028/www.scientific.net/ssp.268.205.

Full text
Abstract:
A successful growth of the titanium-doped lithium niobate (Ti: LiNbO3) single crystal by Czochralski method is reported. By preserving an effective control of growth parameters such as maintaining accurate temperature gradient by controlling its output power and growth rate as well as wisely choosing the right pulling rate and speed rotation, the Ti:LiNbO3 single crystal successfully produced using Automatic Diameter Control-Crystal Growth System (ADC-CGS). The structural and optical analyses have been done by using X-ray Diffractometer (XRD), Differential Thermal Analyzer (DTA) and Ultraviole
APA, Harvard, Vancouver, ISO, and other styles
36

Höpker, Jan Philipp, Varun B. Verma, Maximilian Protte, et al. "Integrated superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides." Journal of Physics: Photonics 3, no. 3 (2021): 034022. http://dx.doi.org/10.1088/2515-7647/ac105b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Shuang, Lutong Cai, Yiwen Wang, Yunpeng Jiang, and Hui Hu. "Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe." Optics Express 23, no. 19 (2015): 24212. http://dx.doi.org/10.1364/oe.23.024212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lavoie, C., M. Meunier, S. Boivin, R. Izquierdo, and P. Desjardins. "Profile of titanium lines produced by excimer laser direct writing on lithium niobate." Journal of Applied Physics 70, no. 4 (1991): 2343–47. http://dx.doi.org/10.1063/1.349431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McCaughan, L. "Long Wavelength Titanium-Doped Lithium Niobate Directional Coupler Optical Switches And Switch Arrays." Optical Engineering 24, no. 2 (1985): 242241. http://dx.doi.org/10.1117/12.7973462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Marssi, M. El, R. Farhi, and Yu I. Yuzyuk. "Polarized Raman and electrical study of single crystalline titanium modified lead magnesio-niobate." Journal of Physics: Condensed Matter 10, no. 40 (1998): 9161–71. http://dx.doi.org/10.1088/0953-8984/10/40/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Prudenzano, F., C. Ciminelli, A. D'Orazio, V. Petruzzelli, and M. De Sario. "Performance enhancement of nonlinear lithium niobate couplers via double titanium and magnesium diffusion." Physica E: Low-dimensional Systems and Nanostructures 5, no. 1-2 (1999): 84–97. http://dx.doi.org/10.1016/s1386-9477(99)00020-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Schiek, Roland, Yongsoon Baek, and George I. Stegeman. "Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides." Journal of the Optical Society of America B 15, no. 8 (1998): 2255. http://dx.doi.org/10.1364/josab.15.002255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bazylevych, Stephanie, Lukasz Kondracki, James Michael Sieffert, Sigita Trabesinger, and Eric McCalla. "Mechanistic Insights into the Surface Instabilities of High-Power Li-Ion Anode Titanium Niobate." ECS Meeting Abstracts MA2025-01, no. 3 (2025): 214. https://doi.org/10.1149/ma2025-013214mtgabs.

Full text
Abstract:
Our modern society has been revolutionized by the implementation of Li-ion batteries (LIBs) everywhere in our day-to-day lives, from our portable electronics and electric vehicles, to now being pursued in grid storage.1 Power-intensive applications, such as medical devices or heavy machinery equipment, demand diversification beyond graphite-based anodes for safety reasons during fast cycling. This has led to the development of TiNb2O7 (TNO) as a promising safe anode with both high power and energy densities.2 Furthermore, TNO’s operating potential near 1.6 V has been suggested that it is entir
APA, Harvard, Vancouver, ISO, and other styles
44

Jung. "An Integrated Photonic Electric-Field Sensor Utilizing a 1 × 2 YBB Mach-Zehnder Interferometric Modulator with a Titanium-Diffused Lithium Niobate Waveguide and a Dipole Patch Antenna." Crystals 9, no. 9 (2019): 459. http://dx.doi.org/10.3390/cryst9090459.

Full text
Abstract:
We studied photonic electric-field sensors using a 1 × 2 YBB-MZI modulator composed of two complementary outputs and a 3 dB directional coupler based on the electro-optic effect and titanium diffused lithium–niobate optical waveguides. The measured DC switching voltage and extinction ratio at the wavelength 1.3 μm were ~16.6 V and ~14.7 dB, respectively. The minimum detectable fields were ~1.12 V/m and ~3.3 V/m, corresponding to the ~22 dB and ~18 dB dynamic ranges of ~10 MHz and 50 MHz, respectively, for an rf power of 20 dBm. The sensor shows an almost linear response to the applied electric
APA, Harvard, Vancouver, ISO, and other styles
45

Harvey, G., G. Astfalk, A. Feldblum, and B. Kassahun. "The photorefractive effect in titanium indiffused lithium niobate optical directional couplers at 1.3 µm." IEEE Journal of Quantum Electronics 22, no. 6 (1986): 939–46. http://dx.doi.org/10.1109/jqe.1986.1073068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shao, Yan-Xue, Qing Xu, Qi Sun, and De-Long Zhang. "Experimental evidence for preservation of electro-optic property in titanium-diffused lithium niobate waveguide." Optical Materials 108 (October 2020): 110239. http://dx.doi.org/10.1016/j.optmat.2020.110239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Yun, Chao-Yang Zhang, Wen-Bao Sun, et al. "Amplification combination of Er3+ and Tm3+ emissions in titanium-diffused lithium niobate strip waveguide." Journal of Luminescence 198 (June 2018): 457–63. http://dx.doi.org/10.1016/j.jlumin.2018.02.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hu, H., R. Ricken, and W. Sohler. "Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium." Applied Physics B 98, no. 4 (2010): 677–79. http://dx.doi.org/10.1007/s00340-010-3908-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Suresh Nair, K. R., Y. G. K. Patro, and R. K. Shevgaonkar. "Mode size studies on polarization variation in titanium-diffusedZ-cut lithium niobate channel waveguides." Microwave and Optical Technology Letters 19, no. 6 (1998): 448–51. http://dx.doi.org/10.1002/(sici)1098-2760(19981220)19:6<448::aid-mop17>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Hao, Hao Liang, and Fengqi Lu. "Mesoporous titanium niobate nanosheets with oxygen defects via topology reduction enhancing efficient lithium storage." Journal of Energy Storage 129 (September 2025): 117368. https://doi.org/10.1016/j.est.2025.117368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!