Academic literature on the topic 'Titanium – Surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Titanium – Surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Titanium – Surfaces"
Tang, Peifu, Wei Zhang, Yan Wang, Boxun Zhang, Hao Wang, Changjian Lin, and Lihai Zhang. "Effect of Superhydrophobic Surface of Titanium onStaphylococcus aureusAdhesion." Journal of Nanomaterials 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/178921.
Full textDearnley, Peter A. "Engineering titanium surfaces." Surface Engineering 23, no. 6 (November 2007): 399–400. http://dx.doi.org/10.1179/174329407x260555.
Full textCao, Y., Li Ping Wang, Bo Zhang, Qiang Lin, Xu Dong Li, C. Y. Bao, Ji Yong Chen, L. Yang, and Xing Dong Zhang. "The Effect of Microporous Structure on Bone-Bonding Ability of Titanium." Key Engineering Materials 284-286 (April 2005): 211–14. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.211.
Full textSay, Wen C., Chin C. Yeh, and Chih-Hwa Chen. "SURFACE MORPHOLOGIES ON THE ADDITION OF TiO2 TO CALCIUM PHOSPHATE BIO-GLASS." Biomedical Engineering: Applications, Basis and Communications 19, no. 06 (December 2007): 389–94. http://dx.doi.org/10.4015/s1016237207000495.
Full textLee, Yang-Jin, De-Zhe Cui, Ha-Ra Jeon, Hyun-Ju Chung, Yeong-Joon Park, Ok-Su Kim, and Young-Joon Kim. "Surface characteristics of thermally treated titanium surfaces." Journal of Periodontal & Implant Science 42, no. 3 (2012): 81. http://dx.doi.org/10.5051/jpis.2012.42.3.81.
Full textWatazu, Akira, Kay Teraoka, Hirofumi Kido, Kenzo Morinaga, Kae Okamatsu, Yoshiyuki Nagashima, Masaro Matsuura, and Naobumi Saito. "Formation of Titanium Oxide/Titanium/Plastic Composites." Key Engineering Materials 361-363 (November 2007): 487–90. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.487.
Full textKomasa, Satoshi, Tetsuji Kusumoto, Yoichiro Taguchi, Hiroshi Nishizaki, Tohru Sekino, Makoto Umeda, Joji Okazaki, and Takayoshi Kawazoe. "Effect of Nanosheet Surface Structure of Titanium Alloys on Cell Differentiation." Journal of Nanomaterials 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/642527.
Full textLi, Yun Cang, Jian Yu Xiong, C. S. Wong, Peter D. Hodgson, and Cui E. Wen. "Bioactivating the Surfaces of Titanium by Sol-Gel Process." Materials Science Forum 614 (March 2009): 67–71. http://dx.doi.org/10.4028/www.scientific.net/msf.614.67.
Full textOkubo, Takahisa, Takayuki Ikeda, Juri Saruta, Naoki Tsukimura, Makoto Hirota, and Takahiro Ogawa. "Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment." Materials 13, no. 18 (September 7, 2020): 3946. http://dx.doi.org/10.3390/ma13183946.
Full textElias, Carlos Nelson. "Titanium dental implant surfaces." Matéria (Rio de Janeiro) 15, no. 2 (2010): 138–42. http://dx.doi.org/10.1590/s1517-70762010000200008.
Full textDissertations / Theses on the topic "Titanium – Surfaces"
Lu, Xiong. "Engineering titanium surfaces for improving osteointegration /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MECH%202004%20LU.
Full textPegueroles, Neyra Marta. "Interactions between titanium surfaces and biological components." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6066.
Full textEl objetivo de esta tesis doctoral es profundizar en el conocimiento de las interacciones material-biosistema, con el énfasis en el descubrimiento de relaciones entre las propiedades superficiales de las superficies de titanio y su respuesta biológica in vitro.
El titanio comercialmente puro (Ti c.p.) está siendo ampliamente utilizado con éxito durante muchos años como biomaterial para implantes en cirugía ósea. Su excelente biocompatibilidad se basa en sus adecuadas propiedades mecánicas y, con mayor importancia, en su excelente resistencia a la corrosión. Esta última se debe principalmente a la formación espontanea de una fina película de óxido de titanio que le confiere protección natural contra los ataques degradativos. La modificación de la topografía de la superficie del titanio ha sido objeto de investigación en el pasado con el fin de mejorar la osteointegración. El granallado de partículas es una de las tecnologías más utilizadas para conferir rugosidad a las superficies del titanio. La rugosidad óptima y el tipo de partículas abrasivas del granallado para una respuesta óptima in vitro e in vivo fue previamente determinada en nuestro laboratorio. Sin embargo, todavía están por determinar cuáles son las causas últimas que llevan al biomaterial a su exitosa respuesta biológica.
En este trabajo se han estudiado superficies pulidas y rugosas de Ti c.p. obtenidas mediante el granallado con partículas abrasivas de diferente composición química(Al2O3 y SiC) y diferentes tamaños (212-300μm; 425-600μm; 1000-1400μm). La completa caracterización de las propiedades física y química de la superficie, incluyendo la rugosidad, la composición química, la mojabilidad/energía libre y la carga eléctrica de las superficies ensayadas ha llevado a una serie de relevantes conclusiones. Entre ellas, cabe destacar que a) la composición química de las partículas de granallado, así como el método de esterilización fueron los principales factores que influyeron en la mojabilidad y la energía libre superficial de las superficies de titanio estudiadas, b) el método de esterilización cambió en la energía superficial el carácter de donante de electrones de las superficies mediante el cambio de la cantidad y la naturaleza de las sustancias adsorbidas, y c) la composición química de las partículas de granallado no influyó en la carga eléctrica a pH fisiológico ni en el punto isoeléctrico de las superficies.
Un segundo paso consistió en el uso de una microbalanza de cristal de cuarzo con monitorización de la energía de disipación, para el estudio de la cinética de adsorción (cantidad y conformación) y de los procesos de adsorción competitiva de tres proteínas de especial interés en los procesos de curación del hueso - la albúmina de suero bovino (BSA), el fibrinógeno (Fbg), y la fibronectina (Fn)- en sensores lisos recubiertos de TiO2. Se determinaron diferentes modelos de procesos de adsorción con una, dos o múltiples pasos distinguibles en función de las proteínas en solución. La capa adsorbida de BSA mostró los cambios más significativos en sus propiedades mecánicas, de conformación y de incorporación de agua hasta que se alcanzaron las condiciones estables de adsorción de proteínas. La BSA, la más pequeña de las proteínas ensayadas, desplazó la Fn y el Fbg cuando se ensayó en condiciones de la competencia por la adsorción, indicando su mayor afinidad por las superficies de TiO2. También se emplearon técnicas de marcaje fluorescente para el estudio de la adsorción proteica en superficies rugosas granalladas. En este estudio, por un parte, se pudo determinar que la cantidad de Fn y BSA adsorbidas en las superficies granalladas está directamente correlacionada con su energía superficial. Por otra parte, se visualizó la adsorción de fibronectina en solución sobre muestras granalladas rugosas de Ti. La Fn formó un patrón irregular de adsorción con una mayor cantidad de proteína adsorbida en los picos que en los valles de la topografía.
También se evaluó la organización espacial de la matriz extracelular de los osteoblastos, ECM, sobre superficies de Ti lisas y rugosas por medio de la visualización de las fibrillas de Fn teñidas con marcador fluorescente. Las células osteoblásticas depositaron las fibrillas de Fn con un determinado patrón organizado dentro de la matriz total secretada. Aparecen como una película que cubre la parte superior de las diferentes superficies rugosas de titanio. Un resultado relevante es que el espesor de esta capa aumentó con la rugosidad de la topografía subyacente. Sin embargo no más de la mitad de la máxima distancia pico-valle se cubrió con la proteína secretada y/o reorganizada.
Por último, teniendo en cuenta las diferencias en la organización de la ECM y la
adsorción de Fn en las superficies ensayadas de Ti, se realizó un estudio de qRT-PCR para determinar la influencia de las propiedades superficiales del titanio, con y sin preadsorción de Fn, en la respuesta osteoblástica. La expresión génica de la subunidad 5 de la integrina celular, como marcador de la adhesión celular, se incrementó en las superficies granalladas con SiC en comparación con las granalladas con alúmina. Este resultado fue correlacionado con la mayor cantidad de Fn adsorbida debido a la mayor energía superficial de las superficies granalladas con SiC. El aumento de la rugosidad, así como la presencia de partículas de alúmina en las superficies rugosas incrementó la actividad de ALP y la expresión génica de ALP mRNA por los osteoblastos, y por lo tanto su diferenciación.
The understanding of cell/protein/biomaterial interactions is critical to the engineering of substrates for numerous biomedical and biotechnological applications and to the clinical success of implants. The final biological response induced by implants is strongly influenced by the biological-components/synthetic-material surface interactions. It is well accepted that the physical and chemical surface properties of a biomaterial rather than its bulk properties will influence the protein adlayer and then the cell response to it, both in vitro and in vivo.
The aim of this PhD thesis is to gain an increased understanding of the materialbiosystem interactions, with an emphasis on establishing correlations between surface properties of titanium surfaces and its in vitro biological response.
Commercially pure titanium (c.p. Ti) is being widely and successfully used implant biomaterial in bone surgery over many years. Its excellent biocompatibility is based in its appropriate mechanical properties and, more importantly, in its excellent corrosion resistance, which is mainly due to the presence of a naturally-occurring thin protective titanium oxide film. Modification of titanium surface topography has been a subject of research in the past with the purpose of improving its osseointegration. Grit blasting is one of the most used technologies to roughen titanium surfaces for this purpose. The optimal roughness and type of abrasive blasting-particles for a better in vitro and in vivo response was previously determined in our lab. However, which and how different relevant surface properties of the blasted titanium surfaces induce that optimal biological behavior is still poorly understood.
Smooth/polished and rough c.p. Ti surfaces obtained by blasting with abrasive
particles of different chemical composition (Al2O3 and SiC) and different sizes (212-300μm; 425-600μm; 1000-1400μm) were studied. The comprehensive characterization of physical and chemical surface properties, including roughness, chemical composition, wettability/free energy and electrical charge of the tested surfaces led to a series of relevant conclusions. Among them, it is worth noting that a) the chemical composition of the grit-blasting particles as well as the method of sterilization were found the main factors influencing wettability and surface free energy of the titanium surfaces; b) the sterilization method changed the electron donor character of the surfaces by changing the amount/nature of physisorbed substances on the surfaces, and c) the chemical composition of the blasting particles did not influence on the electrical charge at physiological pH and the isoelectric point of the surfaces.
A second step consisted in the use of a quartz crystal microbalance with monitoring of the energy dissipation to study the adsorption kinetics (amount and conformation) and adsorption competition processes of three proteins of special interest in the healing processes of bone -bovine serum albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)-on smooth TiO2-coated sensors. Different patterns of adsorption with processes in one, two or multiple distinguishable steps were determined depending of the protein in solution. The BSA adlayers showed the most significant changes in their mechanical properties/conformation/incorporation of water until steady protein-adsorption conditions were reached. BSA, the smallest of the tested proteins, displaced Fn and Fbg when in competition for adsorption, which is an indication of its higher affinity for TiO2 surfaces. Fluorescent labelling techniques where used to study protein adsorption on blasted rough surfaces. Most significantly, the amount of Fn and BSA adsorbed on blasted surfaces was positively correlated with their surface energy. The adsorption of fibronectin from solution on shot-blasted rough titanium surfaces resulted in an irregular pattern of adsorption with a higher amount of protein adsorbed on peaks than on valleys of the topography.
Further, the spatial organization of the osteoblast extracellular matrix, ECM, on smooth and rough Ti surfaces was evaluated by visualizing fluorescently-stained Fn-fibrils. Osteoblast-like cells deposited Fn- fibrils in a specific facet-like pattern that was organized within the secreted total matrix. It appeared as a film overlying the top of the different rough titanium surfaces. Interestingly, the thickness of this layer increased with the roughness of the underlying topography, but no more than half of the total maximum peak-to-alley distance was covered.
Finally, taking into consideration the differences in ECM organization and Fn adsorption on the tested Ti surfaces a qRT-PCR study was carried out to elucidate the influence of titanium surface properties with and without Fn-precoatings on the osteoblast response. The expression of 5 integrin subunit gene, as a marker for cell adhesion, was increased in SiC-blasted surfaces compared to alumina-blasted surfaces. This was related to the higher amount of adhesive-protein Fn adsorbed caused by the higher surface energy of SiC-blasted surfaces. The increase of roughness as well as the presence of alumina particles on blasted surfaces increased ALP activity and ALP mRNA gene expression by osteoblasts, and so their differentiation.
This research work contribute to increase our knowledge on the interactions taking place at the bio/non-bio interface between different biological components -water, proteins, cells- and materials of clinical relevance, such as rough titanium. The
intertwined effects of the different properties of the synthetic surfaces appear as a challenge to unravel the ultimate causes that determine the fate of cells on synthetic biomaterials.
Lu, Shanshan. "Immobilization of antimicrobial peptides onto titanium surfaces." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12622.
Full textBartlett, Lynne. "Variability in coloured titanium surfaces for jewellery." Thesis, University of the Arts London, 2009. http://ualresearchonline.arts.ac.uk/5451/.
Full textSheeran, Conor P. "Biological responses to nanostructured titanium dioxide surfaces." Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526963.
Full textMihoc, R. I. "Functional studies of calcium enriched titanium surfaces." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1444841/.
Full textPlaisance, Marc Charles. "Cellular Response to Surface Wettability Gradient on Microtextured Surfaces." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53730.
Full textHarte, Sean Paul. "Surface EXAFS studies of chromium and titanium upon #alpha#-quartz (0001) surfaces." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263901.
Full textPark, Jung Hwa. "The role of surface chemistry and wettability of microtextured titanium surfaces in osteoblast differentiation." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44732.
Full textZhu, Bo, and lswan@deakin edu au. "Tribology of lubricated nitrocarburised and titanium carbonitride surfaces." Deakin University. School of Engineering and Technology, 2004. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20061024.112959.
Full textBooks on the topic "Titanium – Surfaces"
Symposium, on Surface Performance of Titanium (1996 Cincinnati Ohio). Surface performance of titanium: Proceedings of a Symposium on Surface Performance of Titanium sponsored by the Titanium Committee of TMS, held at the 1996 Fall TMS Meeting in Cincinnati, Ohio, October 7-9, 1996. Warrendale, Pa: Minerals, Metals & Materials Society, 1996.
Find full textSurface engineering of light alloys: Aluminium, magnesium and titanium alloys. Boca Raton: CRC Press, 2010.
Find full textVadiraj, Aravind. Surface modified biochemical titanium alloys. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textVadiraj, Aravind. Surface modified biochemical titanium alloys. New York: Nova Science Publishers, 2010.
Find full textVadiraj, Aravind. Surface modified biochemical titanium alloys. New York: Nova Science Publishers, 2010.
Find full textLanagan, John. Plasma surface engineering of titanium alloys. Birmingham: University of Birmingham, 1988.
Find full textRezai-Tabrizi, M. R. Surface treatments of titanium and its alloys. Manchester: UMIST, 1989.
Find full text(Ramaswamy), Narayanan R., and Rautray Tapash R, eds. Surface modification of titanium for biomaterial applications. New York: Nova Science Publishers, 2010.
Find full textSalehi, Mehdi. Tribological characterisation of surface engineered titanium alloys. Birmingham: University ofBirmingham, 1990.
Find full textBook chapters on the topic "Titanium – Surfaces"
Young, F. A., and J. C. Keller. "Titanium Implant Surfaces." In Proceedings of the First International Conference on Interfaces in Medicine and Mechanics, 143–47. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7477-0_14.
Full textVörös, Janos, Marco Wieland, Laurence Ruiz-Taylor, Marcus Textor, and Donald M. Brunette. "Characterization of Titanium Surfaces." In Engineering Materials, 87–144. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56486-4_5.
Full textXiao, Shou-Jun, Gregory Kenausis, and Marcus Textor. "Biochemical Modification of Titanium Surfaces." In Engineering Materials, 417–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56486-4_13.
Full textSchmidt, M. "Chemical Reactions at Titanium Surfaces." In The Thrust Plate Hip Prosthesis, 133–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60502-4_12.
Full textMorra, Marco, Clara Cassinelli, Giovanna Cascardo, and Daniele Bollati. "Collagen I-Coated Titanium Surfaces for Bone Implantation." In Biological Interactions on Materials Surfaces, 373–96. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-98161-1_19.
Full textShkrebtii, A., F. Filippone, and A. Fasolino. "Clean surfaces of titanium dioxide TiO2 and other rutile structures." In Physics of Solid Surfaces, 111–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_21.
Full textBickley, R. I., R. K. M. Jayanty, V. Vishwanathan, and J. A. Navio. "Photo-Induced Processes at Titanium Dioxide Surfaces." In Homogeneous and Heterogeneous Photocatalysis, 555–65. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4642-2_32.
Full textWang, Jiangxue, Ying Hou, and Jiawei Ma. "Titanium surfaces, biochemical modification by peptides and ECM proteins." In Encyclopedia of Metalloproteins, 2248. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1533-6_200001.
Full textBuser, Daniel. "Titanium for Dental Applications (II): Implants with Roughened Surfaces." In Engineering Materials, 875–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56486-4_25.
Full textAn, Yuehuei H., Melissa Farino, Qian K. Kang, Marina V. Demcheva, and John Vournakis. "Glucosamine Coating for Inhibiting Bacterial Adhesion to Titanium Surfaces." In Advanced Biomaterials VI, 343–46. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-967-9.343.
Full textConference papers on the topic "Titanium – Surfaces"
D'Anna, Emilia, M. L. De Giorgi, Armando Luches, Maurizio Martino, Valentin Craciun, Ion N. Mihailescu, and Paolo Mengucci. "Titanium nitride: titanium silicide structures obtained by multipulse excimer laser irradiation." In LAMILADIS '91: International Workshop--Laser Microtechnology and Laser Diagnostics of Surfaces, edited by Nikolai I. Koroteev and Vladislav Y. Panchenko. SPIE, 1992. http://dx.doi.org/10.1117/12.58628.
Full textHoover, Brian G., Jonathan H. Turner, Brian J. Ritter, Joseph R. Michael, and Michael D. Uchic. "Polarized reflectivity for quantitative crystallography of alpha-Titanium." In Reflection, Scattering, and Diffraction from Surfaces VI, edited by Leonard M. Hanssen. SPIE, 2019. http://dx.doi.org/10.1117/12.2321601.
Full textTeraoka, K., T. Nonami, Y. Doi, H. Taoda, K. Naganuma, Y. Yokogawa, and T. Kameyama. "HYDROXYAPATITE IMPLANTATION IN TITANIUM IMPLANT’S SURFACES." In Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0141.
Full textHenning Laurindo, Carlos augusto, fred lacerda amorim, Paulo Soares, and Bruna Michelle de Freitas. "Tribological studies of EDM modified titanium surfaces." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2467.
Full textTruong, Vi Khanh, James Y. Wang, Wang Shurui, Francois Malherbe, Christopher C. Berndt, Russell J. Crawford, and Elena P. Ivanova. "Bacterial attachment response to nanostructured titanium surfaces." In 2010 International Conference on Nanoscience and Nanotechnology (ICONN). IEEE, 2010. http://dx.doi.org/10.1109/iconn.2010.6045205.
Full textMwenifumbo, Steven, Mingwei Li, and Wole Soboyejo. "Cell/surface interactions on laser-micro-textured titanium-coated silicon surfaces." In Lasers and Applications in Science and Engineering, edited by Peter R. Herman, Jim Fieret, Alberto Pique, Tatsuo Okada, Friedrich G. Bachmann, Willem Hoving, Kunihiko Washio, et al. SPIE, 2004. http://dx.doi.org/10.1117/12.531643.
Full textSartini de Oliveira, Lidiane, Cleudmar Amaral de Araújo, Fernando Lourenço de Souza, Gustavo Mendonça, Daniela B. S. Mendonça, and Sonia A. Goulart Oliveira. "Influence of Surface Energy in the Osteogenesis Process of Treated Titanium Surfaces." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52476.
Full textSamusev, Ilia, Anna V. Tcibulnikova, Vasily A. Slezhkin, Karina Matveeva, Maxim V. Demin, Artemiy Khankaev, Ivan Lyatun, and Valery V. Bryukhanov. "Transformation of refractive index spectra for titanium rough surfaces." In Metamaterials XII, edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. SPIE, 2020. http://dx.doi.org/10.1117/12.2556727.
Full textMillot, Marie-Claude, Francoise Martin, Juliette Omont, Bernard Sebille, and Yves Levy. "Immobilization of antibodies onto gold and titanium oxide surfaces." In European Symposium on Optics for Environmental and Public Safety, edited by Annamaria V. Scheggi. SPIE, 1995. http://dx.doi.org/10.1117/12.221728.
Full textSatsangi, Neera, Arpan Satsangi, Joo L. Ong, and Rajiv V. Satsangi. "Optimization of Phosphatidylserine-Modified Titanium Surfaces for Enhanced Osteoblast Response." In ASME 2006 International Manufacturing Science and Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/msec2006-21053.
Full textReports on the topic "Titanium – Surfaces"
Mizuno, Yoshiyuki. Temperature Dependence of Oxide Decomposition on Titanium Surfaces in UHV. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/798917.
Full textJervis, T. R., T. G. Zocco, J. R. Tesmer, and J. P. Hirvonen. Tribology and surface mechanical properties of excimer laser nitrided titanium. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10194306.
Full textBrown, J. R., and L. E. Galbraith. Characterization of titanium supported precious metal films by direct surface spectroscopy methods. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/304454.
Full textBedrossian, P. J. Surface topographies of two-year coupons of titanium grade 16 from long-term testing. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/15005559.
Full textBlau, Peter J., Kevin M. Cooley, Melanie J. Kirkham, and Dinesh G. Bansal. Investigation of Surface Treatments to Improve the Friction and Wear of Titanium Alloys for Diesel Engine Components. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1148409.
Full textMan, Chi-Sing, and Tongguang Zhai. Residual Stress, Micro- and Macrotexture in Surface-Enhanced Titanium Alloys: Their Nondestructive Inspection and Effects on High-Cycle Fatigue Properties. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada448675.
Full text