To see the other types of publications on this topic, follow the link: Titanocenos.

Journal articles on the topic 'Titanocenos'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Titanocenos.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pereira, Brasilio C. A., Stanlei I. Klein, and Marcos L. Dias. "Efeitos estéricos e eletrônicos de substituintes alquilas em catalisadores titanocênicos solúveis na polimerização sindioespecífica de estireno." Polímeros 9, no. 4 (1999): 110–15. http://dx.doi.org/10.1590/s0104-14281999000400019.

Full text
Abstract:
Titanocenos são catalisadores solúveis conhecidos para a polimerisação estereoespecífica de olefinas pró-quirais como o estireno. Nesse trabalho descrevemos as relações entre as características do poliestireno e a estrutura do precursor do catalisador, de fato aqueles da família (RCp)2TiCl2 (R = H, etila, iso-propila, n-propila, sec-butila, n-butila, iso-amila e ciclohexila). Todos os catalisadores são ativos para a produção de poliestireno acima de zero graus centígrados. A sindiotaticidade dos polímeros são dependentes da cadeia lateral dos anéis aromáticos do titanoceno e da temperatura da
APA, Harvard, Vancouver, ISO, and other styles
2

PEREIRA, Brasílio Carvalho de Araújo, Stanlei Ivair KLEIN, and Marcos Lopes DIAS. "Catálise estereoespecífica de estireno por titanocenos alquil-substituídos do tipo (RCp)2TiCl2." Eclética Química 25 (2000): 97–108. http://dx.doi.org/10.1590/s0100-46702000000100009.

Full text
Abstract:
Uma série de sete complexos alquil substituídos do tipo (RCp)2TiCl2 (R= H, etila, n-propila, iso-propila, n-butila, iso-amila, ciclo-hexila) foi preparada juntamente com o ainda inédito contendo R= sec-butila, e o efeito do substituinte na polimerização do estireno foi investigada à temperaturas de polimerização de 0 e 50 ºC. Foi encontrado que R = n-butila maximiza a produção de poliestireno sindiotático. Ligantes alquilas com R = RCH2- são superiores aos R = RR’CH- e ao precursor Cp2TiCl2 na produção de poliestireno sindiotático de alto peso molecular.
APA, Harvard, Vancouver, ISO, and other styles
3

Gansäuer, Andreas, Andreas Okkel, Lukas Schwach, Laura Wagner, Anja Selig, and Aram Prokop. "Triazol-substituted titanocenes by strain-driven 1,3-dipolar cycloadditions." Beilstein Journal of Organic Chemistry 10 (July 17, 2014): 1630–37. http://dx.doi.org/10.3762/bjoc.10.169.

Full text
Abstract:
An operationally simple, convenient, and mild strategy for the synthesis of triazole-substituted titanocenes via strain-driven 1,3-dipolar cycloadditions between azide-functionalized titanocenes and cyclooctyne has been developed. It features the first synthesis of titanocenes containing azide groups. These compounds constitute ‘second-generation’ functionalized titanocene building blocks for further synthetic elaboration. Our synthesis is modular and large numbers of the complexes can in principle be prepared in short periods of time. Some of the triazole-substituted titanocenes display high
APA, Harvard, Vancouver, ISO, and other styles
4

Hogan, Megan, James Claffey, Eoin Fitzpatrick, Thomas Hickey, Clara Pampillón, and Matthias Tacke. "Synthesis and Cytotoxicity Studies of Titanocene C Analogues." Metal-Based Drugs 2008 (September 30, 2008): 1–7. http://dx.doi.org/10.1155/2008/754358.

Full text
Abstract:
From the carbolithiation of 6-N,N-dimethylamino fulvene (3) and 2,4[bis(N,N-dimethylamino)methyl]-N-methylpyrrolyl lithium (2a), N-(N′,N′-dimethylaminomethyl)benzimidazolyl lithium (2b)' or p-(N,N-dimethylamino)methylphenyl lithium (2c), the corresponding lithium cyclopentadienide intermediate (4a–c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4' resulting in N,N-dimethylamino-functionalised titanocenes 5a–c. When these titanocenes were tested against a pig kidney epithelial cell line (LLC-PK), the IC50 values obtained were of 23, and 52 μM fo
APA, Harvard, Vancouver, ISO, and other styles
5

PEREIRA, Brasílio Carvalho de Araújo, and Stanlei Ivair KLEIN. "Fatores que influenciam na atividade de titanocenos em catálise homogênea de polimerização de estireno." Eclética Química 25 (2000): 199–212. http://dx.doi.org/10.1590/s0100-46702000000100016.

Full text
Abstract:
É apresentada uma revisão bibliográfica com 42 referências abordando aspectos históricos dos compostos organometálicos de titânio, sua aplicação em sistemas catalíticos utilizando metalocenos de titânio e os fatores que influenciam a catálise de alfa-olefinas com as conseqüentes repercussões nas estruturas dos polímeros.
APA, Harvard, Vancouver, ISO, and other styles
6

Selig, Anja, Laura Wagner, Iris Winkler, Thorsten Lauterbach, Andreas Gansaeuer, and Aram Prokop. "Carbonyl-Substituted Titanocenes as New Cytostatic Agents Against Lymphoma and Leukemia in Childhood." Blood 110, no. 11 (2007): 4208. http://dx.doi.org/10.1182/blood.v110.11.4208.4208.

Full text
Abstract:
Abstract Acute lymphoblastic leukemia (ALL) is the most common malignant disease in childhood. Despite a relatively good prognosis approximately one fourth of the patients suffers from relapse and, consequently, a worse prognosis. Only 40% of these children with relapsed ALL will survive. Patients who fail to achieve a complete remission in chemotherapy do not survive. This explains the need for new compounds that may overcome resistance against clinically employed cytostatic drugs. In the present study we examined novel titan-containing agents concerning their cytotoxic potential with great s
APA, Harvard, Vancouver, ISO, and other styles
7

Deally, Anthony, Frauke Hackenberg, Grainne Lally, and Matthias Tacke. "Synthesis and Biological Evaluation of Achiral Indole-Substituted Titanocene Dichloride Derivatives." International Journal of Medicinal Chemistry 2012 (June 12, 2012): 1–13. http://dx.doi.org/10.1155/2012/905981.

Full text
Abstract:
Six new titanocene compounds have been isolated and characterised. These compounds were synthesised from their fulvene precursors using Super Hydride (LiBEt3H) followed by transmetallation with titanium tetrachloride to yield the corresponding titanocene dichloride derivatives. These complexes are bis-[((1-methyl-3-diethylaminomethyl)indol-2-yl)methylcyclopentadienyl] titanium (IV) dichloride (5a), bis-[((5-methoxy-1-methyl,3-diethylaminomethyl)indol-2-yl)methylcyclopentadienyl] titanium (IV) dichloride (5b), bis-[((1-methyl,3-diethylaminomethyl)indol-4-yl)methylcyclopentadienyl] titanium (IV)
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Li Ming, and Enrique Meléndez. "Cytotoxic Properties of Titanocenyl Amides on Breast Cancer Cell Line MCF-7." Metal-Based Drugs 2010 (May 4, 2010): 1–6. http://dx.doi.org/10.1155/2010/286298.

Full text
Abstract:
A new titanocenyl amide containing flavone as pendant group has been synthesized by reaction of titanocenyl carboxylic acid chloride and 7-Aminoflavone and structurally characterized by spectroscopic methods. This species and eight previously synthesized titanocenyl amide complexes have been tested in breast adenocarcinoma cancer cell line, MCF-7. The functionalization of titanocene dichloride with amides enhances the cytotoxic activity in MCF-7. Two sets of titanocenyl amides can be identified, with IC50<100 μM and IC50>100 μM. The most cytotoxic species is Cp(CpCO-NH-C6H4-(CH2)2CH3)TiC
APA, Harvard, Vancouver, ISO, and other styles
9

Horáček, Michal, Jan Merna, Róbert Gyepes, Jan Sýkora, Jiří Kubišta, and Jiří Pinkas. "Titanocene and ansa-titanocene complexes bearing 2,6-bis(isopropyl)phenoxide ligand(s). Syntheses, characterization and use in catalytic dehydrocoupling polymerization of phenylsilane." Collection of Czechoslovak Chemical Communications 76, no. 1 (2011): 75–94. http://dx.doi.org/10.1135/cccc2010133.

Full text
Abstract:
Aryloxychloro and bis(aryloxy) titanocenes of general formula L2TiCl2–x(OAr′)x where L = η5-C5H5 (x = 1 (1) and 2 (2)), L2 = SiMe2(η5-C5H4)2 (x = 1 (3) and 2 (4)), and Ar′ = 2,6-(CHMe2)2C6H3 were prepared by the reaction of corresponding titanocene dichloride with LiOAr′ and characterized by spectroscopic methods and compound 3 by single crystal X-ray diffraction analysis. The bulky aryloxy ligand in 1 and 3 exerts a hindered rotation around the Ti–O bond on the 1H NMR time scale, resulting in its dynamic behavior in CDCl3 solution. Variable temperature NMR measurements proved the rotation bar
APA, Harvard, Vancouver, ISO, and other styles
10

Bousrez, G., I. Déchamps, J. L. Vasse, and F. Jaroschik. "Reduction of titanocene dichloride with dysprosium: access to a stable titanocene(ii) equivalent for phosphite-free Takeda carbonyl olefination." Dalton Transactions 44, no. 20 (2015): 9359–62. http://dx.doi.org/10.1039/c4dt03979c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Morcillo, Sara P., Ángela Martínez-Peragón, Verena Jakoby, et al. "Highly regioselective and chemoselective titanocene mediated Barbier-type allylation reactions." Chem. Commun. 50, no. 17 (2014): 2211–13. http://dx.doi.org/10.1039/c3cc49230c.

Full text
Abstract:
New titanocene(iii) has been developed for chemoselective α-regioselective Barbier-type reactions, constituting the first titanocene(iii) able to tolerate epoxides and readily reduced carbonyl compounds.
APA, Harvard, Vancouver, ISO, and other styles
12

Lang, Heinrich, and Dietmar Seyferth. "Synthese und Reaktivität von Alkinyl-substituierten Titanocen-Komplexen / Synthesis and Reactivity of Alkyne Substituted Titanocene Complexes." Zeitschrift für Naturforschung B 45, no. 2 (1990): 212–20. http://dx.doi.org/10.1515/znb-1990-0216.

Full text
Abstract:
(η5-C5H5)2TiCl2 (1a) reacts with one equivalent of Li–C≡C–Si(CH3)3 to yield the mono alkynyl-substituted titanocene complex η5C5H5)2,Ti(Cl)[C≡C–Si(CH3)3] (2). The reaction of 2 with another equivalent of Li–C≡C–Si(CH3)3 gives the disubstituted compound (η5-C5H5)2Ti[C≡C–Si(CH3)3]2 (3f).In general, complexes of the type (η5-C5H4R)2Ti(C≡C–R′)2 (R = H, CH3, Si(CH3)3; R′ = C6H5, C2H5, nC3H7, nC4H9, ′C4H9, Si(CH3)3), 3-5, can be prepared by the reaction of η5-C5H4R)2,TiCl2 (1) and two moles of E–C≡C–R′ (E = BrMg, Na, Li; R, R′ = see above) to give the compounds 3-5 in yields of up to 95%. The reacti
APA, Harvard, Vancouver, ISO, and other styles
13

Fianu, Godfred D., Kyle C. Schipper, and Robert A. Flowers II. "Catalytic carbonyl hydrosilylations via a titanocene borohydride–PMHS reagent system." Catalysis Science & Technology 7, no. 16 (2017): 3469–73. http://dx.doi.org/10.1039/c7cy01088e.

Full text
Abstract:
Catalytic amounts of titanocene(iii) borohydride, generated under mild conditions from commercially available titanocene dichloride, in concert with a stoichiometric hydride source is shown to effectively reduce aldehydes and ketones to their respective alcohols in aprotic media.
APA, Harvard, Vancouver, ISO, and other styles
14

Hartke, Klaus, and Frank Rauschen. "Zur Reaktion von Trialkylphosphiten mit dem Titanocen-Komplex des 4,5-Dimercapto-1,3-dithiol-2-ons / Reaction of Trialkyl Phosphites with the Titanocene Complex of 4,5-Dimercapto-1,3-dithiole-2-one." Zeitschrift für Naturforschung B 51, no. 11 (1996): 1611–17. http://dx.doi.org/10.1515/znb-1996-1114.

Full text
Abstract:
The titanocene complex 1b reacts with triethyl and trimethyl phosphite to yield the phosphonoesters 3a,b, which exist in solution as a mixture of two interconvertable conformers. The titanocene complex la is alkylated by trimethyloxonium tetrafluoroborate to form the 1,3-dithiolium tetrafluoroborate 10. The latter interacts with 9 (the lithium salt of 3a) merely by proton transfer restoring 3a. 9 condenses with aldehydes and ketones in a Horner- Wadsworth-Emmons reaction to give the titanocene complexes 16 as main products and the 4.5-bis(ethylthio)-1,3-dithiole-2-ylidene compounds 17 as bypro
APA, Harvard, Vancouver, ISO, and other styles
15

Kießling, Tilmann, and Karlheinz Sünkel. "Metalation Studies on Titanocene Dithiolates." Inorganics 6, no. 3 (2018): 85. http://dx.doi.org/10.3390/inorganics6030085.

Full text
Abstract:
Titanocene bis-arylthiolates [(C5H4X)(C5H4Y)Ti(SC6H4R)2] (X,Y = H, Cl; R = H, Me) can be prepared from the corresponding titanocene dichlorides by reacting with the thiols in the presence of DABCO as a base. They react with n-butyl lithium to give unstable Ti(III) radical anions. While the unsubstituted thiolates (X = Y = R = H) react with lithium Di-isopropylamide by decomposing to dimeric fulvalene-bridged and thiolate-bridged Ti(III) compounds, the ring-chlorinated compounds can be deprotonated with LDA and give appropriate electrophiles di-substituted and tri-substituted titanocene dithiol
APA, Harvard, Vancouver, ISO, and other styles
16

Yan, Qing, Ken Tsutsumi, and Kotohiro Nomura. "Synthesis and structural analysis of aryloxo-modified trinuclear half-titanocenes, and their use as catalyst precursors for ethylene polymerisation." RSC Advances 7, no. 66 (2017): 41345–58. http://dx.doi.org/10.1039/c7ra07581b.

Full text
Abstract:
The synthesis and structural analysis of aryloxo-modified trinuclear half-titanocenes have been explored: the Cp* analogues showed higher activities for ethylene polymerisation than the related mononuclear analogues.
APA, Harvard, Vancouver, ISO, and other styles
17

Binger, Paul, Patrik Müller, Reinhard Benn, and Richard Mynott. "Vinylcarbenkomplexe des Titanocens." Angewandte Chemie 101, no. 5 (1989): 647–48. http://dx.doi.org/10.1002/ange.19891010530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Köpf, Hartmut, and Thomas Klapötke. "Synthese und Konformationsstudien ringsubstituierter Titanocen-Dithiolen-Chelate / Synthesis and Conform ational Studies of Ring-Substituted Titanocene Dithiolene Chelates." Zeitschrift für Naturforschung B 41, no. 6 (1986): 667–70. http://dx.doi.org/10.1515/znb-1986-0601.

Full text
Abstract:
Abstract The titanocene dithiolenato chelates Cp′2Ti(S2C6H3CH3-4) and CpCp′Ti(S2C6H3CH3-4) (Cp = η5-C5H5, Cp′ = η5-C5H4CH3) were prepared by reaction o f Cp′2TiCl2 or CpCp′TiCl2 with equiva­lent amounts of 1,2 -(LiS)2C6H3CH3-4. The structure and the conform ational mobility of the η5-bonded and of the chelating ligands of the dithiolenato complexes are discussed on the basis of their temperature-dependent 1H NMR spectra. The mass spectra show metastable transitions for the fragmentation processes.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Ming, Ai-Qin Zhang, Huan-Huan Chen, Jun Chen, and Hai-Yan Chen. "Synthesis of Functionalised Titanocene Complexes." Journal of Chemical Research 2007, no. 9 (2007): 513–14. http://dx.doi.org/10.3184/030823407x244887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pinkas, Jiří, Róbert Gyepes, Ivana Císařová, Jiří Kubišta, Michal Horáček та Karel Mach. "Decamethyltitanocene hydride intermediates in the hydrogenation of the corresponding titanocene-(η2-ethene) or (η2-alkyne) complexes and the effects of bulkier auxiliary ligands". Dalton Transactions 46, № 25 (2017): 8229–44. http://dx.doi.org/10.1039/c7dt01545c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Díaz-García, Diana, Diana Cenariu, Yolanda Pérez, et al. "Modulation of the mechanism of apoptosis in cancer cell lines by treatment with silica-based nanostructured materials functionalized with different metallodrugs." Dalton Transactions 47, no. 35 (2018): 12284–99. http://dx.doi.org/10.1039/c8dt01677a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yao, Chengbo, Tobias Dahmen, Andreas Gansäuer, and Jack Norton. "Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis." Science 364, no. 6442 (2019): 764–67. http://dx.doi.org/10.1126/science.aaw3913.

Full text
Abstract:
The opening of epoxides typically requires electrophilic activation, and subsequent nucleophilic (SN2) attack on the less substituted carbon leads to alcohols with Markovnikov regioselectivity. We describe a cooperative catalysis approach to anti-Markovnikov alcohols by combining titanocene-catalyzed epoxide opening with chromium-catalyzed hydrogen activation and radical reduction. The titanocene enforces the anti-Markovnikov regioselectivity by forming the more highly substituted radical. The chromium catalyst sequentially transfers a hydrogen atom, proton, and electron from molecular hydroge
APA, Harvard, Vancouver, ISO, and other styles
23

Fernández-Gallardo, Jacob, Benelita T. Elie, Tanmoy Sadhukha, et al. "Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo." Chemical Science 6, no. 9 (2015): 5269–83. http://dx.doi.org/10.1039/c5sc01753j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Klahn, Marcus, Dirk Hollmann, Anke Spannenberg, Angelika Brückner, and Torsten Beweries. "Titanocene(iii) complexes with 2-phosphinoaryloxide ligands for the catalytic dehydrogenation of dimethylamine borane." Dalton Transactions 44, no. 27 (2015): 12103–11. http://dx.doi.org/10.1039/c5dt00275c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fischer, Malte, Fabian Reiß, and Christian Hering-Junghans. "Titanocene pnictinidene complexes." Chemical Communications 57, no. 46 (2021): 5626–29. http://dx.doi.org/10.1039/d1cc01305j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Ningbo, Jinying Wang, Xiaohong Zhang, et al. "Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C–C bond forming reactions." Dalton Trans. 43, no. 30 (2014): 11696–708. http://dx.doi.org/10.1039/c4dt00549j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wu, Ya, Xiu Wang, Yanlong Luo, et al. "Solvent strategy for unleashing the Lewis acidity of titanocene dichloride for rapid Mannich reactions." RSC Advances 6, no. 19 (2016): 15298–303. http://dx.doi.org/10.1039/c5ra27094d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vassylyev, O., A. Panarello, and J. Khinast. "Enantioselective Hydrogenations with Chiral Titanocenes." Molecules 10, no. 6 (2005): 587–619. http://dx.doi.org/10.3390/10060587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gansäuer, Andreas, Iris Winkler, Dennis Worgull, et al. "Modular Synthesis of Functional Titanocenes." Organometallics 27, no. 21 (2008): 5699–707. http://dx.doi.org/10.1021/om800700c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Křižan, Martin, Jan Honzíček, Jaromír Vinklárek, Zdeňka Růžičková, and Milan Erben. "Titanocene(iii) pseudohalides: an ESR and structural study." New Journal of Chemistry 39, no. 1 (2015): 576–88. http://dx.doi.org/10.1039/c4nj01404a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lin, Shuangjie, Yuqing Chen, Fusheng Li, Caizhe Shi, and Lei Shi. "Visible-light-driven spirocyclization of epoxides via dual titanocene and photoredox catalysis." Chemical Science 11, no. 3 (2020): 839–44. http://dx.doi.org/10.1039/c9sc05601g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

del Hierro, Isabel, Santiago Gómez-Ruiz, Yolanda Pérez, Paula Cruz, Sanjiv Prashar, and Mariano Fajardo. "Mesoporous SBA-15 modified with titanocene complexes and ionic liquids: interactions with DNA and other molecules of biological interest studied by solid state electrochemical techniques." Dalton Transactions 47, no. 37 (2018): 12914–32. http://dx.doi.org/10.1039/c8dt02011f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhu, Xuyang, Chun Chen, Binxun Yu, et al. "Titanocene dichloride and poly(o-aminophenol) as a new heterogeneous cooperative catalysis system for three-component Mannich reaction." Catalysis Science & Technology 5, no. 9 (2015): 4346–49. http://dx.doi.org/10.1039/c5cy00793c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Morcillo, Sara P., Delia Miguel, Araceli G. Campaña, Luis Álvarez de Cienfuegos, José Justicia, and Juan M. Cuerva. "Recent applications of Cp2TiCl in natural product synthesis." Org. Chem. Front. 1, no. 1 (2014): 15–33. http://dx.doi.org/10.1039/c3qo00024a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Florès, Océane, Audrey Trommenschlager, Souheila Amor, et al. "In vitro and in vivo trackable titanocene-based complexes using optical imaging or SPECT." Dalton Transactions 46, no. 42 (2017): 14548–55. http://dx.doi.org/10.1039/c7dt01981e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Suzuki, Noriyuki, Takumi Asada, Akiko Kawamura, and Yoshiro Masuyama. "Sulfur-containing stable five-membered “cycloallene” complexes: 1-thia-2-zircona- and 1-thia-2-titanacyclopenta-3,4-dienes." Organic Chemistry Frontiers 2, no. 6 (2015): 681–87. http://dx.doi.org/10.1039/c5qo00072f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tabrizi, Leila, Lukman O. Olasunkanmi, and Olatomide A. Fadare. "De novo design of thioredoxin reductase-targeted heterometallic titanocene–gold compounds of chlorambucil for mechanistic insights into renal cancer." Chemical Communications 56, no. 2 (2020): 297–300. http://dx.doi.org/10.1039/c9cc07406f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pinkas, Jiří, Róbert Gyepes, Ivana Císařová, et al. "Hydrogenation of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes." Dalton Transactions 47, no. 27 (2018): 8921–32. http://dx.doi.org/10.1039/c8dt01909f.

Full text
Abstract:
Different metal electropositivity values and steric congestion in titanocene and zirconocene moieties lead to various reaction products from bis(trimethylsilyl)acetylene complexes and hydrogen under atmospheric pressure.
APA, Harvard, Vancouver, ISO, and other styles
39

Hitchcock, Peter B., Francesca M. Kerton, and Gerard A. Lawless. "The Elusive Titanocene." Journal of the American Chemical Society 120, no. 39 (1998): 10264–65. http://dx.doi.org/10.1021/ja981934e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Horáček, Michal. "Titanocene sulfide chemistry." Coordination Chemistry Reviews 314 (May 2016): 83–102. http://dx.doi.org/10.1016/j.ccr.2015.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gómez-Ruiz, Santiago, Goran N. Kaluđerović, Sanjiv Prashar, et al. "Cytotoxic studies of substituted titanocene and ansa-titanocene anticancer drugs." Journal of Inorganic Biochemistry 102, no. 8 (2008): 1558–70. http://dx.doi.org/10.1016/j.jinorgbio.2008.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Collado, Isidro, José Botubol-Ares, María Durán-Peña, James Hanson, and Rosario Hernández-Galán. "Cp2Ti(III)Cl and Analogues as Sustainable Templates in Organic Synthesis." Synthesis 50, no. 11 (2018): 2163–80. http://dx.doi.org/10.1055/s-0036-1591986.

Full text
Abstract:
This short review aims to provide an overview of the use of Cp2Ti(III)Cl and other related titanocene(III) species as coordinating reagents­ in template reactions in the selective preparation of C–C and C–O bonds. These complexes are able to assemble two components to produce powerful reactions possessing high regio-, chemo-, diastereo-, and enantioselectivity. The titanocene templates are divided into five structural types. The chemical transformations by these valuable templates, the substrate scope and mechanistic insights will also be described.1 Introduction2 Precedents for the Coordinati
APA, Harvard, Vancouver, ISO, and other styles
43

García Santos, William H., Carlos E. Puerto Galvis, and Vladimir V. Kouznetsov. "Gd(OTf)3-catalyzed synthesis of geranyl esters for the intramolecular radical cyclization of their epoxides mediated by titanocene(iii)." Organic & Biomolecular Chemistry 13, no. 5 (2015): 1358–66. http://dx.doi.org/10.1039/c4ob02312a.

Full text
Abstract:
The catalytic activity of Gd(OTf)<sub>3</sub> for the direct esterification of geraniol and the regio- and stereo-controlled radical cyclization of their epoxides mediated by titanocene(iii) is described.
APA, Harvard, Vancouver, ISO, and other styles
44

Cini, Melchior, Huw Williams, Mike W. Fay, Mark S. Searle, Simon Woodward, and Tracey D. Bradshaw. "Enantiopure titanocene complexes – direct evidence for paraptosis in cancer cells." Metallomics 8, no. 3 (2016): 286–97. http://dx.doi.org/10.1039/c5mt00297d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Oswald, Tim, Mira Diekmann, Annika Frey, Marc Schmidtmann та Rüdiger Beckhaus. "Crystal structures of titanium–aluminium and –gallium complexes bearing twoμ2-CH3units". Acta Crystallographica Section E Crystallographic Communications 73, № 5 (2017): 691–93. http://dx.doi.org/10.1107/s2056989017004856.

Full text
Abstract:
The isotypic crystal structures of two titanocene complexes containing anEMe3unit (E =Al, Ga; Me = methyl) with twoμ2-coordinating methyl groups, namely [μ-1(η5)-(adamantan-1-yl-2κC1)cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5)-pentamethylcyclopentadienyl]aluminiumtitanium(III), [AlTi(CH3)3(C10H15)(C15H18)], and [μ-1(η5)-(adamantan-1-yl-2κC1)cycylopentadienyl]di-μ2-methyl-methyl-2κC-[1(η5)-pentamethylcyclopentadienyl]galliumtitanium(III), [GaTi(CH3)3(C10H15)(C15H18)], are reported. Reacting a dinuclear nitrogen-bridged low-valent titanium(III) complex with the Lewis acids AlMe3or GaMe3resu
APA, Harvard, Vancouver, ISO, and other styles
46

Petrov, Pavel A., Taisiya S. Sukhikh, Vladimir A. Nadolinny, Artem S. Bogomyakov, Yuliya A. Laricheva, and Alexandr V. Piskunov. "Di-tert-butylcatecholate derivatives of titanocene." New Journal of Chemistry 43, no. 17 (2019): 6636–42. http://dx.doi.org/10.1039/c9nj00771g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Skoupilova, Hana, Roman Hrstka, and Martin Bartosik. "Titanocenes as Anticancer Agents: Recent Insights." Medicinal Chemistry 13, no. 4 (2017): 334–44. http://dx.doi.org/10.2174/1573406412666161228113650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Olszewski, Ulrike, and Gerhard Hamilton. "Mechanisms of Cytotoxicity of Anticancer Titanocenes." Anti-Cancer Agents in Medicinal Chemistry 10, no. 4 (2010): 302–11. http://dx.doi.org/10.2174/187152010791162261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cangönül, Asli, Maike Behlendorf, Andreas Gansäuer, and Maurice van Gastel. "Radical-Based Epoxide Opening by Titanocenes." Inorganic Chemistry 52, no. 20 (2013): 11859–66. http://dx.doi.org/10.1021/ic401403a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ikai, Shigeru, Jun Yamashita, Yoshiyuki Kai, et al. "Butadiene polymerization with various half-titanocenes." Journal of Molecular Catalysis A: Chemical 140, no. 2 (1999): 115–19. http://dx.doi.org/10.1016/s1381-1169(98)00227-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!