To see the other types of publications on this topic, follow the link: TMC (transition metal chalcogenides).

Journal articles on the topic 'TMC (transition metal chalcogenides)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'TMC (transition metal chalcogenides).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Anand, T. Joseph Sahaya, and Mohd Zaidan. "Electro Synthesised NiTe2 Thin Films with the Influence of Additives." Advanced Materials Research 925 (April 2014): 159–63. http://dx.doi.org/10.4028/www.scientific.net/amr.925.159.

Full text
Abstract:
Solar cell is one of the promising alternative green energy sources that can provide free electricity when sunlight is converted. The absorbent materials and their synthesis methods are subject of interest mainly due to solar panel installation cost despite of free electricity generated. The well-known silicon solar cells made, either amorphous or polycrystalline are good in conversion efficiency up to 17%, but their high cost make the researchers to look for alternate materials. Semiconducting materials in thin film form such as InP, SnO2 and ZnO are being studied as the alternative materials
APA, Harvard, Vancouver, ISO, and other styles
2

Hong, Lin, Shunlong Ju, Yunhe Yang, et al. "Hollow-shell structured porous CoSe2 microspheres encapsulated by MXene nanosheets for advanced lithium storage." Sustainable Energy & Fuels 4, no. 5 (2020): 2352–62. http://dx.doi.org/10.1039/c9se01271k.

Full text
Abstract:
Cobalt diselenide (CoSe<sub>2</sub>), a representative transition-metal chalcogenide (TMC), is attracting intensive interest as an anode material for lithium ion batteries (LIBs), in view of its high specific capacity based on the conversion reaction mechanism.
APA, Harvard, Vancouver, ISO, and other styles
3

Joe, Jemee, Hyunwoo Yang, Changdeuck Bae, and Hyunjung Shin. "Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview." Catalysts 9, no. 2 (2019): 149. http://dx.doi.org/10.3390/catal9020149.

Full text
Abstract:
In the photoelectrochemical (PEC) water splitting (WS) reactions, a photon is absorbed by a semiconductor, generating electron-hole pairs which are transferred across the semiconductor/electrolyte interface to reduce or oxidize water into oxygen or hydrogen. Catalytic junctions are commonly combined with semiconductor absorbers, providing electrochemically active sites for charge transfer across the interface and increasing the surface band bending to improve the PEC performance. In this review, we focus on transition metal (di)chalcogenide [TM(D)C] catalysts in conjunction with silicon photoe
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, Kwasi, and James A. Ibers. "Rare-Earth Transition-Metal Chalcogenides." Chemical Reviews 102, no. 6 (2002): 1929–52. http://dx.doi.org/10.1021/cr010319h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Yu Li, Wei Chen, and Andrew T. S. Wee. "Two‐dimensional magnetic transition metal chalcogenides." SmartMat 2, no. 2 (2021): 139–53. http://dx.doi.org/10.1002/smm2.1031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

JAEGERMANN, W., and H. TRIBUTSCH. "Interfacial properties of semiconducting transition metal chalcogenides." Progress in Surface Science 29, no. 1-2 (1988): 1–167. http://dx.doi.org/10.1016/0079-6816(88)90015-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitchell, Kwasi, and James A. Ibers. "ChemInform Abstract: Rare-Earth Transition-Metal Chalcogenides." ChemInform 33, no. 34 (2010): no. http://dx.doi.org/10.1002/chin.200234267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baranov, N. V., N. V. Selezneva, and V. A. Kazantsev. "Magnetism and Superconductivity of Transition Metal Chalcogenides." Physics of Metals and Metallography 119, no. 13 (2018): 1301–4. http://dx.doi.org/10.1134/s0031918x18130215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, Yeonwoong, Yu Zhou, and Judy J. Cha. "Intercalation in two-dimensional transition metal chalcogenides." Inorganic Chemistry Frontiers 3, no. 4 (2016): 452–63. http://dx.doi.org/10.1039/c5qi00242g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Yingxi, Liao Zhang, Tu'an Lv, Paul K. Chu, and Kaifu Huo. "Two‐Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage." ChemSusChem 13, no. 6 (2020): 1114–54. http://dx.doi.org/10.1002/cssc.201903245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guo, Yan-Dong, Hong-Bo Zhang, Hong-Li Zeng, et al. "A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides." Physical Chemistry Chemical Physics 20, no. 32 (2018): 21113–18. http://dx.doi.org/10.1039/c8cp02929f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, Xiuquan, and Efrain E. Rodriguez. "Tetrahedral Transition Metal Chalcogenides as Functional Inorganic Materials." Chemistry of Materials 29, no. 14 (2017): 5737–52. http://dx.doi.org/10.1021/acs.chemmater.7b01561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

SALVADOR, P. A., T. O. MASON, M. E. HAGERMAN, and K. R. POEPPELMEIER. "ChemInform Abstract: Layered Transition Metal Oxides and Chalcogenides." ChemInform 29, no. 17 (2010): no. http://dx.doi.org/10.1002/chin.199817275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bronger, W., P. Müller, and D. Welz. "Magnetism of ternary alkali metal–transition metal chalcogenides with binuclear units." Physica B: Condensed Matter 276-278 (March 2000): 710–11. http://dx.doi.org/10.1016/s0921-4526(99)01814-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kuznetsov, Vitalii, Andrej Fedorov, Mihail Naberukhin, Aleksandr Berdinsky, Pavel Poltarak, and Vladimir Fedorov. "Transition metal chalcogenides as sensitive elements for gas sensors." Transaction of Scientific Papers of the Novosibirsk State Technical University, no. 3-4 (April 10, 2019): 136–46. http://dx.doi.org/10.17212/2307-6879-2018-3-4-136-146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Burdett, Jeremy K., and John F. Mitchell. "Electronic origin of nonstoichiometry in early-transition-metal chalcogenides." Chemistry of Materials 5, no. 10 (1993): 1465–73. http://dx.doi.org/10.1021/cm00034a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bennett, J. C., and F. W. Boswell. "Charge-density wave modulations in the transition metal chalcogenides." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 706–7. http://dx.doi.org/10.1017/s0424820100165999.

Full text
Abstract:
The transition metal chalcogenides, due to the typically large covalency of the metal-chalcogenide bonds, often adopt low-dimensional structures and exhibit charge-density wave (CDW) modulations. Incommensurate (IC) or commensurate (C) modulations structures are observed as well as a rich variety of phase transitions driven by the temperature dependence of the CDW amplitude and phase. Defects of the CDW modulation, including antiphase boundaries (APB) and discommensurations (DC), are of determinate importance for the mediation of these phase transitions. The microstructural phenomena occurring
APA, Harvard, Vancouver, ISO, and other styles
18

Yoo, Dongwon, Minkyoung Kim, Sohee Jeong, Jeonghee Han, and Jinwoo Cheon. "Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides." Journal of the American Chemical Society 136, no. 42 (2014): 14670–73. http://dx.doi.org/10.1021/ja5079943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tremel, Wolfgang, Holger Kleinke, Volkmar Derstroff, and Christian Reisner. "Transition metal chalcogenides: new views on an old topic." Journal of Alloys and Compounds 219, no. 1-2 (1995): 73–82. http://dx.doi.org/10.1016/0925-8388(94)05064-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jaegermann, W., and D. Schmeisser. "Reactivity of layer type transition metal chalcogenides towards oxidation." Surface Science Letters 165, no. 1 (1986): A3. http://dx.doi.org/10.1016/0167-2584(86)91160-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jaegermann, W., and D. Schmeisser. "Reactivity of layer type transition metal chalcogenides towards oxidation." Surface Science 165, no. 1 (1986): 143–60. http://dx.doi.org/10.1016/0039-6028(86)90666-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Su, Jianwei, Guiheng Liu, Lixin Liu, et al. "Recent Advances in 2D Group VB Transition Metal Chalcogenides." Small 17, no. 14 (2021): 2005411. http://dx.doi.org/10.1002/smll.202005411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Peijian, Deren Yang, and Xiaodong Pi. "Toward Wafer‐Scale Production of 2D Transition Metal Chalcogenides." Advanced Electronic Materials 7, no. 8 (2021): 2100278. http://dx.doi.org/10.1002/aelm.202100278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dai, Meng, and Rui Wang. "Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides." Small 17, no. 29 (2021): 2006813. http://dx.doi.org/10.1002/smll.202006813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mazánek, Vlastimil, Hindia Nahdi, Jan Luxa, Zdeněk Sofer, and Martin Pumera. "Electrochemistry of layered metal diborides." Nanoscale 10, no. 24 (2018): 11544–52. http://dx.doi.org/10.1039/c8nr02142b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Yang, Shizhong Wei, Kunming Pan, et al. "Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting." Chemical Engineering Journal 421 (October 2021): 129645. http://dx.doi.org/10.1016/j.cej.2021.129645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Matthews, Peter D., Paul D. McNaughter, David J. Lewis, and Paul O'Brien. "Shining a light on transition metal chalcogenides for sustainable photovoltaics." Chemical Science 8, no. 6 (2017): 4177–87. http://dx.doi.org/10.1039/c7sc00642j.

Full text
Abstract:
Transition metal chalcogenides are an important family of materials that have received significant interest in recent years as they have the potential for diverse applications ranging from use in electronics to industrial lubricants.
APA, Harvard, Vancouver, ISO, and other styles
28

SEKINE, Tomoyuki. "Lattice dynamics and Raman scattering in intercalated transition-metal chalcogenides." Journal of the Spectroscopical Society of Japan 40, no. 1 (1991): 3–14. http://dx.doi.org/10.5111/bunkou.40.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yin, Wenlong, Wendong Wang, Lei Kang, et al. "Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides." Journal of Solid State Chemistry 202 (June 2013): 269–75. http://dx.doi.org/10.1016/j.jssc.2013.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Heine, Thomas. "Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties." Accounts of Chemical Research 48, no. 1 (2014): 65–72. http://dx.doi.org/10.1021/ar500277z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rouxel, Jean. "New 1D-Materials In The Field Of Transition Metal Chalcogenides." Molecular Crystals and Liquid Crystals 121, no. 1-4 (1985): 1–13. http://dx.doi.org/10.1080/00268948508074823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Monceau, P., M. Renard, J. Richard, M. C. Saint-lager, and Z. Z. Wang. "Non-Linear Response of Transition Metal Tri-and Tetra-Chalcogenides." Molecular Crystals and Liquid Crystals 121, no. 1-4 (1985): 39–47. http://dx.doi.org/10.1080/00268948508074828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

SUGIMOTO, Jun, and Kazuhito SHINTANI. "10113 Analysis of the electronic properties of transition metal chalcogenides." Proceedings of Conference of Kanto Branch 2015.21 (2015): _10113–1_—_10113–2_. http://dx.doi.org/10.1299/jsmekanto.2015.21._10113-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Powell, A. V. "Chapter 7. Intercalation compounds of low-dimensional transition metal chalcogenides." Annual Reports Section "C" (Physical Chemistry) 90 (1993): 177. http://dx.doi.org/10.1039/pc9939000177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

POWELL, A. V. "ChemInform Abstract: Intercalation Compounds of Low-Dimensional Transition Metal Chalcogenides." ChemInform 26, no. 20 (2010): no. http://dx.doi.org/10.1002/chin.199520241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Li, Xiaobo, Chao Chen, Yang Yang, Zhibin Lei, and Hua Xu. "2D Re‐Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities." Advanced Science 7, no. 23 (2020): 2002320. http://dx.doi.org/10.1002/advs.202002320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sarma, Saurav Chandra, and Sebastian C. Peter. "Structurally ordered transition metal-based chalcogenides for oxygen reduction reaction." Acta Crystallographica Section A Foundations and Advances 73, a2 (2017): C1271. http://dx.doi.org/10.1107/s2053273317083036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brec, R. "Host structure modification upon lithium intercalation in transition metal chalcogenides." Materials Science and Engineering: B 3, no. 1-2 (1989): 73–79. http://dx.doi.org/10.1016/0921-5107(89)90181-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Krishnamoorthy, Aravind, Minh A. Dinh, and Bilge Yildiz. "Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe1+xS." Journal of Materials Chemistry A 5, no. 10 (2017): 5030–35. http://dx.doi.org/10.1039/c6ta10538f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Luo, Langli, Benliang Zhao, Bin Xiang, and Chong-Min Wang. "Size-controlled Intercalation to Conversion Transition in Lithiation of Transition Metal Chalcogenides–NbSe3." Microscopy and Microanalysis 22, S3 (2016): 1372–73. http://dx.doi.org/10.1017/s1431927616007704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Luo, Langli, Benliang Zhao, Bin Xiang, and Chong-Min Wang. "Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides—NbSe3." ACS Nano 10, no. 1 (2015): 1249–55. http://dx.doi.org/10.1021/acsnano.5b06614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Song-Lin, Kazuhito Tsukagoshi, Emanuele Orgiu, and Paolo Samorì. "Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors." Chemical Society Reviews 45, no. 1 (2016): 118–51. http://dx.doi.org/10.1039/c5cs00517e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Xia, Baorui, Daqiang Gao, and Desheng Xue. "Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations." Nanoscale 13, no. 30 (2021): 12772–87. http://dx.doi.org/10.1039/d1nr02967c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Junwei, Hua Wang, Chen Fang, Liang Fu, and Xiaofeng Qian. "van der Waals Stacking-Induced Topological Phase Transition in Layered Ternary Transition Metal Chalcogenides." Nano Letters 17, no. 1 (2016): 467–75. http://dx.doi.org/10.1021/acs.nanolett.6b04487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Miyauchi, H., T. Koide, T. Shidara, et al. "Soft X-ray Magnetic Circular Dichroism in 3d Transition-Metal Chalcogenides." Journal of the Magnetics Society of Japan 23, no. 1_2 (1999): 504–6. http://dx.doi.org/10.3379/jmsjmag.23.504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Burdett, Jeremy K., Slavi C. Sevov, and Oleg N. Mryasov. "Origin of Nonstoichiometry in ScS and Other Early Transition Metal Chalcogenides." Journal of Physical Chemistry 99, no. 9 (1995): 2696–700. http://dx.doi.org/10.1021/j100009a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vante, N. Alonso, W. Jaegermann, H. Tributsch, W. Hoenle, and K. Yvon. "Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters." Journal of the American Chemical Society 109, no. 11 (1987): 3251–57. http://dx.doi.org/10.1021/ja00245a013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ferry, D. K. "Electron transport in some transition metal di-chalcogenides: MoS2 and WS2." Semiconductor Science and Technology 32, no. 8 (2017): 085003. http://dx.doi.org/10.1088/1361-6641/aa7472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cui, Yu, Yao Xiao, Yong Sun, Jia-Pei Deng, Zhi-Qing Li, and Zi-Wu Wang. "Multiphonon replicas of the excitonic spectroscopy in monolayer transition metal chalcogenides." Journal of Applied Physics 128, no. 20 (2020): 204302. http://dx.doi.org/10.1063/5.0025764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mirov, Sergey B., Igor S. Moskalev, Sergey Vasilyev, et al. "Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 5 (2018): 1–29. http://dx.doi.org/10.1109/jstqe.2018.2808284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!