To see the other types of publications on this topic, follow the link: TMTSF.

Journal articles on the topic 'TMTSF'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'TMTSF.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chudak, Denis M., Olga N. Kazheva, Irina D. Kosenko, Gennady V. Shilov, Igor B. Sivaev, Georgy G. Abashev, Elena V. Shklyaeva, et al. "New Radical-Cation Salts Based on the TMTTF and TMTSF Donors with Iron and Chromium Bis(Dicarbollide) Complexes: Synthesis, Structure, Properties." Crystals 11, no. 9 (September 14, 2021): 1118. http://dx.doi.org/10.3390/cryst11091118.

Full text
Abstract:
New radical-cation salts based on tetramethyltetrathiafulvalene (TMTTF) and tetramethyltetraselenefulvalene (TMsTSF) with metallacarborane anions (TMTTF)[3,3′-Cr(1,2-C2B9H11)2], (TMTTF)[3,3′-Fe(1,2-C2B9H11)2], and (TMTSF)2[3,3′-Cr(1,2-C2B9H11)2] were synthesized by electrocrystallization. Their crystal structures were determined by single crystal X-ray diffraction, and their electrophysical properties in a wide temperature range were studied. The first two salts are dielectrics, while the third one is a narrow-gap semiconductor: σRT = 5 × 10−3 Ohm−1cm−1; Ea ≈ 0.04 eV (aprox. 320 cm−1).
APA, Harvard, Vancouver, ISO, and other styles
2

Zigon, Nicolas, and Narcis Avarvari. "[4]Helicene-based anions in electrocrystallization with tetrachalcogeno-fulvalene donors." CrystEngComm 24, no. 10 (2022): 1942–47. http://dx.doi.org/10.1039/d2ce00091a.

Full text
Abstract:
Electrocrystallization of TMTTF, TMTSF and BEDT-TTF donors with the first helicene sulfonate-based anions provided crystalline radical cation salts with various donor : anion stoichiometries and packing patterns.
APA, Harvard, Vancouver, ISO, and other styles
3

Mroweh, Nabil, Cécile Mézière, Magali Allain, Pascale Auban-Senzier, Enric Canadell, and Narcis Avarvari. "Conservation of structural arrangements and 3 : 1 stoichiometry in a series of crystalline conductors of TMTTF, TMTSF, BEDT-TTF, and chiral DM-EDT-TTF with the oxo-bis[pentafluorotantalate(v)] dianion." Chemical Science 11, no. 37 (2020): 10078–91. http://dx.doi.org/10.1039/d0sc03665j.

Full text
Abstract:
Conducting radical cation salts of TMTTF, TMTSF, BEDT-TTF and DM-EDT-TTF with the oxo-bis(pentafluorotantalate) dianion [Ta2F10O]2− show similar packing and stoichiometry.
APA, Harvard, Vancouver, ISO, and other styles
4

Yoshino, Harukazu, Yoshiki Iwasaki, Rika Tanaka, Yuka Tsujimoto, and Chiaki Matsuoka. "Crystal Structures and Electrical Resistivity of Three Exotic TMTSF Salts with I 3 − : Determination of Valence by DFT and MP2 Calculations." Crystals 10, no. 12 (December 8, 2020): 1119. http://dx.doi.org/10.3390/cryst10121119.

Full text
Abstract:
Three novel organic conductors (TMTSF)8(I3)5, (TMTSF)5(I3)2, and (TMTSF)4(I3)4·THF (THF = tetrahydrofuran) were synthesized and their crystal structures were characterized by X-ray diffraction analyses, where TMTSF denotes tetramethyltetraselenafulvalene. The crystals of both the (TMTSF)8(I3)5 and (TMTSF)5(I3)2 are composed of one-dimensional stacks of TMTSF trimers separated by TMTSF monomers. The crystal of the (TMTSF)4(I3)4·THF is composed of the TMTSF tetramers and I3− tetramers; and regarded as the elongated rock-salt structure. The electrical conductivity of the (TMTSF)8(I3)5 and (TMTSF)5(I3)2 is about 60 and 50 S·cm−1 at room temperature, respectively. The electrical resistivity of (TMTSF)8(I3)5 is weakly metallic below room temperature and rapidly increases below 88 and 53 K on cooling suggesting two possible phase transitions. The electrical resistivity of (TMTSF)5(I3)2 is semiconducting below room temperature but shows an anomaly around 190 K, below which the activation energy becomes small. The application of hydrostatic pressure up to 1.7 GPa do not change these behaviors of (TMTSF)8(I3)5 and (TMTSF)5(I3)2 very much. A method to evaluate the non-integer valence of crystallographically independent TMTSF molecules is developed by using the DFT (density-functional-theory) and MP2 (Hartree–Fock calculations followed by Møller–Plesset correlation energy calculations truncated at second order) calculations. It is shown that the method gives the valence of the TMTSF molecules of the I3 salts consistent with their electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Pasquier, C., P. Auban-Senzier, T. Vuletic, S. Tomic, M. Heritier, and D. Jerome. "Coexistence of superconductivity and spin density wave orderings in Bechgaard and Fabre salts." Journal de Physique IV 12, no. 9 (November 2002): 197–200. http://dx.doi.org/10.1051/jp4:20020394.

Full text
Abstract:
In a small range of pressure, superconductivity (SC) and Spin Density Wave (SDW) states are shown to coexist in the Bechgaard salt (TMTSF)2PF6 and the Fabre salt (TMTTF)2BF4. In (TMTSF)2PF6, a precise investigation of the (P,T) phase diagram has led us to demonstrate the coexistence of the two phases with a superconducting critical temperature which is pressure independent while the critical current at zero field is strongly depressed as the pressure is decreased. In (TMTTF)2BF4, using non-linear transport measurements, we present the signature of the presence of 1D superconducting filaments in a small range of pressure. We also investigate the compound under a magnetic field applied along the c*-axis: the upper critical field is more or less pressure independent and is about 2 Tesla (at zero temperature). We suggest that such a high critical field is compatible with the penetration of the magnetic field in the insulating regions of the compound in a similar way of Josephson vortices in layered superconductors.
APA, Harvard, Vancouver, ISO, and other styles
6

LAL, SIDDHARTHA, and MUKUL S. LAAD. "ORDERING FROM FRUSTRATION IN A STRONGLY CORRELATED ONE-DIMENSIONAL SYSTEM." International Journal of Modern Physics B 23, no. 18 (July 20, 2009): 3687–708. http://dx.doi.org/10.1142/s0217979209053254.

Full text
Abstract:
We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. We find two different charge-ordered (CO) ground states (Wigner and Peierls) as the strength of the longer range interactions is varied. At lower energies, the two CO states drive different spin-ordered ground states (Heisenberg antiferromagnet and dimerised respectively), reminiscent of the phase diagram of the TMTTF and TMTSF organic charge transfer salts. Several response functions computed in the quantum critical regime bear a remarkable resemblance to recent experimental observations related to CO in the organic TMTTF systems. RPA studies of coupled chains reveal a phase diagram with the ordered phase extended to finite temperatures and a phase boundary ending at a quantum critical point (QCP). Critical quantum fluctuations at the QCP enhance the transverse dispersion, leading to a dimensional crossover and a T = 0 deconfinement transition from insulating chains to anisotropic metallic planar behavior. Numerical estimates for the hierarchy of energy scales associated with charge and spin order and the dimensional crossover compare well with the values obtained experimentally. This leads us to propose that the TMTTF and TMTSF systems are proximate to a QCP associated with T = 0 charge order.
APA, Harvard, Vancouver, ISO, and other styles
7

Mortensen, Kell, and E. M. Engler. "Coulomb Repulsion in (TMTSF)2X and (Tmttf)2X." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 293–96. http://dx.doi.org/10.1080/00268948508075173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dressel, M., P. Hesse, S. Kirchner, G. Untereiner, M. Dumm, J. Hemberger, A. Loidl, and L. Montgomery. "Charge and spin dynamics of TMTSF and TMTTF salts." Synthetic Metals 120, no. 1-3 (March 2001): 719–20. http://dx.doi.org/10.1016/s0379-6779(00)00605-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsunaga, N., K. Nomura, T. Nakamura, T. Takahashi, G. Saito, S. Takasaki, J. Yamada, S. Nakatsuji, and H. Anzai. "Static magnetic susceptibility in (TMTTF)2Br and (TMTSF)2AsF6." Physica B: Condensed Matter 284-288 (July 2000): 1583–84. http://dx.doi.org/10.1016/s0921-4526(99)02835-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, W., S. T. Hannahs, L. Y. Chiang, R. Upasani, and P. M. Chaikin. "Magnetothermopower study of (TMTSF)2PF6(where TMTSF is tetramethyltetraselenafulvalene)." Physical Review B 45, no. 23 (June 15, 1992): 13566–71. http://dx.doi.org/10.1103/physrevb.45.13566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tomic, S., P. Auban-Senzier, and D. Jérome. "Charge localization in [(TMTTF)0.5(TMTSF)0.5]2ReO4: a pressure study." Synthetic Metals 103, no. 1-3 (June 1999): 2197–98. http://dx.doi.org/10.1016/s0379-6779(98)00899-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Homes, C. C., and J. E. Eldridge. "Infrared optical properties of (TMTSF)2ReO4and (TMTSF)2BF4(where TMTSF is tetramethyltetraselenafulvalene) compared with several model calculations." Physical Review B 42, no. 15 (November 15, 1990): 9522–33. http://dx.doi.org/10.1103/physrevb.42.9522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

LEBED, A. G. "TRIPLET SUPERCONDUCTIVITY ORDER PARAMETER IN AN ORGANIC SUPERCONDUCTOR (TMTSF)2PF6." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3271. http://dx.doi.org/10.1142/s0217979202014139.

Full text
Abstract:
We argue that an organic superconductor (TMTSF)2PF6 under pressure P = 6 kbar is a triplet superconductor1,2 with a spin part of the triplet order parameter being d(k) = (dx (k) ≠ 0, dy (k) = 0, dz (k) = 0). We obtain these results by means of an analysis of the anisotropic experimental critical fields H c2 (see I. J. Lee et al., Phys. Rev. Lett.78, 3555 (1997)). By using symmetry arguments, we also discuss the most probably orbital part of the triplet order parameter in (TMTSF)2PF6. Our analysis is in accordance with the very recent Knight shift data obtained on (TMTSF)2PF6.
APA, Harvard, Vancouver, ISO, and other styles
14

Dumm, M., A. Loidl, B. Alavi, K. Starkey, L. Montgomery, and M. Dressel. "Comprehensive ESR study of the antiferromagnetic ground states in the one-dimensional spin systems (TMTSF)2PF6, (TMTSF)2AsF6, and (TMTTF)2Br." Physical Review B 62, no. 10 (September 2000): 6512–20. http://dx.doi.org/10.1103/physrevb.62.6512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Allain, Magali, Cécile Mézière, Pascale Auban-Senzier, and Narcis Avarvari. "Old Donors for New Molecular Conductors: Combining TMTSF and BEDT-TTF with Anionic (TaF6)1−x/(PF6)x Alloys." Crystals 11, no. 4 (April 7, 2021): 386. http://dx.doi.org/10.3390/cryst11040386.

Full text
Abstract:
Tetramethyl-tetraselenafulvalene (TMTSF) and bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) are flagship precursors in the field of molecular (super)conductors. The electrocrystallization of these donors in the presence of (n-Bu4N)TaF6 or mixtures of (n-Bu4N)TaF6 and (n-Bu4N)PF6 provided Bechgaard salts formulated as (TMTSF)2(TaF6)0.84(PF6)0.16, (TMTSF)2(TaF6)0.56(PF6)0.44, (TMTSF)2(TaF6)0.44(PF6)0.56 and (TMTSF)2(TaF6)0.12(PF6)0.88, together with the monoclinic and orthorhombic phases δm-(BEDT-TTF)2(TaF6)0.94(PF6)0.06 and δo-(BEDT-TTF)2(TaF6)0.43(PF6)0.57, respectively. The use of BEDT-TTF and a mixture of (n-Bu4N)TaF6/TaF5 afforded the 1:1 phase (BEDT-TTF)2(TaF6)2·CH2Cl2. The precise Ta/P ratio in the alloys has been determined by an accurate single crystal X-ray data analysis and was corroborated with solution 19F NMR measurements. In the previously unknown crystalline phase (BEDT-TTF)2(TaF6)2·CH2Cl2 the donors organize in dimers interacting laterally yet no organic-inorganic segregation is observed. Single crystal resistivity measurements on the TMTSF based materials show typical behavior of the Bechgaard phases with room temperature conductivity σ ≈ 100 S/cm and localization below 12 K indicative of a spin density wave transition. The orthorhombic phase δo-(BEDT-TTF)2(TaF6)0.43(PF6)0.57 is semiconducting with the room temperature conductivity estimated to be σ ≈ 0.16–0.5 S/cm while the compound (BEDT-TTF)2(TaF6)2·CH2Cl2 is also a semiconductor, yet with a much lower room temperature conductivity value of 0.001 to 0.0025 S/cm, in agreement with the +1 oxidation state and strong dimerization of the donors.
APA, Harvard, Vancouver, ISO, and other styles
16

Dressel, Martin. "Electrodynamics of Bechgaard Salts: Optical Properties of One-Dimensional Metals." ISRN Condensed Matter Physics 2012 (September 24, 2012): 1–21. http://dx.doi.org/10.5402/2012/732973.

Full text
Abstract:
The electrodynamic properties of the quasi-one-dimensional organic conductors (TMTSF)2X are discussed, with particular emphasis on important deviations from the simple Drude model, the transition from a Luttinger-liquid to a Fermi-liquid behavior at the dimensional crossover when pressure is applied or temperature reduced, indications of a pseudogap as well as a low-frequency collective mode. Superconductivity and spin-density-wave ground states breaking the symmetry and gaps should occur in the excitation spectra. The previous literature is summarized and the current status of our understanding presented. Novel THz experiments on (TMTSF)2PF6 and (TMTSF)2ClO4 not only shine light into some of the open questions, but also pose new ones.
APA, Harvard, Vancouver, ISO, and other styles
17

TAKAHASHI, S., A. E. KOVALEV, S. HILL, S. TAKASAKI, J. YAMADA, H. ANZAI, J. S. QUALLS, et al. "FERMI SURFACE STUDIES OF QUASI-1D and QUASI-2D ORGANIC SUPERCONDUCTORS USING PERIODIC ORBIT RESONANCE IN HIGH MAGNETIC FIELDS." International Journal of Modern Physics B 18, no. 27n29 (November 30, 2004): 3499–504. http://dx.doi.org/10.1142/s0217979204026895.

Full text
Abstract:
We have studied periodic orbit resonances (PORs) in order to probe the topology of the Fermi surface (FS) of the quasi-1D organic conductor ( TMTSF )2 ClO 4 and the quasi-2D organic conductors κ-( ET )2 Cu ( NCS )2 and κ-( ET )2 I 3. The FS of ( TMTSF )2 ClO 4 consists of a pair of weakly corrugated open sheets, while κ-( ET )2 Cu ( NCS )2 and κ-( ET )2 I 3 additionally possess warped cylindrical FS sections. In this paper, we review the POR technique for the straightforward case of ( TMTSF )2 ClO 4. We then report on a detailed study of the FS topology for κ-( ET )2 Cu ( NCS )2.
APA, Harvard, Vancouver, ISO, and other styles
18

Kang, W., J. R. Cooper, and D. Jérome. "Quantized Hall effect in the organic superconductor (TMTSF)2ReO4(TMTSF=tetramethyltetraselenafulvalinium)." Physical Review B 43, no. 13 (May 1, 1991): 11467–70. http://dx.doi.org/10.1103/physrevb.43.11467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kobayashi, K., E. Ohmichi, and T. Osada. "Growth and Transport Measurement of (TMTSF)2PF6/(TMTSF)2ClO4 Hetero-Junctions." Synthetic Metals 135-136 (April 2003): 679–80. http://dx.doi.org/10.1016/s0379-6779(02)00780-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chung, M., E. Figueroa, Y. K. Kuo, Yiqin Wang, J. W. Brill, T. Burgin, and L. K. Montgomery. "Thermodynamics of the anion ordering transitions in (TMTSF)2ReO4and (TMTSF)2BF4." Physical Review B 48, no. 13 (October 1, 1993): 9256–63. http://dx.doi.org/10.1103/physrevb.48.9256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Korín-Hamzíc, B., M. Basletić, D. Zanchi, A. Hamzić, S. Tomić, and J. M. Fabre. "Galvanomagnetic properties of quasi-ID organic conductors (TMTSF)2NO3 and (TMTTF)2Br." Synthetic Metals 85, no. 1-3 (March 1997): 1535–36. http://dx.doi.org/10.1016/s0379-6779(97)80336-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Matsunaga, N., A. Ayari, P. Moncea, K. Yamashita, A. Ishikawa, K. Nomura, M. Watanabe, J. Yamada, and S. Nakatsuji. "FISDW in quasi-one dimensional organic conductors with the dimerized gap due to anion ordering." Journal de Physique IV 12, no. 9 (November 2002): 381–84. http://dx.doi.org/10.1051/jp4:20020443.

Full text
Abstract:
Magnetoresistance and Hall resistance measurements have been carried out in the FISDW phase of deuterated (TMTSF)2C1O4 for various cooling rates through the anion ordering temperature. The Hall resistance in the intermediate cooled state, observed a very stable quantum Hall state above 9.0 T for slowly cooled, shows a step-like change from the phase between 10 and 17 T to the phase between 20 and 25 T with hysteresis between 14 and 21 T. This result suggests that there is a new phase transition around 15 T in deuterated (TMTSF)4ClO4. A possible ground state of the FISDW phase of (TMTSF)2C1O4 for various cooling rates is discussed from the viewpoint of the peculiar SDW nesting vector stabilized by the dimerized gap due to anion ordering.
APA, Harvard, Vancouver, ISO, and other styles
23

Spitsina, N. G., S. V. Konovalikhin, V. N. Semkin, A. Graja, A. A. Lobach, and A. F. Gurov. "Synthesis, Spectral Investigations, and Thermal Stability of [60]Fullerene Complexes with TMTSF: 2(C60) · 2(TMTSF) · (C6H6), C60 · TMTSF · 2(CS2), and 2(C60) · 2(TMTSF) · (C6H5Cl)." Fullerenes, Nanotubes and Carbon Nanostructures 12, no. 1-2 (January 2, 2005): 165–68. http://dx.doi.org/10.1081/fst-120027151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wan, Qingyun, Masanori Wakizaka, Haitao Zhang, Yongbing Shen, Nobuto Funakoshi, Chi-Ming Che, Shinya Takaishi, and Masahiro Yamashita. "A New Organic Conductor of Tetramethyltetraselenafulvalene (TMTSF) with a Magnetic Dy(III) Complex." Magnetochemistry 9, no. 3 (March 6, 2023): 77. http://dx.doi.org/10.3390/magnetochemistry9030077.

Full text
Abstract:
A new molecular conductor of (TMTSF)5[Dy(NCS)4(NO3)2]CHCl3 was prepared using the electrochemical oxidation method. The complex crystallizes in the Cmc21 (36) space group, where the partially-oxidized TMTSF molecules form a 1D (one-dimensional) column structure. The crystal shows a semiconducting behavior with a room temperature conductivity of 0.2 S·cm−1 and an activation energy of 34 meV at ambient pressure.
APA, Harvard, Vancouver, ISO, and other styles
25

Eldridge, J. E., and G. S. Bates. "The Far-Infrared Properties of (TMTSF)2Pfg and (TMTSF)2ClO4 at 6K." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 183–90. http://dx.doi.org/10.1080/00268948508075156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Biljakovic, K., J. C. Lasjaunias, and P. Monceau. "Low-temperature thermodynamical properties of Bechgaard salts : (TMTSF)2PF6 versus (TMTSF)2AsF6." Le Journal de Physique IV 09, PR10 (December 1999): Pr10–27—Pr10–31. http://dx.doi.org/10.1051/jp4:19991006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shi, X. D., W. Kang, and P. M. Chaikin. "Magnetoacoustic oscillations in (TMTSF)2ClO4in high magnetic fields, where TMTSF is tetramethyltetraselenafulvalene." Physical Review B 50, no. 3 (July 15, 1994): 1984–87. http://dx.doi.org/10.1103/physrevb.50.1984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Truong, K. D., A. D. Bandrauk, J. ZAUHAR, and C. Carlose. "Vibrational spectra of two new organic semiconductors: tetrathiafulvalene (TTF) and tetramethyltetraselenafulvalene (TMTSF) salts of paranitrophenylmalononitrile (PNMA)." Canadian Journal of Chemistry 69, no. 5 (May 1, 1991): 901–7. http://dx.doi.org/10.1139/v91-132.

Full text
Abstract:
Two new complexes of stoichiometry 2:1 are reported for the donors tetrathiafulvalene (TTF) and tetramethyltetraselenafulvalene (TMTSF) with the acceptor paranitrophenylmalononitrile (PNPMA). Both compounds are semiconductors with a resistivity of about 4 × 10−4 Ω m for (TMTSF)2PNPMA and 0.58 Ω m for (TTF)2PNPMA. The larger conductivity of the first complex can be attributed to the disorder of the PNPMA anions. Vibrational spectra were obtained by FTIR and Raman spectroscopy, in order to determine the degree of charge transfer in these systems. Both complexes have the electron distribution (D+0.4)2A−0.8. As a result the donors D stack in tetramerized units and exhibit vibronic activation of certain symmetric monomer modes, thus indicating the presence of strong electron–vibrational interactions in the donor stacks. Key words: TTF and TMTSF salts, charge transfer complexes, IR and Raman spectra, degree of charge transfer, paranitrophenylmalononitrile (PNPMA).
APA, Harvard, Vancouver, ISO, and other styles
29

Matsunaga, N., Y. Hosokawa, H. Iwasaki, K. Nomura, S. Takasaki, J. Yamada, S. Nakatsuji, et al. "Magnetic properties of the spin-density wave in (TMTSF)2X and (TMTTF)2Br." Le Journal de Physique IV 09, PR10 (December 1999): Pr10–243—Pr10–246. http://dx.doi.org/10.1051/jp4:19991061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ilakovac, V., S. Ravy, J. P. Pouget, C. Lenoir, K. Boubekeur, P. Batail, S. Dolanski Babic, et al. "Enhanced charge localization in the organic alloys [(TMTSF)1−x(TMTTF)x]2ReO4." Physical Review B 50, no. 10 (September 1, 1994): 7136–39. http://dx.doi.org/10.1103/physrevb.50.7136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ilakovac, V., S. Ravy, J. P. Pouget, C. Lenoir, K. Boubekeur, P. Batail, S. Dolanski Babic, et al. "Enhanced charge localization in the organic alloys [(TMTSF)1−x(TMTTF)x]2ReO4." Synthetic Metals 70, no. 1-3 (March 1995): 753–54. http://dx.doi.org/10.1016/0379-6779(94)02638-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Moradpour, A., K. Bechgaard, M. Barrie, C. Lenoir, K. Murata, R. C. Lacoe, M. Ribault, and D. Jerome. "The Role of TMTSF Synthesis on the Superconducting Properties of (TMTSF)2.ClO4." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 69–72. http://dx.doi.org/10.1080/00268948508075136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gor’kov, L. P., and A. G. Lebed. "Metal-phase stability of (TMTSF)2ClO4in high magnetic fields, where TMTSF is tetramethyltetraselenafulvalene." Physical Review B 51, no. 5 (February 1, 1995): 3285–88. http://dx.doi.org/10.1103/physrevb.51.3285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Thorn, R. J. "A model for electrical conductivity in (TMTSF)2ClO4, (TMTSF)2ReO4 and related materials." Journal of Physics and Chemistry of Solids 48, no. 4 (January 1987): 355–61. http://dx.doi.org/10.1016/0022-3697(87)90094-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Powell, D. K., K. P. Starkey, G. Shaw, Y. V. Sushko, L. K. Montgomery, and J. W. Brill. "ac-Calorimetry of (TMTSF)2PF6." Solid State Communications 119, no. 10-11 (August 2001): 637–40. http://dx.doi.org/10.1016/s0038-1098(01)00287-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Naughton, M. J., J. P. Ulmet, I. J. Lee, and J. M. Fabre. "Fast oscillations in (TMTSF)2X." Synthetic Metals 85, no. 1-3 (March 1997): 1531–32. http://dx.doi.org/10.1016/s0379-6779(97)80334-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Donovan, S., M. Dressel, L. Degiorgi, A. Schwartz, A. Virosztek, and G. Grüner. "Electrodynamic properties of (TMTSF)2PF6." Synthetic Metals 86, no. 1-3 (February 1997): 2181–82. http://dx.doi.org/10.1016/s0379-6779(97)81086-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ichimura, K., O. Abe, K. Nomura, S. Takasaki, J. Yamada, S. Nakatsuji, and H. Anzai. "STM spectroscopy of (TMTSF)2PF6." Synthetic Metals 103, no. 1-3 (June 1999): 2097–98. http://dx.doi.org/10.1016/s0379-6779(98)00455-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Luke, G. M., M. T. Rovers, A. Fukaya, I. M. Gat, M. I. Larkin, A. Savici, Y. J. Uemura, et al. "Unconventional superconductivity in (TMTSF)2ClO4." Physica B: Condensed Matter 326, no. 1-4 (February 2003): 378–80. http://dx.doi.org/10.1016/s0921-4526(02)01634-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kornilov, A. V., V. M. Pudalov, A. K. Klehe, A. Ardavan, J. S. Qualls, and J. Singleton. "Rapid oscillations in (TMTSF)2PF6." Journal of Low Temperature Physics 142, no. 3-4 (February 2006): 305–10. http://dx.doi.org/10.1007/bf02679512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kornilov, A. V., V. M. Pudalov, A. K. Klehe, A. Ardavan, J. S. Qualls, and J. Singleton. "Rapid Oscillations in (TMTSF)2PF6." Journal of Low Temperature Physics 142, no. 3-4 (January 24, 2007): 309–14. http://dx.doi.org/10.1007/s10909-006-9176-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Thorn, R. J., K. D. Carlson, H. H. Wang, and J. M. Williams. "Asymmetric Broadening of SE(3d5/2) XPS Spectra of (TMTSF)2ClO4 and (TMTSF)2ReO4." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 233–36. http://dx.doi.org/10.1080/00268948508075162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ulmet, Jean-Pierre, Ahmed Khmou, and Laurence Bachere. "High field magnetoresistance of (TMTSF)2ClO4 and (TMTSF)2PF6. Quantum effects and phase transitions." Physica B+C 143, no. 1-3 (November 1986): 400–402. http://dx.doi.org/10.1016/0378-4363(86)90150-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ulmet, J. P., A. Khmou, and L. Bachere. "High field transport in (TMTSF)2ClO4 and (TMTSF)2PF6. Quantum effects and phase transitions." Synthetic Metals 19, no. 1-3 (March 1987): 271–76. http://dx.doi.org/10.1016/0379-6779(87)90366-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sakata, Masafumi, Yukihiro Yoshida, Mitsuhiko Maesato, Gunzi Saito, Kazuhiko Matsumoto, and Rika Hagiwara. "Preparation of Superconducting (TMTSF)2NbF6 by Electrooxidation of TMTSF Using Ionic Liquid as Electrolyte." Molecular Crystals and Liquid Crystals 452, no. 1 (August 1, 2006): 103–12. http://dx.doi.org/10.1080/15421400500377511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Eldridge, J. E., and C. C. Homes. "Vibrational assignments in the conductivity spectra of semiconducting (TMTSF)2ReO4and (TMTSF)2BF4(where TMTSF is tetramethyltetraselenafulvalene) for radiation polarized perpendicular to the chains." Physical Review B 43, no. 17 (June 15, 1991): 13971–77. http://dx.doi.org/10.1103/physrevb.43.13971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kinoshita, Nobumori, Madoka Tokumoto, Hiroyuki Anzai, Takehiko Ishiguro, Tokio Yamabe, Hiroyuki Teramae, and Unzi Saito. "Spin and Charge Distributions on Cations in (TMTSF)2 ClO4 and (TMTTF)2 BF4." Molecular Crystals and Liquid Crystals 119, no. 1 (March 1985): 221–24. http://dx.doi.org/10.1080/00268948508075160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Korin-Hamzić, B., E. Tafra, M. Basletić, A. Hamzić, L. K. Montgomery, and M. Dressel. "Hall effect in the normal phase of the organic conductors: (TMTSF)2ReO4vs.(TMTTF)2AsF6." Journal de Physique IV (Proceedings) 114 (April 2004): 73–76. http://dx.doi.org/10.1051/jp4:2004114013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bozio, R., M. Meneghetti, C. Pecile, and F. Maran. "Dimerization, vibronic structures, and optical gaps in the (TMTTF)2X and (TMTSF)2X salts." Synthetic Metals 19, no. 1-3 (March 1987): 309–16. http://dx.doi.org/10.1016/0379-6779(87)90372-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ducasse, L., M. Abderrabba, J. Hoarau, M. Pesquer, B. Gallois, and J. Gaultier. "Temperature dependence of the transfer integrals in the (TMTSF)2X and (TMTTF)2X families." Journal of Physics C: Solid State Physics 19, no. 20 (July 20, 1986): 3805–20. http://dx.doi.org/10.1088/0022-3719/19/20/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography