Contents
Academic literature on the topic 'Tomographie robotisée'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tomographie robotisée.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Tomographie robotisée"
Rémin, Hugo. "Automatisation de la tomographie robotisée de pièces de grandes tailles. : contributions à la planification de trajectoires synchronisées de bras robotiques." Electronic Thesis or Diss., Angers, 2025. http://www.theses.fr/2025ANGE0002.
Full textThe thesis explores the automation of robotic tomography for the analysis of large parts, a key challenge in industrial sectors such as aerospace and energy. The primary objective is to overcome two major obsta cles: the feasibility of trajectories in complex configuration spaces and the scheduling of robotic tasks, while addressing strict synchronization and collision avoidance constraints. The first contribution is based on an innovative method that employs decomposition into [x]-contractible tiles, combining interval analysis and graph theory. This approach efficiently calculates the number of connected components in configuration spaces, offering a significant improvement in computational complexity compared to state of the art techniques. The second contribution introduces the Max-MatRTSP algorithm, specifically designed to coordinate two robots in a tomographic environment. This algorithm simultaneously integrates trajectory planning and task scheduling, accounting for specific industrial con straints. Validated through simulations and ex- periments on real systems, it has demon strated superior performance compared to existing methods
Banjak, Hussein. "X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI113/document.
Full textX-ray computed tomography (CT) is a powerful tool to characterize or localize inner flaws and to verify the geometric conformity of an object. In contrast to medical applications, the scanned object in non-destructive testing (NDT) might be very large and composed of high-attenuation materials and consequently the use of a standard circular trajectory for data acquisition would be impossible due to constraints in space. For this reason, the use of robotic arms is one of the acknowledged new trends in NDT since it allows more flexibility in acquisition trajectories and therefore could be used for 3D reconstruction of hardly accessible regions that might be a major limitation of classical CT systems. A robotic X-ray inspection platform has been installed at CEA LIST. The considered system integrates two robots that move the X-ray generator and detector. Among the new challenges brought by robotic CT, we focus in this thesis more particularly on the limited access viewpoint imposed by the setup where important constraints control the mechanical motion of the platform. The second major challenge is the truncation of projections that occur when only a field-of-view (FOV) of the object is viewed by the detector. Before performing real robotic inspections, we highly rely on CT simulations to evaluate the capability of the reconstruction algorithm corresponding to a defined scanning trajectory and data acquisition configuration. For this purpose, we use CIVA which is an advanced NDT simulation platform developed at CEA and that can provide a realistic model for radiographic acquisitions and is capable of simulating the projection data corresponding to a specific CT scene defined by the user. Thus, the main objective of this thesis is to develop analytical and iterative reconstruction algorithms adapted to nonstandard trajectories and to integrate these algorithms in CIVA software as plugins of reconstruction
Bussy, Victor. "Integration of a priori data to optimise industrial X-ray tomographic reconstruction." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0116.
Full textThis thesis explores research topics in the field of industrial non-destructive testing (NDT) using X-rays. The application of CT tomography has significantly expanded, and its use has intensified across many industrial sectors. Due to increasing demands and constraints on inspection processes, CT must continually evolve and adapt. Whether in terms of reconstruction quality or inspection time, X-ray tomography is constantly progressing, particularly in the so-called sparse-view strategy. This strategy involves reconstructing an object using the minimum possible number of radiographic projections while maintaining satisfactory reconstruction quality. This approach reduces acquisition times and associated costs. Sparse-view reconstruction poses a significant challenge as the tomographic problem is ill-conditioned, or, as it is often described, ill-posed. Numerous techniques have been developed to overcome this obstacle, many of which rely on leveraging prior information during the reconstruction process. By exploiting data and knowledge available before the experiment, it is possible to improve reconstruction results despite the reduced number of projections. In our industrial context, for example, the computer-aided design (CAD) model of the object is often available, which provides valuable information about the geometry of the object under study. However, it is important to note that the CAD model only offers an approximate representation of the object. In NDT or metrology, it is precisely the differences between an object and its CAD model that are of interest. Therefore, integrating prior information is complex, as this information is often "approximate" and cannot be used as is. Instead, we propose to judiciously use the geometric information available from the CAD model at each step of the process. We do not propose a single method but rather a methodology for integrating prior geometric information during X-ray tomographic reconstruction
Ourak, Mouloud. "Asservissement visuel direct fondé sur les ondelettes pour le positionnement automatique d'une sonde de tomographie par cohérence optique." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2052/document.
Full textThe technological advances have facilitated the optical biopsy approaches, unlike physical methods to take advantage of a minimally invasive, real time and repetitive procedure. The optical coherence tomography system is one of the optical biopsy techniques used in this thesis to prospect in the human body with robotized OCT endoscopic probes. Nevertheless, their control once inside the body becomes difficult, especially if the goal is following changes in the target area. The visual servoing is an ideal tool for the control and positioning of the robot. However, the amount of information present in the images allows the use of several types of visual features. In this thesis, we propose to use an innovative visual servoing feature based on wavelets. This representation developed as the evolution of the Fourier transform for non-stationary signals provides a time-frequency representation of the signal with a better extraction of the relevant information. Indeed, two visual servoing approaches based on wavelets were developed. The first approach is a 2D pose visual servoing based on spectral continuous wavelets, which ensures convergence over a larger area and decoupled control. The second is a direct 2D visual servoing based on multiresolution wavelets, mainly for small displacements positioning. However, the latter covers the 6 DOF when the previous one is limited to 3 DDL with a CCD camera. Both approaches have proven their ability to make the positioning of B-Scan OCT images. After that, we have proposed a method of partitioned positioning, that we can qualify by hybrid because it uses two image modalities to ensure SE(3) positioning of a sample. On the other side, we proposed a calibration method of B-Scan and 3D-Scan OCT images, due to the distortions generated by the optical path of the laser beam in OCT. Finally, these thesis is a beginning work for applications in positioning of 3D-Scan OCT, physiological motion compensation and monitoring tools by OCT images
Pugach, Ganna. "Développement d'une peau artificielle pour l'apprentissage d'interactions physiques et sociales sur un robot humanoïde." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0906/document.
Full textThe touch perception is considered as one of the crucial senses to be recreated in a robot so that it could generate a more flexible and agile behavior. For instance, grasping an object, as well as touch or be touched by a person. Although modern touch sensors are still very limited compared to the human skin, combined with vision and proprioception, the development of new sensors similar to human skin could multiply the robot’s capacity to interact directly and safely with a person, as well as to share his or her physical and social environment.Unlike human skin, the main touch sensors used in modern robotics are only capable of detecting the pressure and weight variations on small batches of surface. Moreover, they are often quite stiff and do not have the elastic deformation capacity intrinsic to the human skin. The purpose of this thesis is to develop a touch interface close to "artificial skin" in terms of the covered area (which can reach several square decimeters) and localization of the contact points (several dozen millinewtons). Two main aspects have been developed: (i) the engineering aspect including the development of an artificial skin prototype for a humanoid robot designed to impart a tactile perception, and (ii) the cognitive aspect that is based on the integration of multiple sensory feedbacks (tactile, visual, proprioceptive) in order to conceive a robot that can physically interact with people.The developed tactile prototype is based on the reconstruction of the electric field on the surface of a conductive material, following the principle of Electrical Impedance Tomography (EIT). Our main innovation was to implement the neural network learning techniques to reconstruct the information without using the inverse matrix analytical techniques which imply time consuming computation. Moreover, we show that the application of artificial neural networks allows to obtain a much more biomimetic system, essential to understand the perception of the human touch.Then, we addressed the issue of integrating tactile and motor information. After having covered a manipulator arm with artificial skin, we have learn a neural network its body schema and enables it to adjust its compliance with tactile feedback. The functioning of the motor is based on the admittance control of the robot arm. Experiments show that neural networks can control the adaptive interaction between the robot arm and a human being by estimating the torque perceived according to the position where the touch force had been applied during the learning phase.Finally, we turned our attention to the issue of the body representation at the neuronal level, namely, how human beings perceive their own body through all their senses (visual, tactile, and proprioceptive). We have proposed a biological model in the parietal cortex, which is based on the integration of multiple sensory feedbacks from the robot’s body (its arm) and on the synchronization of visual and proprioceptive feedback. Our results show the capacity to perceive the body image with the emergence of neurons that encode a spatial visual-tactile information of the arm movement and is centered on either the robotic arm or on the object
Boulier, Thomas. "Modélisation de l'électro-localisation active chez les poissons faiblement électriques." Palaiseau, Ecole polytechnique, 2013. http://www.theses.fr/2013EPXX0108.
Full textCaravaca, Mora Oscar Mauricio. "Development of a novel method using optical coherence tomography (OCT) for guidance of robotized interventional endoscopy." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAD004.
Full textThere exists an unmet clinical need to provide doctors with a new method that streamlines minimally invasive endoscopic treatment of colorectal cancer to single operator procedures assisted by in-situ and real-time accurate tissue characterization for informed treatment decisions. A promising solution to this problem has been developed at the ICube laboratory, in which the flexible interventional endoscope (Karl Storz) was completely robotized, so allowing a single operator to independently telemanipulate the endoscope and two insertable therapeutic instruments with a joint control unit. However, the robot-assisted flexible endoscope is subject to the same diagnostic accuracy limitations as standard endoscopy systems. It has been demonstrated that endoscopic optical coherence tomography (OCT) has a good potential for imaging disorders in the gastrointestinal tract and differentiating healthy tissue from diseased. Neither OCT, nor the robotized endoscope can solve the limitations of current standard of care for colon cancer management alone. Combining these two technologies and developing a new platform for early detection and treatment of cancer is the main interest of this work, with the aim of developing a state-of-the-art OCT imaging console and probe integrated with the robotized endoscope. The capabilities of this new technology for imaging of the interior of the large intestine were tested in pre-clinical experiments showing potential for improvement in margin verification during minimally invasive endoscopic treatment in the telemanipulation mode