Academic literature on the topic 'Topologia algebrica'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topologia algebrica.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Topologia algebrica"

1

Bartocci, Claudio. "“Ragionare bene su figure disegnate male”: la nascita della Topologia algebrica." Lettera Matematica Pristem 84, no. 1-2 (2013): 22–31. http://dx.doi.org/10.1007/bf03356601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peterzil, Ya'acov, and Sergei Starchenko. "Geometry, Calculus and Zil'ber's Conjecture." Bulletin of Symbolic Logic 2, no. 1 (1996): 72–83. http://dx.doi.org/10.2307/421047.

Full text
Abstract:
§1. Introduction. By and large, definitions of a differentiable structure on a set involve two ingredients, topology and algebra. However, in some cases, partial information on one or both of these is sufficient. A very simple example is that of the field ℝ (or any real closed field) where algebra alone determines the ordering and hence the topology of the field:In the case of the field ℂ, the algebraic structure is insufficient to determine the Euclidean topology; another topology, Zariski, is associated with the ield but this will be too coarse to give a diferentiable structure.A celebrated example of how partial algebraic and topological data (G a locally euclidean group) determines a differentiable structure (G is a Lie group) is Hilbert's 5th problem and its solution by Montgomery-Zippin and Gleason.The main result which we discuss here (see [13] for the full version) is of a similar flavor: we recover an algebraic and later differentiable structure from a topological data. We begin with a linearly ordered set ⟨M, <⟩, equipped with the order topology, and its cartesian products with the product topologies. We then consider the collection of definable subsets of Mn, n = 1, 2, …, in some first order expansion ℳ of ⟨M, <⟩.
APA, Harvard, Vancouver, ISO, and other styles
3

May, J. P. "Stable Algebraic Topology and Stable Topological Algebra." Bulletin of the London Mathematical Society 30, no. 3 (1998): 225–34. http://dx.doi.org/10.1112/s002460939700427x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, L. A., N. Mohammad, and A. B. Thaheem. "Double multipliers on topological algebras." International Journal of Mathematics and Mathematical Sciences 22, no. 3 (1999): 629–36. http://dx.doi.org/10.1155/s0161171299226294.

Full text
Abstract:
The main purpose of this paper is to investigate some topological properties of the double multiplier algebra on a topological algebra. LetMd(A)be the double multiplier algebra on a topological algebraA, and letuandsbe the uniform and strong operator topologies onMd(A), respectively. It is shown, under some additional hypotheses onA, that(1)Md(A)isu- ands-complete;(2)Ais au-closed two-sided ideal inMd(A);(3)Aiss-dense inMd(A);(4)sanduhave the same bounded sets;(5) each continuous onto homomorphismϕ:A→Bhas a unique extensionϕ˜:(Md(A),sA)→(Md(B),sB).
APA, Harvard, Vancouver, ISO, and other styles
5

Gebbert, Sören, Thomas Leppelt, and Edzer Pebesma. "A Topology Based Spatio-Temporal Map Algebra for Big Data Analysis." Data 4, no. 2 (2019): 86. http://dx.doi.org/10.3390/data4020086.

Full text
Abstract:
Continental and global datasets based on earth observations or computational models challenge the existing map algebra approaches. The available datasets differ in their spatio-temporal extents and their spatio-temporal granularity, which makes it difficult to process them as time series data in map algebra expressions. To address this issue we introduce a new map algebra approach that is topology based. This topology based map algebra uses spatio-temporal topological operators (STTOP and STTCOP) to specify spatio-temporal operations between topological related map layers of different time-series data. We have implemented several topology based map algebra tools in the open source geoinformation system GRASS GIS and its open source cloud processing engine actinia. We demonstrate the application of our topology based map algebra by solving real world big data problems using a single algebraic expression. This included the massively parallel computation of the NDVI from a series of 100 Sentinel2A scenes organized as earth observation data cubes. The processing was performed and benchmarked on a many core computer setup and in a distributed container environment. The design of our topology based map algebra allows us to deploy it as a standardized service in the EU Horizon 2020 project openEO.
APA, Harvard, Vancouver, ISO, and other styles
6

Hoffmann, Rudolf-E. "The Injective Hull and the -Compactification of a Continuous Poset." Canadian Journal of Mathematics 37, no. 5 (1985): 810–53. http://dx.doi.org/10.4153/cjm-1985-045-3.

Full text
Abstract:
In [57] (2.12), D. S. Scott showed that the continuous lattices, invented by him in his study of a mathematical theory of computation [56], are precisely (when they are made into topological spaces via the Scott topology) the injective T0-spaces, i.e., the injective objects in the category T0 of T0-spaces and continuous maps with regard to the class of all embeddings. Moreover, the sort of morphisms between continuous lattices Scott considered are precisely the continuous maps with regard to the respective Scott topologies. These are fairly non-Hausdorff topologies. (Indeed, the Scott topology induces the partial order of the lattice L via x ≦ y if and only if x ∊ cl{j}, the “specialization order” of the topology; hence L is Hausdorff in the Scott topology if and only if L has at most one element.) In topological algebra, compact Lawson semilattices (= compact Hausdorff topological ∧-semilattices such that the ∧-preserving continuous maps into the unit interval, with its ordinary topology and the min-semilattice structure, separate the points) with a unit element 1 have attracted considerable interest.
APA, Harvard, Vancouver, ISO, and other styles
7

Gonzaga, Narciso C. "Analyzing Some Structural Properties of Topological B-Algebras." International Journal of Mathematics and Mathematical Sciences 2019 (July 15, 2019): 1–7. http://dx.doi.org/10.1155/2019/8683965.

Full text
Abstract:
In this study, we investigate the topology on B-algebras: an algebraic system of propositional logic. We define here the notion of topological B-algebras (briefly, TB-algebras) and some properties are investigated. A characterization of TB-algebras based on neighborhoods is provided. We also provide a filterbase that generates a unique B-topology, making a TB-algebra in which the filterbase is a neighborhood base of the constant element, provided that the given B-algebra is commutative. Finally, we investigate subalgebras of TB-algebras and introduce the notion of quotient TB-algebras of the given B-algebra.
APA, Harvard, Vancouver, ISO, and other styles
8

BHATTACHARJEE, PAPIYA. "TWO SPACES OF MINIMAL PRIMES." Journal of Algebra and Its Applications 11, no. 01 (2012): 1250014. http://dx.doi.org/10.1142/s0219498811005373.

Full text
Abstract:
This paper studies algebraic frames L and the set Min (L) of minimal prime elements of L. We will endow the set Min (L) with two well-known topologies, known as the Hull-kernel (or Zariski) topology and the inverse topology, and discuss several properties of these two spaces. It will be shown that Min (L) endowed with the Hull-kernel topology is a zero-dimensional, Hausdorff space; whereas, Min (L) endowed with the inverse topology is a T1, compact space. The main goal will be to find conditions on L for the spaces Min (L) and Min (L)-1 to have various topological properties; for example, compact, locally compact, Hausdorff, zero-dimensional, and extremally disconnected. We will also discuss when the two topological spaces are Boolean and Stone spaces.
APA, Harvard, Vancouver, ISO, and other styles
9

Stratigos, Panagiotis D. "Some topologies on the set of lattice regular measures." International Journal of Mathematics and Mathematical Sciences 15, no. 4 (1992): 681–95. http://dx.doi.org/10.1155/s0161171292000905.

Full text
Abstract:
We consider the general setting of A.D. Alexandroff, namely, an arbitrary setXand an arbitrary lattice of subsets ofX,ℒ.𝒜(ℒ)denotes the algebra of subsets ofXgenerated byℒandMR(ℒ)the set of all lattice regular, (finitely additive) measures on𝒜(ℒ).First, we investigate various topologies onMR(ℒ)and on various important subsets ofMR(ℒ), compare those topologies, and consider questions of measure repleteness whenever it is appropriate.Then, we consider the weak topology onMR(ℒ), mainly whenℒisδand normal, which is the usual Alexandroff framework. This more general setting enables us to extend various results related to the special case of Tychonoff spaces, lattices of zero sets, and Baire measures, and to develop a systematic procedure for obtaining various topological measure theory results on specific subsets ofMR(ℒ)in the weak topology withℒa particular topological lattice.
APA, Harvard, Vancouver, ISO, and other styles
10

Bagheri Bardi, G. A., Zbigniew Burdak, and Akram Elyaspour. "The role of the algebraic structure in Wold-type decomposition." Forum Mathematicum 33, no. 4 (2021): 1033–49. http://dx.doi.org/10.1515/forum-2020-0362.

Full text
Abstract:
Abstract In recent works [G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, Wold-type decompositions in Baer ∗ \ast -rings, Linear Algebra Appl. 539 2018, 117–133] and [G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, The role of algebraic structure in the invariant subspace theory, Linear Algebra Appl. 583 2019, 102–118], the algebraic analogues of the three major decomposition theorems of Wold, Nagy–Foiaş–Langer and Halmos–Wallen were established in the larger category of Baer * {*} -rings. The results have their versions for commuting pairs in von Neumann algebras. In the corresponding proofs, both norm and weak operator topologies are heavily involved. In this work, ignoring topological structures, we give an algebraic approach to obtain them in Baer * {*} -rings.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Topologia algebrica"

1

Dutra, Aline Cristina Bertoncelo [UNESP]. "Grupo topológico." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T18:30:56Z : No. of bitstreams: 1 dutra_acb_me_rcla.pdf: 707752 bytes, checksum: 003487414f094d392a97a22a4efb885b (MD5)<br>Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico<br>In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
APA, Harvard, Vancouver, ISO, and other styles
2

Cobra, Thiago Taglialatela Lima. "Carlos Benjamin de Lyra e a topologia algébrica no Brasil /." Rio Claro, 2014. http://hdl.handle.net/11449/110487.

Full text
Abstract:
Orientador: Sergio Roberto Nobre<br>Banca: Alice Kimie Miwa Libardi<br>Banca: Edson de Oliveira<br>Banca: Mariana Feiteiro Cavalari Silva<br>Banca: Rosa Lucia Sverzut Baroni<br>Resumo: Este trabalho buscou contemplar três objetivos principais: investigar o início da pesquisa em Topologia Algébrica no Brasil, a trajetória do professor e pesquisador Carlos Benjamin de Lyra (1927 - 1974) e seu legado acadêmico. Inicialmente, apresentamos o surgimento da Topologia em termos mundiais. Em seguida, falamos sobre o início da pesquisa em Topologia Algébrica no Brasil, para tanto, trazemos um breve histórico do curso de Matemática na criação da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo (USP). Neste contexto, destacamos o papel desempenhado por Lyra nessa Universidade e sua contribuição para o início da pesquisa em Topologia Algébrica no Brasil, além da influência científica que exerceu sobre estudantes de sua época. Apresentamos uma biografia de nosso pesquisado, na qual constam detalhes sobre sua criação, suas mudanças e viagens ao exterior e o que o levou a escolher a Matemática e, posteriormente, a Topologia Algébrica como campos de atuação. Por fim, fazemos uma análise comentada de sua obra "Introdução à Topologia Algébrica", que serviu de texto para um curso ministrado por ele no "Primeiro Colóquio Brasileiro de Matemática", em 1957<br>Abstract: This work concerns three main areas: the investigation of the early research on Algebraic Topology in Brazil, the life of the educator and researcher Carlos Benjamin de Lyra (1927 - 1974), and his academic legacy. Initially, we present the beginning of Topology in the world. Next, we present the beginning of research on algebraic topology in Brazil. To this end, we show a brief history of Mathematics course in the creation of the Faculdade de Filosofia, Ciências e Letras of the Universidade de São Paulo (USP). In this context, we point out the relevant work of Lyra in this University and his contribution to the beginning of research in algebraic topology in Brazil, besides the scientific influence exerted over students of his day. We present a biography of Lyra including details about his life, which is changed by trips abroad and what led him to choose Mathematics and subsequently the Algebraic Topology as a field of work. Finally, we make a commented analysis of his work "Introdução à Topologia Algébrica", which served as a text book for a course taught by him in the "Primeiro Colóquio Brasileiro de Matemática", in 1957<br>Doutor
APA, Harvard, Vancouver, ISO, and other styles
3

Dutra, Aline Cristina Bertoncelo. "Grupo topológico /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.

Full text
Abstract:
Orientador: Elíris Cristina Rizziolli<br>Banca: Edivaldo Lopes da Silva<br>Banca: João Peres Vieira<br>Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico<br>Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
4

Moreira, Charles dos Anjos. "Linguagem de categorias e o Teorema de van Kampen /." Rio Claro, 2017. http://hdl.handle.net/11449/152195.

Full text
Abstract:
Orientador: Elíris Cristina Rizziolli<br>Banca: Aldício José Miranda<br>Banca: João Peres Vieira<br>Resumo: Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores<br>Abstract: This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
5

Cobra, Thiago Taglialatela Lima [UNESP]. "Carlos Benjamin de Lyra e a topologia algébrica no Brasil." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/110487.

Full text
Abstract:
Made available in DSpace on 2014-11-10T11:09:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-05-26Bitstream added on 2014-11-10T11:58:04Z : No. of bitstreams: 1 000789815.pdf: 4206098 bytes, checksum: ab4b148aff874cb0df2ac514092858e8 (MD5)<br>Este trabalho buscou contemplar três objetivos principais: investigar o início da pesquisa em Topologia Algébrica no Brasil, a trajetória do professor e pesquisador Carlos Benjamin de Lyra (1927 - 1974) e seu legado acadêmico. Inicialmente, apresentamos o surgimento da Topologia em termos mundiais. Em seguida, falamos sobre o início da pesquisa em Topologia Algébrica no Brasil, para tanto, trazemos um breve histórico do curso de Matemática na criação da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo (USP). Neste contexto, destacamos o papel desempenhado por Lyra nessa Universidade e sua contribuição para o início da pesquisa em Topologia Algébrica no Brasil, além da influência científica que exerceu sobre estudantes de sua época. Apresentamos uma biografia de nosso pesquisado, na qual constam detalhes sobre sua criação, suas mudanças e viagens ao exterior e o que o levou a escolher a Matemática e, posteriormente, a Topologia Algébrica como campos de atuação. Por fim, fazemos uma análise comentada de sua obra “Introdução à Topologia Algébrica”, que serviu de texto para um curso ministrado por ele no “Primeiro Colóquio Brasileiro de Matemática”, em 1957<br>This work concerns three main areas: the investigation of the early research on Algebraic Topology in Brazil, the life of the educator and researcher Carlos Benjamin de Lyra (1927 - 1974), and his academic legacy. Initially, we present the beginning of Topology in the world. Next, we present the beginning of research on algebraic topology in Brazil. To this end, we show a brief history of Mathematics course in the creation of the Faculdade de Filosofia, Ciências e Letras of the Universidade de São Paulo (USP). In this context, we point out the relevant work of Lyra in this University and his contribution to the beginning of research in algebraic topology in Brazil, besides the scientific influence exerted over students of his day. We present a biography of Lyra including details about his life, which is changed by trips abroad and what led him to choose Mathematics and subsequently the Algebraic Topology as a field of work. Finally, we make a commented analysis of his work “Introdução à Topologia Algébrica”, which served as a text book for a course taught by him in the “Primeiro Colóquio Brasileiro de Matemática”, in 1957
APA, Harvard, Vancouver, ISO, and other styles
6

Pinto, Guilherme Vituri Fernandes. "Sobre os grupos de Gottlieb /." São José do Rio Preto, 2016. http://hdl.handle.net/11449/137924.

Full text
Abstract:
Orientador: Thiago de Melo<br>Banca: Alice Kimie Miwa Libardi<br>Banca: Oziride Manzoli Neto<br>Resumo: O objetivo deste trabalho é estudar grande parte do artigo [6], no qual Gottlieb define o subgrupo G(X, x0) de 'pi'1(X, x0) (em que X é um CW-complexo conexo por caminhos), posteriormente chamado de "grupo de Gottlieb"; o calculamos para diversos espaços, como as esferas, o toro, os espaços projetivos, a garrafa de Klein, etc; posteriormente, estudamos o artigo [22] de Varadarajan, que generalizou o grupo de Gottlieb para um subconjunto G(A, X) de [A, X]*. Por fim, calculamos G(S[n], S[n])<br>Abstract: The goal of this work is to study partialy the article [6], in which Gottlieb has defined a subgroup G(X, x0) of 'pi'1(X, x0) (where X is a path-connected CW-complex based at x0), called "Gottlieb group" in the literature. This group is computed in this work for some spaces, namely the spheres, the torus, the projective spaces, and the Klein bottle. Further, a paper by Varadarajan[22] who has generalized Gottlieb group to a subset G(A, X)of [A, X]* is studied. Finally, the groups G(S[n], S[n]) is computed<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
7

Kitani, Patricia Massae. "Aplicações de metodos de topologia algebrica em teoria de grupos." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306933.

Full text
Abstract:
Orientador: Dessislava Hristova Kochloukova<br>Dissertação (mestrado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-04T11:05:09Z (GMT). No. of bitstreams: 1 Kitani_PatriciaMassae_M.pdf: 1013676 bytes, checksum: 794e7e67a9a90f759b790877a816b7f6 (MD5) Previous issue date: 2005<br>Resumo: Este trabalho consistiu no estudo das aplicações de topologia algébrica (recobrimentos, teorema de Van Kampen) em teoria de grupos e também, no estudo detalhado do resultado de R. Bieri, R. Strebel [Proc. London Math. Soc. (3) 41 (1980), no. 3, 439¿464], que para um grupo G do tipo FP2, ou G contém subgrupo livre não cíclico ou para qualquer subgrupo normal N C G tal que Q = G/N é abeliano, N/[N,N] é um ZQ-módulo manso via conjugação. A definição de módulo manso usa o invariante de Bieri-Strebel §A(Q), nesse caso A = N/[N,N]<br>Abstract: This work consisted of the study of the applications of algebraic topology (covering maps, Van Kampen theorem) in group theory and also, in the detailed study of a result of R. Bieri, R. Strebel [Proc. London Math. Soc. (3) 41 (1980), no. 3, 439¿464], that for a group G of type FP2, either G has a free non-cyclic subgroup or for any normal subgroup N C G such that Q = G/N is abelian, N/[N,N] is a tame ZQ-module where Q acts via conjugation. The definition of tame module uses the Bieri-Strebel invariant §A(Q), in this case A = N/[N,N]<br>Mestrado<br>Algebra<br>Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
8

Ruy, Adriana Cristiane. "Homologia singular /." Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94343.

Full text
Abstract:
Orientador: João Peres Vieira<br>Banca: Alice Kimie Miwa Libardi<br>Banca: João Carlos Vieira Sampaio<br>Resumo: A Topologia Algébrica descreve a estrutura geométrica de um espaço topológico, associando a ele um sistema algébrico, geralmente um grupo ou uma sequência de grupos. À funções contínuas entre espaços topológicos correspondem homomorfismos entre grupos associados a estes espaços. Nesta dissertação, mostraremos que a homologia singular com coeficientes em Z, constituem uma teoria de homologia, baseados nos axiomas de Samuel Eilenberg e Norman Steenrod. Apresentaremos, também, resultados clássicos como a não existência de um homeomorfismo entre Rm e Rn, para m diferente de n, o teorema do ponto fixo de Brouwer e a não existência de campo vetorial não-nulo nas esferas de dimensão par<br>Abstract: The Algebraic Topology describes the geometrical structure of a topological space by associating an algebraic system, usually a group or a sequence of groups. To continuous functions between topological spaces correspond homomorphisms between groups associated to these spaces. In this work we will show that Singular Homology with Z-coe cients constitutes a homology theory, based on the Eilenberg-Steenrod Axioms. We also present some classical results as the nonexistence of a homeomorphism between Rm and Rn, if m ≠ n, the Brouwer's xed point theorem and the nonexistence of a non-zero vector eld in even dimension spheres<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
9

Caritá, Lucas Antonio. "O índice dos pontos fixos /." Rio Claro, 2014. http://hdl.handle.net/11449/94352.

Full text
Abstract:
Orientador: João Peres Vieira<br>Banca: Alice Kimie Miwa Libardi<br>Banca: Ermínia de Lourdes Campello Fanti<br>Resumo: Este trabalho é espelhado no livro "Teoria do Índice" [1] de Daciberg Lima Gonçalves e José Carlos de Souza Kiihl, publicado em 1983 no 14o Colóquio Brasileiro de Matemática pelo IMPA. Para a leitura deste trabalho é necessário uma familiaridade prévia com Topologia Algébrica, na qual indicamos [2] e [3] para consulta. Inicialmente apresentaremos alguns pré-requisitos algébricos e topológicos necessários para o desenvolvimento do trabalho e a seguir estudaremos: pontos fixos de aplicações contínuas de X em X, em que X é um espaço topológico; Grau de Brouwer de aplicações contínuas de Sn em Sn (ou respectivamente (Bn+1; Sn) em (Bn+1; Sn)); Grau Local de uma aplicação contínua f de V em Sn em torno de um ponto Q 2 Sn, em que V Sn é um aberto e f����1(Q) é um compacto e Índices dos Pontos Fixos de uma aplicação contínua de V em Sn, em que V Rn é um aberto<br>Abstract: This work is based on the book titled "Teoria do Índice" [1] by Daciberg Lima Gonçalves and José Carlos de Souza Kiihl , published in 1983 in the 14o Brazilian Math Colloquium held by IMPA . In order to perform the reading of this work, a basic acquaintance from the algebraic topology is needed, on which we can indicate the following [2] and [3] references. Firstly, for the development of the work, some previous necessary algebraic and topological requirements are shown and the next topics will be studied: fixed points of continuous maps from X to X, where X is a topological space, Brouwer's degree of continuous maps from Sn to Sn ( or respectively (Bn+1; Sn) to (Bn+1; Sn)), Local Degree of continuous maps from V to Sn around a point Q 2 Sn, where V Sn is an open set and f����1(Q) is a compact set and Fixed Points Index of continuous maps from V to Sn, where V Rn is an open set<br>Mestre
APA, Harvard, Vancouver, ISO, and other styles
10

Lima, Amanda Ferreira de [UNESP]. "Invariantes homológicos relativos e dualidade de Poincaré." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/86494.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-03-13Bitstream added on 2014-06-13T20:48:28Z : No. of bitstreams: 1 lima_af_me_sjrp.pdf: 566999 bytes, checksum: e8609221640cc685479db8cc71b941c4 (MD5)<br>Not available
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Topologia algebrica"

1

Chatterjee, D. Topology: General and algebraic. New Age International (P) Ltd., Publishers, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singer, I. M. Lecture notes on elementary topology and geometry. University of Bangalore Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barmak, Jonathan A. Algebraic topology of finite topological spaces and applications. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barmak, Jonathan A. Algebraic Topology of Finite Topological Spaces and Applications. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22003-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roos, Jan-Erik, ed. Algebra, Algebraic Topology and their Interactions. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rotman, Joseph J. An introduction to algebraic topology. Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

service), SpringerLink (Online, ed. Topologia. Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pontri͡agin, L. S. Topologii͡a, topologicheskai͡a algebra. "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ursul, Mihail. Topological Rings Satisfying Compactness Conditions. Springer Netherlands, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Theory of topological structures: An approach to categorical topology. D. Reidel Pub. Co., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Topologia algebrica"

1

Manetti, Marco. "Complementi di topologia algebrica ↷." In UNITEXT. Springer Milan, 2008. http://dx.doi.org/10.1007/978-88-470-0757-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manetti, Marco. "Complementi di topologia algebrica ↷." In UNITEXT. Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5662-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lück, Wolfgang. "Homologische Algebra." In Algebraische Topologie. Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-80241-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patrascu, Andrei-Tudor. "Algebraic Topology." In The Universal Coefficient Theorem and Quantum Field Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46143-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tonti, Enzo. "Algebraic Topology." In The Mathematical Structure of Classical and Relativistic Physics. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7422-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cartier, Pierre, and Frédéric Patras. "Algebraic Topology." In Algebra and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77845-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lück, Wolfgang. "Elementare Lineare Algebra." In Algebraische Topologie. Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-80241-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lück, Wolfgang. "Parametrisierte Lineare Algebra." In Algebraische Topologie. Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-80241-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van der Waerden, B. L. "Topological Algebra." In Algebra. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4684-9999-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harte, Robin. "Topological Algebra." In SpringerBriefs in Mathematics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05648-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Topologia algebrica"

1

Smith, Larry. "An algebraic introduction to the Steenrod algebra." In School and Conference in Algebraic Topology. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.11.327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Derdar, Salah, Madjid Allili, and Djemel Ziou. "Topological feature extraction using algebraic topology." In Electronic Imaging 2007, edited by Longin Jan Latecki, David M. Mount, and Angela Y. Wu. SPIE, 2007. http://dx.doi.org/10.1117/12.705555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pengelley, David, and Frank Williams. "The odd-primary Kudo–Araki–May algebra of algebraic Steenrod operations and invariant theory." In School and Conference in Algebraic Topology. Mathematical Sciences Publishers, 2007. http://dx.doi.org/10.2140/gtm.2007.11.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sanh, Nguyen Van, Le Phuong Thao, Noori F. A. Al-Mayahi, and Kar Ping Shum. "Zariski Topology of Prime Spectrum of a Module." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rudyak, Yuli. "M. M. Postnikov: his life, work and legacy." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ángel, Andrés. "A spectral sequence for orbifold cobordism." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Antonyan, Sergey A., and Erik Elfving. "The equivariant homotopy type of G-ANR's for proper actions of locally compact groups." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Golasiński, Marek, Daciberg L. Gonçalves, and Peter N. Wong. "A note on generalized equivariant homotopy groups." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gómez Ruiz, Francisco. "On residue formulas for characteristic numbers." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grant, Mark. "Topological complexity of motion planning and Massey products." In Algebraic Topology - Old and New. Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc85-0-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Topologia algebrica"

1

Baryshnikov, Yuliy. Algebraic-Topological Structures for Hidden Modes. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada540133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adler, Robert, Shmuel Weinberger, Yuliy Baryshnikov, and Jonathan Taylor. SATA: Stochastic Algebraic Topology and Applications. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada627871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carlsson, Gunnar. Algebraic Topology and Neuroscientific Data - Neovision 2. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada496549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lobaton, Edgar J., Parvez Ahammad, and S. S. Sastry. Algebraic Approach for Recovering Topology in Distributed Camera Networks. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada538850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, Janine Camille, David Minot Day, and Scott A. Mitchell. Summary of the CSRI Workshop on Combinatorial Algebraic Topology (CAT): Software, Applications, & Algorithms. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/1324989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, Mitchell J., and Robert Mathews. Algebraic and Topological Structure of QOS (End to End) Within Large Scale Distributed Information Systems. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada359965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!