Academic literature on the topic 'Topological categories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topological categories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Topological categories"
Diers, Yves. "Topological geometrical categories." Journal of Pure and Applied Algebra 168, no. 2-3 (March 2002): 177–87. http://dx.doi.org/10.1016/s0022-4049(01)00095-0.
Full textShenggang Li. "Weak topological categories." Fuzzy Sets and Systems 93, no. 3 (February 1998): 363–73. http://dx.doi.org/10.1016/s0165-0114(96)00202-3.
Full textSchwarz, Friedhelm. "HEREDITARY TOPOLOGICAL CATEGORIES AND TOPOLOGICAL UNIVERSES." Quaestiones Mathematicae 10, no. 2 (January 1986): 197–216. http://dx.doi.org/10.1080/16073606.1986.9631604.
Full textTholen, Walter. "Met-Like Categories Amongst Concrete Topological Categories." Applied Categorical Structures 26, no. 5 (February 12, 2018): 1095–111. http://dx.doi.org/10.1007/s10485-018-9513-7.
Full textAd�mek, J., and G. E. Strecker. "Injectivity of topological categories." Algebra Universalis 26, no. 3 (October 1989): 284–306. http://dx.doi.org/10.1007/bf01211836.
Full textRice, Michael D. "Reflexive objects in topological categories." Mathematical Structures in Computer Science 6, no. 4 (August 1996): 375–86. http://dx.doi.org/10.1017/s0960129500001079.
Full textDikranjan, D., E. Giuli, and A. Tozzi. "TOPOLOGICAL CATEGORIES AND CLOSURE OPERATORS." Quaestiones Mathematicae 11, no. 3 (January 1988): 323–37. http://dx.doi.org/10.1080/16073606.1988.9632148.
Full textBarr, Michael. "Topological $\ast$-autonomous categories, revisited." Tbilisi Mathematical Journal 10, no. 3 (June 2017): 51–64. http://dx.doi.org/10.1515/tmj-2017-0102.
Full textGurski, Nick, Niles Johnson, and Angelica M. Osorno. "Topological Invariants from Higher Categories." Notices of the American Mathematical Society 66, no. 08 (September 1, 2019): 1. http://dx.doi.org/10.1090/noti1934.
Full textCagliari, F., and S. Mantovani. "Localizations in universal topological categories." Proceedings of the American Mathematical Society 103, no. 2 (February 1, 1988): 639. http://dx.doi.org/10.1090/s0002-9939-1988-0943097-7.
Full textDissertations / Theses on the topic "Topological categories"
O'Sullivan, David Robert. "Topological C*-categories." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16775/.
Full textRazafindrakoto, Ando Desire. "Neighbourhood operators on Categories." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80169.
Full textENGLISH ABSTRACT: While the notions of open and closed subsets in a topological space are dual to each other, they take on another meaning when points and complements are no longer available. Closure operators have been extensively used to study topological notions on categories. Though this has recovered a fair amount of topological results and has brought an economy of e ort and insight into Topology, it is thought that certain properties, such as convergence, are naturally associated with neighbourhoods. On the other hand, it is interesting enough to investigate certain notions, such as that of closed maps, which in turn are naturally associated with closure by means of neighbourhoods. We propose in this thesis a set of axioms for neighbourhoods and test them with the properties of connectedness and compactness.
AFRIKAANSE OPSOMMING: Al is die twee konsepte van oop en geslote subversamelings in 'n topologiese ruimte teenoorgesteldes van mekaar, verander hul betekenis wanneer punte en komplemente nie meer ter sprake is nie. Die gebruik van afsluitingsoperatore is alreeds omvattend in die studie van topologiese konsepte in kategorieë, toegepas. Alhoewel 'n redelike aantal topologiese resultate, groeiende belangstelling en groter insig tot Topologie die gevolg was, word daar geglo dat seker eienskappe, soos konvergensie, op 'n natuurlike wyse aan omgewings verwant is. Nietemin is dit van belang om sekere eienskappe, soos geslote afbeeldings, wat natuurlik verwant is aan afsluiting, te bestudeer. In hierdie proefskrif stel ons 'n aantal aksiomas oor omgewings voor en toets dit gevolglik met die eienskappe van samehangendheid en kompaktheid.
Wüthrich, Samuel. "I-adic towers in algebraic and topological derived categories /." [S.l.] : [s.n.], 2004. http://www.zb.unibe.ch/download/eldiss/04wuethrich_s.pdf.
Full textDe, Renzi Marco. "Construction of extended topological quantum field theories." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC114/document.
Full textThe central position held by Topological Quantum Field Theories (TQFTs) in the study of low dimensional topology is due to their extraordinarily rich structure, which allows for various interactions with and applications to questions of geometric nature. Ever since their first appearance, a great effort has been put into extending quantum invariants of 3-dimensional manifolds to TQFTs and Extended TQFTs (ETQFTs). This thesis tackles this problem in two different general frameworks. The first one is the study of the semisimple quantum invariants of Witten, Reshetikhin and Turaev issued from modular categories. Although the corresponding ETQFTs were known to exist for a while, an explicit realization based on the universal construction of Blanchet, Habegger, Masbaum and Vogel appears here for the first time. The aim is to set a golden standard for the second part of the thesis, where the same procedure is applied to a new family of non-semisimple quantum invariants due to Costantino, Geer and Patureau. These invariants had been previously extended to graded TQFTs by Blanchet, Costantino, Geer an Patureau, but only for an explicit family of examples. We lay the first stone by introducing the definition of relative modular category, a non-semisimple analogue to modular categories. Then, we refine the universal construction to obtain graded ETQFTs extending both the quantum invariants of Costantino, Geer and Patureau and the graded TQFTs of Blanchet, Costantino, Geer and Patureau in this general setting
Juer, Rosalinda. "1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b9a8fc3b-4abd-49a1-b47c-c33f919a95ef.
Full textWasserman, Thomas A. "A reduced tensor product of braided fusion categories over a symmetric fusion category." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:58c6aae3-cb0e-4381-821f-f7291ff95657.
Full textMaier, Jennifer [Verfasser], and Christoph [Akademischer Betreuer] Schweigert. "A Study of Equivariant Hopf Algebras and Tensor Categories through Topological Field Theories / Jennifer Maier. Betreuer: Christoph Schweigert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1032313412/34.
Full textMaier, Jennifer Verfasser], and Christoph [Akademischer Betreuer] [Schweigert. "A Study of Equivariant Hopf Algebras and Tensor Categories through Topological Field Theories / Jennifer Maier. Betreuer: Christoph Schweigert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1032313412/34.
Full textAraújo, Manuel. "Coherence for 3-dualizable objects." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:a4b8f8de-a8e3-48c3-a742-82316a7bd8eb.
Full textMoreira, Charles dos Anjos. "Linguagem de categorias e o Teorema de van Kampen /." Rio Claro, 2017. http://hdl.handle.net/11449/152195.
Full textBanca: Aldício José Miranda
Banca: João Peres Vieira
Resumo: Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores
Abstract: This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors
Mestre
Books on the topic "Topological categories"
Turaev, Vladimir, and Alexis Virelizier. Monoidal Categories and Topological Field Theory. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49834-8.
Full textLowen, R. Approach spaces: The missing link in the topology-uniformity-metric triad. Oxford: Clarendon Press, 1997.
Find full textTanaka, Hiro Lee. Lectures on Factorization Homology, ∞-Categories, and Topological Field Theories. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61163-7.
Full textTheory of topological structures: An approach to categorical topology. Dordrecht: D. Reidel Pub. Co., 1988.
Find full textFunctorial knot theory: Categories of tangles, coherence, categorical deformations, and topological invariants. Singapore: World Scientific, 2001.
Find full textWerner, Gähler, Preuss Gerhard 1940-, and Herrlich Horst, eds. Categorical structures and their applications: Proceedings of the North-West European Category Seminar, Berlin, Germany, 28-29 March 2003. Singapore: World Scientific, 2004.
Find full textA non-Hausdorff completion: The Abelian category of C-complete left modules over a topological ring. New Jersey: World Scientific, 2015.
Find full textOn the algebraic foundation of bounded cohomology. Providence, R.I: American Mathematical Society, 2011.
Find full textPantev, Tony. Stacks and catetories in geometry, topology, and algebra: CATS4 Conference Higher Categorical Structures and Their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, July 2-7, 2012, CIRM, Luminy, France. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textTulane University. Dept. of Mathematics, ed. Mathematical foundations of information flow: Clifford lectures on information flow in physics, geometry and logic and computation, March 12-15, 2008, Tulane University, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.
Find full textBook chapters on the topic "Topological categories"
Preuss, Gerhard. "Topological Categories." In Theory of Topological Structures, 16–46. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2859-6_3.
Full textMazzola, Guerino, René Guitart, Jocelyn Ho, Alex Lubet, Maria Mannone, Matt Rahaim, and Florian Thalmann. "Categories of Gestures over Topological Categories." In The Topos of Music III: Gestures, 937–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64481-3_7.
Full textTuraev, Vladimir, and Alexis Virelizier. "Braided categories." In Monoidal Categories and Topological Field Theory, 53–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49834-8_3.
Full textTuraev, Vladimir, and Alexis Virelizier. "Fusion categories." In Monoidal Categories and Topological Field Theory, 65–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49834-8_4.
Full textPreuss, Gerhard. "Cartesian Closed Topological Categories." In Theory of Topological Structures, 134–51. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2859-6_6.
Full textPreuss, Gerhard. "Relations Between Special Topological Categories." In Theory of Topological Structures, 90–133. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2859-6_5.
Full textMay, J., and J. Sigurdsson. "Well-grounded topological model categories." In Parametrized Homotopy Theory, 77–96. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/132/05.
Full textTuraev, Vladimir, and Alexis Virelizier. "Topological Quantum Field Theory." In Monoidal Categories and Topological Field Theory, 229–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49834-8_10.
Full textTuraev, Vladimir, and Alexis Virelizier. "Monoidal categories and functors." In Monoidal Categories and Topological Field Theory, 3–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49834-8_1.
Full textBertrand, Toën. "Lectures on DG-Categories." In Topics in Algebraic and Topological K-Theory, 243–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15708-0_5.
Full textConference papers on the topic "Topological categories"
ALB, ALINA. "SOME COREFLECTIVE CATEGORIES OF TOPOLOGICAL MODULES." In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0001.
Full textMay, J. P. "The construction of E∞ring spaces from bipermutative categories." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.283.
Full textMay, J. P. "The construction of E∞ring spaces from bipermutative categories." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.285.
Full textKapustin, Anton. "Topological Field Theory, Higher Categories, and Their Applications." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0133.
Full textDIKRANJAN, DIKRAN, WALTER THOLEN, and STEPHEN WATSON. "CLASSIFICATION OF CLOSURE OPERATORS FOR CATEGORIES OF TOPOLOGICAL SPACES." In Proceedings of the North-West European Category Seminar. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702418_0007.
Full textBytsenko, Andrey A. "Expository remarks on topological field theories, branes, complexes and categories." In Fifth International Conference on Mathematical Methods in Physics. Trieste, Italy: Sissa Medialab, 2007. http://dx.doi.org/10.22323/1.031.0054.
Full textBLANCHET, CHRISTIAN. "INTRODUCTION TO QUANTUM INVARIANTS OF 3-MANIFOLDS, TOPOLOGICAL QUANTUM FIELD THEORIES AND MODULAR CATEGORIES." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0004.
Full textSeepersad, Carolyn Conner, Janet K. Allen, David L. McDowell, and Farrokh Mistree. "Robust Topological Design of Cellular Materials." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/dac-48772.
Full textLe´on, Jean-Claude, Rosalinda Ferrandes, and Franca Giannini. "Shape Processing and Reasoning for Multiple Product Views: Key Issues and Contributions to a General Framework." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59489.
Full textMeng, Xiangdun, Feng Gao, and Jialun Yang. "The GF Sets: A New Kind of Performance Criterion of Mechanisms." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70795.
Full textReports on the topic "Topological categories"
Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text