Dissertations / Theses on the topic 'Topological categories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Topological categories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
O'Sullivan, David Robert. "Topological C*-categories." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16775/.
Full textRazafindrakoto, Ando Desire. "Neighbourhood operators on Categories." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80169.
Full textENGLISH ABSTRACT: While the notions of open and closed subsets in a topological space are dual to each other, they take on another meaning when points and complements are no longer available. Closure operators have been extensively used to study topological notions on categories. Though this has recovered a fair amount of topological results and has brought an economy of e ort and insight into Topology, it is thought that certain properties, such as convergence, are naturally associated with neighbourhoods. On the other hand, it is interesting enough to investigate certain notions, such as that of closed maps, which in turn are naturally associated with closure by means of neighbourhoods. We propose in this thesis a set of axioms for neighbourhoods and test them with the properties of connectedness and compactness.
AFRIKAANSE OPSOMMING: Al is die twee konsepte van oop en geslote subversamelings in 'n topologiese ruimte teenoorgesteldes van mekaar, verander hul betekenis wanneer punte en komplemente nie meer ter sprake is nie. Die gebruik van afsluitingsoperatore is alreeds omvattend in die studie van topologiese konsepte in kategorieë, toegepas. Alhoewel 'n redelike aantal topologiese resultate, groeiende belangstelling en groter insig tot Topologie die gevolg was, word daar geglo dat seker eienskappe, soos konvergensie, op 'n natuurlike wyse aan omgewings verwant is. Nietemin is dit van belang om sekere eienskappe, soos geslote afbeeldings, wat natuurlik verwant is aan afsluiting, te bestudeer. In hierdie proefskrif stel ons 'n aantal aksiomas oor omgewings voor en toets dit gevolglik met die eienskappe van samehangendheid en kompaktheid.
Wüthrich, Samuel. "I-adic towers in algebraic and topological derived categories /." [S.l.] : [s.n.], 2004. http://www.zb.unibe.ch/download/eldiss/04wuethrich_s.pdf.
Full textDe, Renzi Marco. "Construction of extended topological quantum field theories." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC114/document.
Full textThe central position held by Topological Quantum Field Theories (TQFTs) in the study of low dimensional topology is due to their extraordinarily rich structure, which allows for various interactions with and applications to questions of geometric nature. Ever since their first appearance, a great effort has been put into extending quantum invariants of 3-dimensional manifolds to TQFTs and Extended TQFTs (ETQFTs). This thesis tackles this problem in two different general frameworks. The first one is the study of the semisimple quantum invariants of Witten, Reshetikhin and Turaev issued from modular categories. Although the corresponding ETQFTs were known to exist for a while, an explicit realization based on the universal construction of Blanchet, Habegger, Masbaum and Vogel appears here for the first time. The aim is to set a golden standard for the second part of the thesis, where the same procedure is applied to a new family of non-semisimple quantum invariants due to Costantino, Geer and Patureau. These invariants had been previously extended to graded TQFTs by Blanchet, Costantino, Geer an Patureau, but only for an explicit family of examples. We lay the first stone by introducing the definition of relative modular category, a non-semisimple analogue to modular categories. Then, we refine the universal construction to obtain graded ETQFTs extending both the quantum invariants of Costantino, Geer and Patureau and the graded TQFTs of Blanchet, Costantino, Geer and Patureau in this general setting
Juer, Rosalinda. "1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b9a8fc3b-4abd-49a1-b47c-c33f919a95ef.
Full textWasserman, Thomas A. "A reduced tensor product of braided fusion categories over a symmetric fusion category." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:58c6aae3-cb0e-4381-821f-f7291ff95657.
Full textMaier, Jennifer [Verfasser], and Christoph [Akademischer Betreuer] Schweigert. "A Study of Equivariant Hopf Algebras and Tensor Categories through Topological Field Theories / Jennifer Maier. Betreuer: Christoph Schweigert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1032313412/34.
Full textMaier, Jennifer Verfasser], and Christoph [Akademischer Betreuer] [Schweigert. "A Study of Equivariant Hopf Algebras and Tensor Categories through Topological Field Theories / Jennifer Maier. Betreuer: Christoph Schweigert." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1032313412/34.
Full textAraújo, Manuel. "Coherence for 3-dualizable objects." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:a4b8f8de-a8e3-48c3-a742-82316a7bd8eb.
Full textMoreira, Charles dos Anjos. "Linguagem de categorias e o Teorema de van Kampen /." Rio Claro, 2017. http://hdl.handle.net/11449/152195.
Full textBanca: Aldício José Miranda
Banca: João Peres Vieira
Resumo: Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores
Abstract: This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors
Mestre
Moreira, Charles dos Anjos [UNESP]. "Linguagem de categorias e o Teorema de van Kampen." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152195.
Full textApproved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2017-11-30T12:32:37Z (GMT) No. of bitstreams: 1 moreira_ca_me_rcla.pdf: 1350502 bytes, checksum: bbaf5a250d792183c0b0e14bfc5f34dd (MD5)
Made available in DSpace on 2017-11-30T12:32:37Z (GMT). No. of bitstreams: 1 moreira_ca_me_rcla.pdf: 1350502 bytes, checksum: bbaf5a250d792183c0b0e14bfc5f34dd (MD5) Previous issue date: 2017-11-01
Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores.
This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors.
Reis, Carla David. "Topology via enriched categories." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12878.
Full textHaving as a starting point the characterization of probabilistic metric spaces as enriched categories over the quantale , conditions that allow the generalization of results relating Cauchy sequences, convergence of sequences, adjunctions of V-distributors and its representability are established. Equivalence between L-completeness and L-injectivity is also established. L-completeness is characterized via the Yoneda embedding, and injectivity is related with exponentiability. Another kind of completeness is considered and the formal ball model is analyzed.
Tendo como ponto de partida a caracterização de espaços métricos probabilísticos como categorias enriquecidas no quantal , estabelecemos condições que permitem a generalização de resultados que relacionam sucessões de Cauchy, convergência de sucessões, adjunções de Vdistribuidores e a sua representabilidade. Também estabelecemos a equivalência entre L-injectividade e L-completude. Caracteriza-se L-completude via a imersão de Yoneda, e injectividade é relacionada com exponenciabilidade. Considera-se outra forma de completude e analisa-se o modelo das bolas formais.
Blanc, Anthony. "Invariants topologiques des espaces non-commutatifs." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-01012109.
Full textPinto, Darllan Conceição. "Dualidade Generalizada de Esakia com Aplicações." Instituto de Matemática, 2012. http://repositorio.ufba.br/ri/handle/ri/19491.
Full textApproved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-14T15:34:46Z (GMT) No. of bitstreams: 1 Dissertação Darllan Conceição Pinto.pdf: 899783 bytes, checksum: 5572f413815923ab3c8d189ad9a5ffe3 (MD5)
Made available in DSpace on 2016-06-14T15:34:46Z (GMT). No. of bitstreams: 1 Dissertação Darllan Conceição Pinto.pdf: 899783 bytes, checksum: 5572f413815923ab3c8d189ad9a5ffe3 (MD5)
FAPESB
Neste trabalho, inicialmente, apresentamos a Dualidade de Esakia. Enfraquecendo os mor smos de reticulados e considerando os mor smo de Esakia como sendo Mor smos Parciais de Esakia, obtemos a Dualidade Generalizada de Esakia. Com esses resultados, estabelecemos uma dualidade entre as categorias de L ogicas Abstratas Distributivas e espa cos Priestley, e uma representa c~ao de L ogicas Abstratas Intuicionistas em Espa cos de Esakia. Por m, aplicamos os resultados na compara c~ao da Condi c~ao de Dom nios Fechados (CDF) com a Condi c~oes de Dom nios Fechados de Zakharyaschev (CDFZ).
In this work, initially, we present the Esakia duality. Weakening the morphisms of lattices and considering the Esakia morphism as Partial Esakia morphism, we obtain the Generalized Esakia Duality. With these results, we establish a duality between the categories of Distributive Abstract Logic and Priestley Spaces, and a representation of intuitionistic Abstract Logic and Esakia Spaces. Finally, we apply the results of the comparison closed domain condition (CDC) with the Zakharyaschev's closed domain condition (ZCDC).
Bugs, Cristhian Augusto. "Produtos em homologia e cohomologia na categoria dos complexos simpliciais." Universidade Federal de São Carlos, 2004. https://repositorio.ufscar.br/handle/ufscar/5849.
Full textFinanciadora de Estudos e Projetos
In this work we present fundamental theory to establish the coordinates of the Kronecker Index, Cup and Cap Products in the finite Simplicial Complexes category in terms of chain and cochain.
Neste trabalho nós apresentamos a teoria fundamental para estabelecer as coordenadas do Índice de Kronecker, Produtos Cup e Cap na categoria dos complexos simpliciais finitos em termos de cadeia e cocadeia.
Potier, Joris. "A few things about hyperimaginaries and stable forking." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/394029.
Full textEn este texto se trata, por una parte, de la relación entre grupos compactos e hiper-imaginarios acotados, y por otra parte se prueba que una teoría T tiene la propiedad de bifurcación estable si i solo si Teq la tiene.
Mendonça, Hudson Kazuo Teramoto. "Teorias de 2-gauge e o invariante de Yetter na construção de modelos com ordem topológica em 3-dimensões." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-01082017-155641/.
Full textTopological order describes phases of matter that cannot be described only by the symmetry breaking theory of Landau. In 2-dimensions topological order is characterized, among other properties, by the presence of a ground state degeneracy that is robust to arbitrary local perturbations. With the purpose of understanding what characterizes and classify 3-dimensional topological order this works presents an exactly soluble quantum model in 3-dimensions that generalize 2-dimensional models constructed using gauge theories. In the model we propose the gauge group is replaced by a 2-group. The Hamiltonian, that is given by a sum of local commuting operators, is frustration free. We prove that the ground state degeneracy of this model is given by the Yetters invariant of the 4-dimensional manifold Sigma × S¹, where Sigma is the 3-dimensional manifold the model is defined.
Martins, Rafaella de Souza. "Sobre a topologia das fibrações de Milnor." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25072018-104835/.
Full textNemer, Rodrigo Cohen Mota. "Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012014-145233/.
Full textWe study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
Aasen, David. "Super Pivotal Categories, Fermion Condensation, and Fermionic Topological Phases." Thesis, 2018. https://thesis.library.caltech.edu/10982/7/aasen_dave_2018.pdf.
Full textWe describe a systematic way of producing fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases which contain an emergent fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions, and condensing pairs of physical and emergent fermions. There are two distinct types of objects in fermionic theories, which we call “m-type” and “q-type” particles. The endomorphism algebras of q-type particles are complex Clifford algebras, and they have no analogues in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations in fermionic topological phases. We then prove a series of results relating data in condensed theories to data in their parent theories; for example, if C is a modular tensor category containing a fermion, then the tube category of the condensed theory satisfies Tube(C/ψ) ≅ C × C/ψ. We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum.
Akhvlediani, Andrei. "Hausdorff and Gromov distances in quantale-enriched categories /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR45921.
Full textTypescript. Includes bibliographical references (leaves 166-167). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR45921
Silva, Willian Ribeiro Valencia da. "Generalised enriched categories: exponentiation and injectivity." Doctoral thesis, 2019. http://hdl.handle.net/10316/88801.
Full textDentre as soluções clássicas para o problema da categoria Top dos espaços topológicos e aplicações contínuas não ser cartesiana fechada, nesta tese estamos interessados em espaços compactamente gerados, espaços equilógicos, e espaços quasi-topológicos; trabalhando com categorias enriquecidas generalizadas, que permitem um tratamento unificado de uma gama de categorias da Topologia e da Análise (e.g., espaços ordenados, métricos, topológicos e de aproximação), generalizamos estes três conceitos de Top para (T,V)-Cat. Para tal finalidade, começamos por estudar a relação entre os (T,V)-espaços injectivos e exponenciáveis, e por provar que (T,V)-Cat é uma categoria fracamente localmente cartesiana fechada. Em seguida, introduzimos a categoria (T,V)-Equ dos (T,V)-espaços equilógicos e seus morfismos, que provamos ser uma categoria cartesiana fechada. Ademais, estudamos uma relação generalizada entre os (T,V)-espaços equilógicos e os completamentos regular e exato de (T,V)-Cat, culminando no fato de que (T,V)-Equ é um quasitopos. Por fim, transportamos os conceitos de espaços C -gerados e espaços quasi-topológicos para (T,V)-Cat. Provamos que os (T,V)-espaços C -gerados formam uma subcategoria plena coreflectiva cartesiana fechada de (T,V)-Cat; exemplos de tais espaços incluem (T,V)-espaços compactamente gerados e (T,V)-espaços de Alexandroff. Para os últimos, fazemos algumas considerações que direcionam a uma generalização da equivalência entre os espaços topológicos de Alexandroff e os conjuntos ordenados. Quanto aos quasi-(T,V)-espaços, eles formam a categoria Qs(T,V)-Cat, a qual provamos ser cartesiana fechada e topológica sobre a categoria Set dos conjuntos e aplicações. Generalizamos também para (T,V)-Cat uma relação interessante entre espaços quasi-topológicos e espaços compactamente gerados.
Among the classical solutions to the problem of non-cartesian closedness of the category Top of topological spaces and continuous maps, in this thesis we are interested in compactly generated spaces, equilogical spaces, and quasi-topological spaces; working with generalised enriched categories, which allow for a unified treatment of a range of categories from Topology and Analysis (e.g., ordered, metric, topological, and approach spaces), we generalise these three concepts from Top to (T,V)-Cat. In order to do so, we start by studying the relation between injective and exponentiable (T,V)- spaces, and by proving that (T,V)-Cat is a weakly locally cartesian closed category. Then we introduce the category (T,V)-Equ of equilogical (T,V)-spaces and its morphisms, which we prove to be a cartesian closed category. Moreover, we study a generalised relation between equilogical (T,V)-spaces and the regular and exact completions of (T,V)-Cat, culminating in the fact that (T,V)-Equ is a quasitopos. We finish by carrying the concepts of C -generated spaces and quasi-topological spaces into (T,V)-Cat. We prove that C -generated (T,V)-spaces form a fully coreflective cartesian closed subcategory of (T,V)-Cat; examples of such spaces include compactly generated (T,V)-spaces and Alexandroff (T,V)-spaces. For the latter, we make some discussions towards a generalisation of the equivalence between Alexandroff topological spaces and ordered sets. Concerning quasi-(T,V)- spaces, they form the category Qs(T,V)-Cat which we prove to be cartesian closed and topological over the category Set of sets and maps. We also generalise to (T,V)-Cat an interesting relation between quasi-topological spaces and compactly generated spaces.