Academic literature on the topic 'Topological optimization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topological optimization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Topological optimization"

1

Hassani, B. "Homogenization and topological structural optimization." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Da, Daicong. "Topological optimization of complex heterogeneous materials." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1102/document.

Full text
Abstract:
Les propriétés effectives mécaniques et physiques des matériaux hétérogènes dépendent d'une part de leurs constituants, mais peuvent également être fortement modifiées par leur répartition géométrique à l'échelle de la microstructure. L'optimisation topologique a pour but de définir la répartition optimale de matière dans une structure en vue de maximiser un ou plusieurs objectifs tels que les propriétés mécaniques sous des contraintes telles que la masse de matière. Récemment, les développements rapides de l'impression 3D ou d'autres techniques de fabrication additive ont rendu possible la fabrication de matériaux avec des microstructures "à la demande", ouvrant de nouvelles perspectives inédites pour la conception de matériaux. Dans ce contexte, les objectifs de cette thèse sont de développer des outils de modélisation et de simulation numériques pour concevoir des matériaux et des structures hétérogènes ayant des propriétés optimisées basés sur l'optimisation topologique. Plus précisément, nous nous intéressons aux points suivants. Premièrement, nous proposons des contributions à l'optimisation topologique à une seule échelle. Nous présentons tout d'abord une nouvelle méthode d'optimisation topologique avec évolution pour la conception de structures continues par description lisse de bords. Nous introduisons également deux techniques d'homogénéisation topologique pour la conception de microstructures possédant des propriétés effectives extrêmes et des « méta propriétés » (coefficient de Poisson négatif).Dans une seconde partie, des techniques multi échelle basées sur l'optimisation topologique sont développées. Nous proposons d'une part une approche concourante de structures hétérogènes dont les microstructures peuvent posséder plus de deux matériaux. Nous développons ensuite une approche d'optimisation topologique dans un cadre d'homogénéisation pour des échelles faiblement séparées, induisant des effets de gradient. Enfin dans une troisième partie, nous développons l'optimisation topologique pour maximiser la résistance à la fracture de structures ou de matériaux hétérogènes. La méthode de champs de phase pour la fracture est combinée à la méthode BESO pour concevoir des microstructures permettant d'augmenter fortement la résistance à la rupture. La technique prend en compte l'initiation, la propagation et la rupture complète de la structure<br>Mechanical and physical properties of complex heterogeneous materials are determined on one hand by the composition of their constituents, but can on the other hand be drastically modified by their microstructural geometrical shape. Topology optimization aims at defining the optimal structural or material geometry with regards to specific objectives under mechanical constraints like equilibrium and boundary conditions. Recently, the development of 3D printing techniques and other additive manufacturing processes have made possible to manufacture directly the designed materials from a numerical file, opening routes for totally new designs. The main objectives of this thesis are to develop modeling and numerical tools to design new materials using topology optimization. More specifically, the following aspects are investigated. First, topology optimization in mono-scale structures is developed. We primarily present a new evolutionary topology optimization method for design of continuum structures with smoothed boundary representation and high robustness. In addition, we propose two topology optimization frameworks in design of material microstructures for extreme effective elastic modulus or negative Poisson's ratio. Next, multiscale topology optimization of heterogeneous materials is investigated. We firstly present a concurrent topological design framework of 2D and 3D macroscopic structures and the underlying three or more phases material microstructures. Then, multiscale topology optimization procedures are conducted not only for heterogeneous materials but also for mesoscopic structures in the context of non-separated scales. A filter-based nonlocal homogenization framework is adopted to take into account strain gradient. Finally, we investigate the use of topology optimization in the context of fracture resistance of heterogeneous structures and materials. We propose a first attempt for the extension of the phase field method to viscoelastic materials. In addition, Phase field methods for fracture able to take into account initiation, propagation and interactions of complex both matrix and interfacial micro cracks networks are adopted to optimally design the microstructures to improve the fracture resistance
APA, Harvard, Vancouver, ISO, and other styles
3

Shikhman, Vladimir [Verfasser]. "Topological aspects of nonsmooth optimization / Vladimir Shikhman." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018219897/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaveh, Mohammad. "Topological optimization of rigidly jointed space frames." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

OLIVEIRA, ANDRE PIMENTEL DE. "APPLICATION OF TOPOLOGICAL DERIVATIVE IN STRUCTURAL OPTIMIZATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36089@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>PROGRAMA DE EXCELENCIA ACADEMICA<br>A otimização topológica tem por objetivo buscar uma distribuição ótima de uma quantidade limitada de material em um dado domínio, de tal maneira a minimizar uma medida de desempenho, como, por exemplo, a flexibilidade da estrutura. Tradicionalmente, são utilizados algoritmos clássicos, baseados em gradiente, para se encontrar a solução deste problema de otimização. Este trabalho propõe a aplicação de uma técnica alternativa, baseada no conceito de derivada topológica, para a solução do problema de otimização topológica em domínios bidimensionais arbitrários, utilizando malhas de elementos finitos poligonais. Inicialmente, são apresentados os conceitos básicos da expansão assintótica topológica na solução de problemas de elasticidade linear em um domínio com pequenas perturbações. Usamos esse conceito para definir a derivada topológica a partir da solução desse problema e de um equivalente em um domínio sem perturbações. Em seguida, discutimos a obtenção da derivada topológica em problemas unidimensionais simples para depois estender este conceito para problemas de elasticidade linear bidimensional. Apresentamos uma implementação computacional da derivada topológica, em MATLAB, e aplicamos o código desenvolvido na solução de problemas de otimização topológica, conhecidos na literatura. Finalmente, apresentamos as conclusões sobre a qualidade dos resultados obtidos e a eficiência computacional da implementação proposta e sugerimos alguns tópicos para futuros desenvolvimentos.<br>The purpose of topology optimization is to find the optimum material distribution of a limited amount of material in a given domain, in such a way that it minimizes a performance measure, such as the structure s compliance. Traditionally, classical algorithms based on gradients are used to obtain the solution of optimization problems. This work proposes the application of an alternative technique, based on the topological derivative concept, for the solution of topology optimization problems in arbitrary two-dimensional domains, using polygonal finite element meshes. Initially, the basic concepts of topological asymptotic expansion of linear elasticity problems in a domain with small perturbations are presented. We use this concept to define the topological derivative from the solution of this problem and an equivalent one on a domain without perturbations. Then, we discuss how to calculate the topological derivative for one-dimensional problems before extending this concept to two-dimensional linear stability problems. We present a computational implementation of the topological derivative in MATLAB, and apply the developed code to solve topology optimization problems known in the literature. Finally, we present some conclusions about the quality of the results obtained and the computational efficiency of the proposed implementation and suggest some topics for future developments.
APA, Harvard, Vancouver, ISO, and other styles
6

Hübner, scherer Fernando. "Topological optimization of shells with isogeometric analysis." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX105.

Full text
Abstract:
Ce manuscrit présente des méthodes d'optimisation compatibles avec la conception assistée par ordinateur (CAO), avec emphase sur les coques de Reissner-Mindlin sous le paradigme de l'analyse isogéométrique (IGA). La principale contribution est un nouveau cadre pour l'optimisation topologique des coques épaisses courbes, non conformes, multi-patchs et trimées, soumises à des chargements externes.Cette méthode intègre la méthode des lignes de niveaux (LSM) avec une interface diffuse, une dérivée de forme de Hadamard et l'IGA multi-patch dans un algorithme de descente de gradient, permettant la capture systématique de l'évolution de la forme. Cette intégration permet la manipulation directe de géométries et de techniques d'analyse compatibles avec la CAO, ce qui permet d'obtenir des résultats sous forme de surface CAO.L'approche est appliquée à deux scénarios d'optimisation :(1) Minimisation de la compliance et du volume.(2) Optimisation pour réduction de contraintes. Une fonction de coût générale combinant deux stratégies est proposée. Premièrement, la p-norme de la contrainte de von Mises sert d'approximation de la contrainte maximale dans le domaine, ce qui constitue un moyen robuste et efficace de réduire la contrainte globalement en tenant compte des contributions de toutes les régions. Deuxièmement, une pénalisation locale des contraintes est mise en œuvre pour prévenir la défaillance, la fatigue et la plastification dans la phase matérielle, en veillant à ce que la contrainte de von Mises reste inférieure à la limite d'élasticité.La nouveauté de cette approche réside dans la modélisation de la fonction level set comme une surface NURBS, paramétrant des formes tridimensionnelles complexes à partir d'un domaine paramétrique en 2D. Cela permet d'identifier la distribution optimale du matériau sur la surface moyenne de la coque.Le matériau est modélisé sous l'hypothèse d'une petite déformation en élasticité linéaire à l'aide d'un modèle cinématique de coque de Reissner-Mindlin en contrainte plane.L'efficacité de notre approche est démontrée sur plusieurs géométries multi-patchs courbées, non conformes et découpées en 3D<br>This manuscript presents CAD-compatible optimization methods focusing on Reissner-Mindlin shells within the isogeometric analysis (IGA) paradigm. The main contribution is a novel framework for topological shape optimization of curved, non-conforming multi-patch and trimmed thick shells subjected to external loads.This approach integrates the level set method (LSM) with a diffuse interface, a Hadamard shape derivative, and multi-patch IGA into a gradient descent algorithm, enabling the systematic capture of shape evolution. This integration allows for direct manipulation of CAD-compatible geometries and analysis techniques, ultimately yielding results as a CAD surface.The method is applied to two optimization scenarios:(1) Compliance and volume minimization.(2) Stress-Based Optimization. A general cost function is proposed that combines two strategies. First, the p-norm of the von Mises stress approximates the maximum stress in the domain, providing a robust and effective means of reducing stress globally by accounting for contributions from all regions. Secondly, a local penalization of the stresses is implemented to prevent failure, fatigue, and plastification in the material phase, ensuring that the von Mises stress remains below the yield stress.The novelty of this approach lies in modeling the level set function as a NURBS surface, parameterizing complex three-dimensional shapes from a 2D parameter domain. This allows for the identification of the optimal material distribution within the mid-surface of the shell.The material is modeled under a small strain assumption in linear elasticity using a Reissner-Mindlin kinematic shell model in plane stress.The effectiveness of our approach is demonstrated on several curved non-conforming and trimmed multi-patch geometries in 3D
APA, Harvard, Vancouver, ISO, and other styles
7

Enqvist, Per. "Spectral Estimation by Geometric, Topological and Optimization Methods." Doctoral thesis, Stockholm, 2001. http://media.lib.kth.se:8080/kthdisseng.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LIMA, RICARDO OLIVEIRA DA CUNHA. "STRUT AND TIE MODELS THROUGH TOPOLOGICAL OPTIMIZATION TECHNIQUES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1407@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Modelos de bielas e tirantes são, em última análise, representações discretas dos campos de tensão nos elementos estruturais de concreto armado próximos da ruptura e visam possibilitar um projeto consistente de todos os elementos estruturais. Este trabalho tem como objetivo desenvolver um programa de otimização topológica que gere e permita a visualização de um modelo de bielas e tirantes para elementos estruturais de concreto armado. O modelo gerado auxilia o engenheiro de projetos na compreensão dos caminhos de forças. Inicialmente o usuário deve ter como dado de entrada uma malha refinada em elementos finitos. A partir daí o programa calcula as tensões através da análise elástica por elementos finitos. As técnicas de otimização topológica usadas neste trabalho foram a do método da flexibilização súbita ( hard- kill method ) e a do método da remoção. No primeiro processo, os elementos com tensões baixas, que estão sendo usados ineficientemente têm seus módulos de elasticidade bruscamente reduzidos, enquanto que no método da remoção, estes elementos são retirados da malha. Tanto para modificar o módulo de elasticidade do elemento, quanto para retirar o elemento da malha, as tensões principais nos elementos são comparadas com uma tensão de referência definida como uma fração da maior tensão principal na malha. Caso essa tensão principal no elemento seja menor que a referida tensão de referência o elemento tem seu módulo de elasticidade modificado ou é eliminado conforme o método. A distribuição de tensão nos elementos é acompanhada pelo usuário através do módulo de visualização do programa e o processo de otimização topológica é repetido até que o critério de convergência imposto seja alcançado.<br>Strut and tie models are ultimately discrete representations of the stress fields in the structural elements of reinforced concrete close to failure and they are meant to help the engineer to design a consistent project of all structural elements. This work aims to develop a program of topological optimisation that generates and allows the visualisation of a strut and tie model for structural elements of reinforced concrete. The generated model helps the project engineer to understand the load paths inside the element. Initially the user should have as data a refined finite element mesh. Starting from this point the program calculates the stress fields through a linear elastic finite element analysis. The techniques used for topological optimisation in this work are namely the hard-kill method and the method of removal. In the first process, the elements with low stress levels, that are not being used efficiently, have their elasticity modules abruptly reduced, while in the method of removal, these elements are removed from the mesh. Either to modify the elasticity module of the element or to remove the element from the mesh the principal stresses in each element are compared with a reference stress defined as a fraction of the largest principal stress in the mesh. If the principal stress in the element is smaller than this above mentioned reference stress the element has its elasticity module modified or is removed, depending on the method. The distribution of stresses in the elements can be followed by the user through the module of visualisation of the program and the process of topological optimisation is repeated until the specified convergence criterion is reached.<br>Modelos de bielas y tirantes son, en último análisis, representaciones discretas de los campos de tensión de los elementos extructurales de concreto armado próximos a la ruptura. Su objetivo principal es ejecutar un proyecto que incluya todos los elementos extructurales. Este trabajo tiene como objetivo desarrollar un programa de optimización topológica que genere y permita la visualización de un modelo de bielas y tirantes para elementos extructurales de concreto armado. El modelo generado auxilia al ingeniero de proyectos en la comprensión de los caminos de fuerzas. Inicialmente el usuario debe tener como dato de entrada una malla refinada de elementos finitos. Así, el programa calcula las tensiones a través del análisis elástica por elementos finitos. Las técnicas de optimización topológica usadas en este trabajo fueron el método de la flexibilización súbita ( hard- kill method ) y el método de la remoción. En el primer proceso, los elementos con tensiones bajas, que están siendo utilizados ineficientemente tienen sus módulos de elasticidad bruscamente reducidos, mientras que en el método de la remoción, estos elementos son retirados de la malla. Tanto para modificar el módulo de elasticidad, cuanto para retirar el elemento de la malla, las tensiones principales en los elementos se comparan con una tensión de referencia definida como una fracción de la mayor tensión principal en la malla. En el caso en que esa tensión principal en el elemento sea menor que la tensión de referencia, el elemento tiene su módulo de elasticidad modificado o es eliminado conforme el método. El usuario acompaña la distribuición de tensión en los elementos a través del módulo de visualización del programa y el proceso de optimización topológica se repite hasta alcanzar el criterio de convergencia impuesto.
APA, Harvard, Vancouver, ISO, and other styles
9

Brodsky, Valery. "Optimization methods for topological design of interconnected ring networks." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/32594.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.<br>Includes bibliographical references (leaves 177-179).<br>by Valery Brodsky.<br>M.S.
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Fangyi. "Post-Layout DFM optimization based on hybrid encoded topological layout /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography