Dissertations / Theses on the topic 'Topological quantum phases of matter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Topological quantum phases of matter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dauphin, Alexandre. "Cold atom quantum simulation of topological phases of matter." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209076.
Full textIl existe cependant des phases qui échappent à la description de Landau. Il s'agit des phases quantiques topologiques. Celles-ci constituent un nouveau paradigme et sont caractérisées par un ordre global défini par un invariant topologique. Ce dernier classe les objets ou systèmes de la manière suivante: deux objets appartiennent à la même classe topologique s'il est possible de déformer continument le premier objet en le second. Cette propriété globale rend le système robuste contre des perturbations locales telles que le désordre.
Les atomes froids constituent une plateforme idéale pour simuler les phases quantiques topologiques. Depuis l'invention du laser, les progrès en physique atomique et moléculaire ont permis un contrôle de la dynamique et des états internes des atomes. La réalisation de gaz quantiques,tels que les condensats de Bose-Einstein et les gaz dégénérés de Fermi, ainsi que la réalisation de réseaux optiques à l'aide de faisceaux lasers, permettent d'étudier ces nouvelles phases de la matière et de simuler aussi la physique du solide cristallin.
Dans cette thèse, nous nous concentrons sur l'etude d'isolants topologiques avec des atomes froids. Ces derniers sont isolants de volume mais possèdent des états de surface qui sont conducteurs, protégés par un invariant topologique. Nous traitons trois sujets principaux. Le premier sujet concerne la génération dynamique d'un isolant topologique de Mott. Ici, les interactions engendrent l'isolant topologique et ce, sans champ de jauge de fond. Le second sujet concerne la détection des isolants topologiques dans les expériences d'atomes froids. Nous proposons deux méthodes complémentaires pour caractériser celles-ci. Finalement, le troisième sujet aborde des thèmes au-delà de la définition standard d'isolant topologique. Nous avons d'une part proposé un algorithme efficace pour calculer la conductivité de Berry, la contribution topologique à la conductivité transverse lorsque l'énergie de Fermi se trouve dans une bande d'énergie. D'autre part, nous avons utilisé des méthodes pour caractériser les propriétés quantiques topologiques de systèmes non-périodiques.
L'étude des isolants topologiques dans les expériences d'atomes froids est un sujet de recherche récent et en pleine expansion. Dans ce contexte, cette thèse apporte plusieurs contributions théoriques pour la simulation de systèmes quantiques sur réseau avec des atomes froids.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Thiang, Guo Chuan. "Topological phases of matter, symmetries, and K-theory." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.
Full textErmakova, Natalia. "Signatures of topological phases in an open Kitaev chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300177.
Full textDet finns fysiska system som visar topologiska egenskaper i form av topologiska invarianter,som ändras inte så länge systemet genomgår ändringar som inte stängerHamiltonianens energigap. I det här arbetet undersöker vi ett exempel av ett systemmed topologiska egenskaper — en Kitaev kedja. Denna modell är studerat närden är kopplad till en omgivning. Vi undersöker kopplingens påverkan på systemetstopologi och vi försöker hitta tecken på topologiska faser i systemets dynamik. Vianvänder Lindblads ekvation definierat i tredje kvantiserings formalism för att studerasystemets tidsutveckling numeriskt, genom att använda Eulers metod. Vi upptäckeratt det finns skillnader i tidsutveckling av kvantsammanflätningsspektrumav häften av kedjan som beror på systems topologiska fas. Om systemet genomgåren kvantsläckning från den triviala till den topologiska fasen, kommer det finnas korsningari kvantsammanflätningensspektrum som uppstår under dess tidsutveckling.Dessutom studerar vi de topologiska faserna när det finns oordning i systemet. Viundersöker topologiska fasernas stabilitet mot oordning och upptäcker att en svagoordning påverkar inte de topologika faserna. Dessutom, genom att studera den minstakvantsammanflätningsspektrumsgap upptäcker vi att en starkare oordning ledertill kvantsammanflätningsspektrumskorsningar att vara mindre sannolika i den topologiskafasen och mer sannolika i den triviala fasen.
Macaluso, Elia. "Probing Quasihole and Edge Excitations of Atomic and Photonic Fractional Quantum Hall Systems." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/250215.
Full textRadha, Santosh Kumar. "Knitting quantum knots-Topological phase transitions in Two-Dimensional systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595870012750826.
Full textPlekhanov, Kirill. "Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS264/document.
Full textIn this thesis we study the topological aspects of condensed matter physics, that received a revolutionary development in the last decades. Topological states of matter are protected against perturbations and disorder, making them very promising in the context of quantum information. The interplay between topology and interactions in such systems is however far from being well understood, while the experimental realization is challenging. Thus, in this work we investigate analytically such strongly correlated states of matter and explore new protocols to probe experimentally their properties. In order to do this, we use various analytical and numerical techniques. First, we analyze the properties of an interacting bosonic version of the celebrated Haldane model – the model for the quantum anomalous Hall effect. We propose its quantum circuit implementation based on the application of periodic time-dependent perturbations – Floquet engineering. Continuing these ideas, we study the interacting bosonic version of the Kane-Mele model – the first model of a topological insulator. This model has a very rich phase diagram with an emergence of an effective frustrated magnetic model and a variety of symmetry broken spin states in the strongly interacting regime. Ultra-cold atoms or quantum circuits implementation of both Haldane and Kane-Mele bosonic models would allow for experimental probes of the exotic states we observed. Second, in order to deepen the perspectives of quantum circuit simulations of topological phases we analyze the strong coupling limit of the Su-Schrieffer-Heeger model and we test new experimental probes of its topology associated with the Zak phase. We also work on the out-of-equilibrium protocols to study bulk spectral properties of quantum systems and quantum phase transitions using a purification scheme which could be implemented both numerically and experimentally
Roy, Sthitadhi [Verfasser], Michael [Akademischer Betreuer] Schreiber, Michael [Gutachter] Schreiber, and Roderich [Gutachter] Moessner. "Nonequilibrium and semiclassical dynamics in topological phases of quantum matter / Sthitadhi Roy ; Gutachter: Michael Schreiber, Roderich Moessner ; Betreuer: Michael Schreiber." Chemnitz : Technische Universität Chemnitz, 2018. http://d-nb.info/1215908903/34.
Full textRonquillo, David Carlos. "Magnetic-Field-Driven Quantum Phase Transitions of the Kitaev Honeycomb Model." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587035230123328.
Full textPradhan, Sunny. "Toeplitz matrices for the long-range Kitaev model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18018/.
Full textTibaldi, Simone. "Deep learning topological phases of matter." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20521/.
Full textJiang, Shenghan. "Symmetric topological phases and tensor network states:." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107410.
Full textClassification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries
Meichanetzidis, Konstantinos. "Diagnosing topological quantum matter via entanglement patterns." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18806/.
Full textMaffei, Maria. "Simulation and bulk detection of topological phases of matter." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/665708.
Full textA diferencia de la mayoría de las otras fases de la materia, caracterizadas por un parámetro de orden local, las fases topológicas de la materia se definen por su invariante topológico que depende de las propiedades globales del sistema y es robusto frente a la presencia de impurezas y/o deformaciones. En la última década, el estudio de las fases topológicas de la materia se ha desarrollado en paralelo con el campo de la simulación cuántica. Un simulador cuántico es unas plataformas experimental altamente controlable cuyo objetivo es simular la dinámica de un sistema de interés, mediante la correspondencia entre los dos Hamiltonianos. Estos simuladores representan un recurso clave en el estudio de las fases topológicas dado que su observación en sistemas reales es en general muy problemática y en determinadas ocasiones hasta imposible. Normalmente, los simuladores cuánticos se crean mediante átomos fríos en redes ópticas o con sistemas fotónicos. Los paseos cuánticos (quantum walks), un proceso unitario y temporalmente periódico, representan una de las clases mas versátiles de simuladores cuánticos. El propósito de esta tesis de doctorado es el diseño de protocolos para la simulación y la caracterización de Hamiltonianos topológicos no interactivos de estructuras cristalinas, tanto en una como en dos dimensiones. Además, en esta tesis se expone la descripción de experimentos llevados a cabo a partir del modelo teórico propuesto. En detalle: Demostramos que el invariante topologico asociado a la simetría quiral en una dimensión se hace aparente a partir del limite a tiempos largos de un observable del volumen (bulk), el desplazamiento quiral medio (MCD, por sus siglas en inglés). Este método de detección converge de manera rápida y no necesita de elementos adicionales (es decir, de campos externos) o bandas pobladas. El MCD ha sido utilizado para caracterizar la topología de un paseo cuántico en una dimensión con simetria quiral y para detectar la fase topológica aislante de Anderson en hilos quirales con desorden, simulados con átomos ultra fríos. Hemos diseñado un protocolo para medir el invariante topológico que caracteriza un paseo cuántico en dos dimensiones simulando un aislante de Chern.
Ericsson, Marie. "Geometric and Topological Phases with Applications to Quantum Computation." Doctoral thesis, Uppsala University, Department of Quantum Chemistry, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2600.
Full textQuantum phenomena related to geometric and topological phases are investigated. The first results presented are theoretical extensions of these phases and related effects. Also experimental proposals to measure some of the described effects are outlined. Thereafter, applications of geometric and topological phases in quantum computation are discussed.
The notion of geometric phases is extended to cover mixed states undergoing unitary evolutions in interferometry. A comparison with a previously proposed definition of a mixed state geometric phase is made. In addition, an experimental test distinguishing these two phase concepts is proposed. Furthermore, an interferometry based geometric phase is introduced for systems undergoing evolutions described by completely positive maps.
The dynamics of an Aharonov-Bohm system is investigated within the adiabatic approximation. It is shown that the time-reversal symmetry for a semi-fluxon, a particle with an associated magnetic flux which carries half a flux unit, is unexpectedly broken due to the Aharonov-Casher modification in the adiabatic approximation.
The Aharonov-Casher Hamiltonian is used to determine the energy quantisation of neutral magnetic dipoles in electric fields. It is shown that for specific electric field configurations, one may acquire energy quantisation similar to the Landau effect for a charged particle in a homogeneous magnetic field.
We furthermore show how the geometric phase can be used to implement fault tolerant quantum computations. Such computations are robust to area preserving perturbations from the environment. Topological fault-tolerant quantum computations based on the Aharonov-Casher set up are also investigated.
Kerr, Steven. "Topological quantum field theory and quantum gravity." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.
Full textHigginbotham, Andrew Patrick. "Quantum Dots for Conventional and Topological Qubits." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845477.
Full textPhysics
de, Lisle James. "The characterisation and manipulation of novel topological phases of matter." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13809/.
Full textJohansson, Markus. "Entanglement and Quantum Computation from a Geometric and Topological Perspective." Doctoral thesis, Uppsala universitet, Teoretisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173120.
Full textLevin, Michael Aaron Ph D. Massachusetts Institute of Technology. "String-net condensation and topological phases in quantum spin systems." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36810.
Full textIncludes bibliographical references (p. 81-86).
For many years, it was thought that Landau's theory of symmetry breaking could describe essentially all phases and phase transitions. However, in the last twenty years, it has become clear that at zero temperature, quantum mechanics allows for the possibility of new phases of matter beyond the Landau paradigm. In this thesis, we develop a general theoretical framework for these "exotic phases" analogous to Landau's framework for symmetry breaking phases. We focus on a particular type of exotic phase, known as "topological phases", and a particular physical realization of topological phases - namely frustrated quantum magnets. Our approach is based on a new physical picture for topological phases. We argue that, just as symmetry breaking phases originate from the condensation of particles, topological phases originate from the condensation of extended objects called "string-nets." Using this picture we show that, just as symmetry breaking phases can be classified using symmetry groups, topological phases can be classified using objects known as "tensor categories."
(cont.) In addition, just as symmetry breaking order manifests itself in local correlations in a ground state wave function, topological order manifests itself in nonlocal correlations or quantum entanglement. We introduce a new quantity - called "topological entropy" - which measures precisely this nonlocal entanglement. Many of our results are applicable to other (non-topological) exotic phases.
by Michael Aaron Levin.
Ph.D.
Andersson, Jonatan. "A lattice model for topological phases." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-28281.
Full textRosenberg, Peter. "Exotic Phases in Attractive Fermions: Charge Order, Pairing, and Topological Signatures." W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153985.
Full textLi, Cheng. "Engineering High Dimensional Topological Matters in Quantum Gases." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1585827770946136.
Full textPretko, Michael. "Subdimensional particles and higher rank quantum phases of matter." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112071.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 139-143).
Many quantum phases of matter, such as quantum spin liquids and fractional quantum hall systems, are well-described in the language of gauge theory. Until recently, most theoretical attention has been focused on systems described by familiar vector gauge theories. In this thesis, we will explore the properties of quantum phases described by higher rank tensor gauge theories. In particular, symmetric tensor gauge theories describe stable phases of matter in three dimensions. We will demonstrate that these theories lead to an exotic new class of particles which are restricted to move only in lower-dimensional subspaces, instead of being able to freely propagate in three dimensions. We call these excitations "subdimensional particles." As a special case, some models feature 0-dimensional particles, or "fractons," which are totally immobile. Subdimensional particles couple naturally to tensor electric and magnetic fields, in a form of generalized electromagnetism. We will establish the basic theoretical principles of this new tensor electromagnetism, including its Maxwell equations, force laws, and electrostatic properties. Finally, as a special case of the higher rank formalism, we will study a rank 2 phase featuring a gravity-like low-energy theory. We will show how to reconcile the restricted mobility of tensor gauge theories with the expected properties of a gravitational theory. Our toy models will thereby offer clues which may be useful for understanding more realistic gravitational theories.
by Michael Pretko.
Ph. D.
Lang, Nicolai [Verfasser]. "One-Dimensional Topological States of Synthetic Quantum Matter / Nicolai Lang." München : Verlag Dr. Hut, 2019. http://d-nb.info/1196415862/34.
Full textJanot, Alexander. "Quantum Condensates and Topological Bosons in Coupled Light-Matter Excitations." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-199239.
Full textPotter, Andrew C. (Andrew Cole). "Understanding, constructing, and probing highly-entangled phases of quantum matter." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84392.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 191-206).
In this thesis, I explore three classes of quantum phases of matter that cannot be understood purely on the basis of symmetry, and can be regarded (to varying degrees) as having highly-entangled ground-states. The first Part describes topological superconductors with non-Abelian defects, and develops realistic routes to constructing these exotic superconductors from more elementary materials. Particular attention is payed to practical issues such as disorder. The second Part examines the role of interactions in electron topological insulators (TIs). Non-perturbative definitions of the familiar topological band-insulator are given, and new strongly-correlated TIs with no band-structure analogs are identified. The last Part turns exotic gapless phases without quasi-particle excitations, focusing on topics related to recently discovered quantum spin-liquid (QSL) materials. The possibility of a gapless QSL in the vicinity of the metal-insulator transition in doped semiconductors is explored, and optical conductivity is developed as an experimental tool to examine the nature of the QSL candidate Herbertsmithite. The material of this thesis is closely parallels that of Refs [1, 2, 3, 4, 5, 7,8, 9,10, 11].
by Andrew C. Potter.
Ph.D.
Schönherr, Piet. "Growth and characterisation of quantum materials nanostructures." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:7dca792e-4236-4d19-aa59-7c9c3cb5d0e4.
Full textVijay, Ksheerasagar. "Aspects of highly-entangled quantum matter : from exotic phases, to quantum computation, and dynamics." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119114.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 307-321).
We explore three incarnations of highly-entangled quantum matter: as descriptions of exotic, gapped phases in three spatial dimensions, as resources for fault-tolerant quantum computation, and as the by-product of the unitary evolution of a quantum state, on its approach to equilibrium. In Part 1, we study quantum information processing in platforms hosting Majorana zero modes. We demonstrate that certain highly-entangled states may be engineered in arrays of mesoscopic topological superconducting islands, and used for fault-tolerant quantum computation. We then discuss measurement-based protocols for braiding Majorana zero modes and detecting their non-Abelian statistics in on-going experiments on proximitized, semiconductor nanowires, before proposing new families of error-correcting codes for fermionic qubits, along with concrete realizations. In Part 11, we study gapped, three-dimensional phases of matter with sub-extensive topological degeneracy, and immobile point-like excitations - termed "fractons" - which cannot be moved without nucleating other excitations. We find two broad classes of fracton phases in which (i) composites of fractons form topological excitations with reduced mobility, or (ii) all topological excitations are strictly immobile. We demonstrate a duality between these phases and interacting systems with global symmetries along sub-systems, and use this to find new fracton phases, one of which may also be obtained by coupling an isotropic array of two-dimensional states with Z₂ topological order. We introduce a solvable model in which the fracton excitations are shown to carry a protected internal degeneracy, which provides a generalization of non-Abelian anyons in three spatial dimensions. In Part III, we investigate the dynamics of operator spreading and entanglement growth in quantum circuits composed of random, local unitary operators. We relate quantities averaged over realizations of the circuit, such as the purity of a sub-system and the out-of-time-ordered commutator of spatially-separated operators, to a fictitious, classical Markov process, which yields exact results for the evolution of these quantities in various spatial dimensions. Operator spreading is ballistic, with a front that broadens as a dimension-dependent power-law in time. In this setting, we also map the dynamics of entanglement growth in one dimension to the stochastic growth of an interface and to the Kardar-Parisi-Zhang equation, which leads to a description of entanglement dynamics in terms of an evolving "minimal cut" through the quantum circuit, and provides heuristics for entanglement growth in higher-dimensions. The material presented here is based on Ref. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Ref. [11, 12] are not discussed in this thesis, but were completed during my time at MIT.
by Ksheerasagar Vijay.
Ph. D.
Andrews, Bartholomew. "Stability of topological states and crystalline solids." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288876.
Full textRui, Wenbin [Verfasser], and Walter [Akademischer Betreuer] Metzner. "From Hermitian to non-Hermitian topological phases of matter / Wenbin Rui ; Betreuer: Walter Metzner." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1193492106/34.
Full textGonzález, Cuadra Daniel. "A cold-atom approach to topological quantum matter across the energy scale." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670622.
Full textEl enorme progreso llevado a cabo en las últimas decadas para aislar y manipular sistemas cuánticos individuales ha revolucionado la manera de investigar fenómenos cuánticos de muchos cuerpos, los cuales se presentan a diferentes escalas energéticas en la naturaleza. Actualmente, una gran variedad de modelos paradigmáticos en física de la materia condensada y de altas energías se estudian experimentalmente utilizando sistemas atómicos tales como átomos ultrafríos en retículos ópticos, llevando a la realidad la idea de simulador cuántico de Feynman. Los simuladores cuánticos ofrecen la posibilidad de obtener información sobre otros sistemas cuánticos más complejos que, o bien no son accesibles experimentalmente, o cuyas propiedades no se pueden predecir fácilmente utilizando técnicas analíticas o numéricas usuales. Estos sistemas cuánticos sintéticos se pueden diseñar de tal manera que se encuentren descritos precisamente por los mismos modelos que los anteriores y, gracias a su notable control, permiten investigar los fenómenos más relevantes asociados a ellos. Aparte de su uso como simuladores cuánticos, estos sistemas atómicos se pueden utilizar para crear nuevos tipos de materia cuántica cuyas propiedades pueden ser diferentes de aquellas encontradas en la naturaleza, ofreciendo así aplicaciones interesantes en tecnología cuántica. En esta tesis investigamos las posibilidades que los sistemas de átomos fríos ofrecen para obtener materia cuántica con propiedades topológicas no triviales. Analizamos, en particular, diferentes estrategias de simulación cuántica para acceder a varios fenómenos de muchos cuerpos que aún no se entienden de forma satisfactoria, utilizando para ello mezclas de átomos ultrafríos. Mostramos además como estas plataformas pueden dar lugar a efectos topológicos fuertemente correlacionados que van más allá de los encontrados hasta ahora en sistemas naturales. Primero nos enfocamos en modelos inspirados por sistemas de materia condensada. En particular, proponemos como implementar retículos dinámicos, los cuales suelen ser estáticos en sitemas ópticos, de manera que podamos simular las partículas fonónicas que aparecen en sólidos cristalinos. Acoplamos estos últimos a materia cuántica utilizando una mezcla de átomos bosónicos, lo cual nos permite reproducir algunos de los efectos típicos que aparecen en sitemas electrónicos, tales como defectos topológicos o fraccionalización de la carga. Por último, extendemos estos resultados encontrando rasgos nuevos, desde la fraccionalización de bosones hasta fases topológicas entrelazadas. Consideramos además simulaciones cuánticas para problemas en física de altas energías. Utilizando mezclas de átomos bosónicos y fermiónicos, mostramos como algunos fenómenos no perturbativos característicos de teorías gauge no abelianas, tales como el confinamiento de quarks, pueden aparecer en modelos más sencillos, los cuales están al alcance de la tecnología actual. Finalmente, investigamos como la interacción entre simetría gauge y correlaciones fuertes puede dar lugar a nuevos mecanismos para genera orden topológico más robusto en simuladores cuánticos a corto plazo. En resumen, nuestros resultados muestras varias conexiones entre diferentes areas de la física teórica y experimental, e indican como estas pueden ser exploradas para avanzar en el conocmiento de la materia cuántica fuertemente correlacionada, así como en las posibles aplicaciones tecnológicas de esta última.
Fidkowski, Lukasz. "Singularity resolution in string theory and new quantum condensed matter phases /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textRonquillo, David C. "Identifying topological order in the Shastry-Sutherland model via entanglement entropy." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1596474.
Full textIt is known that for a topologically ordered state the area law for the entanglement entropy shows a negative universal additive constant contribution, –γ, called the topological entanglement entropy. We theoretically study the entanglement entropy of the two-dimensional Shastry-Sutherland quantum antiferromagnet using exact diagonalization on clusters of 16 and 24 spins. By utilizing the Kitaev-Preskill construction, we extract a finite topological term, –γ , in the region of bond-strength parameter space corresponding to high geometrical frustration. Thus, we provide strong evidence for the existence of an exotic topologically ordered state and shed light on the nature of this model's strongly frustrated, and long controversial, intermediate phase.
Tucker, Adam Philip. "Local moment phases in quantum impurity problems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:538d2d83-963e-4a51-81cd-4235e9761da4.
Full textMitchell, Andrew Keith. "Two-channel Kondo phases in coupled quantum dots." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:3d4e9d86-794c-441c-9d4b-20e6f1bd1de1.
Full textNevado, Serrano Pedro. "Strongly-correlated phases in trapped-ion quantum simulators." Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/68380/.
Full textHalász, Gábor B. "Doping a topological quantum spin liquid : slow holes in the Kitaev honeycomb model." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:928ba58d-c69c-4e85-8d49-677d7e9c0fdc.
Full textFranchetti, Guido. "Pattern-forming in non-equilibrium quantum systems and geometrical models of matter." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245145.
Full textCoak, Matthew. "Quantum tuning and emergent phases in charge and spin ordered materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/280284.
Full textPhuphachong, Thanyanan. "Magneto-spectroscopy of Dirac matter : graphene and topological insulators." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066170/document.
Full textThis thesis reports on the study under magnetic field of the electronic properties of relativistic-like Dirac fermions in two Dirac systems: graphene and topological insulators. Their analogies with high-energy physics and their potential applications have attracted great attention for fundamental research in condensed matter physics. The carriers in these two materials obey a Dirac Hamiltonian and the energy dispersion is analogous to that of the relativistic particles. The particle rest mass is related to the band gap of the Dirac material, with the Fermi velocity replacing the speed of light. Graphene has been considered as a “role model”, among quantum solids, that allows us to study the relativistic behavior of massless Dirac fermions satisfying a linear dispersion. When a Dirac system possesses a nonzero gap, we have massive Dirac fermions. Massless and massive Dirac fermions were studied in high-mobility multilayer epitaxial graphene and in topological crystalline insulators Pb1-xSnxSe and Pb1-xSnxTe. The latter system is a new class of topological materials where the bulk states are insulating but the surface states are conducting. This particular aspect results from the inversion of the lowest conduction and highest valence bulk bands having different parities, leading to a topological phase transition. Infrared magneto-spectroscopy is an ideal technique to probe these zero-gap or narrow gap materials since it provides quantitative information about the bulk parameters via the Landau quantization of the electron states. In particular, the topological phase transition can be characterized by a direct measurement of the topological index
Szewczyk, Adam. "Supercurrents in a Topological Josephson Junction with a Magnetic Quantum Dot." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-79327.
Full textStephen, David T. [Verfasser], Norbert [Akademischer Betreuer] Schuch, Norbert [Gutachter] Schuch, and Frank [Gutachter] Pollmann. "Topological phases of matter with subsystem symmetries / David T. Stephen ; Gutachter: Norbert Schuch, Frank Pollmann ; Betreuer: Norbert Schuch." München : Universitätsbibliothek der TU München, 2021. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20210728-1613670-1-4.
Full textMazza, Leonardo Verfasser], J. I. [Akademischer Betreuer] [Cirac, and Wilhelm [Akademischer Betreuer] Zwerger. "Quantum Simulation of Topological States of Matter / Leonardo Mazza. Gutachter: Wilhelm Zwerger. Betreuer: Juan Ignacio Cirac." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1030100055/34.
Full textDos, Santos Luiz Henrique Bravo. "Topological Properties of Interacting Fermionic Systems." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10195.
Full textPhysics
Lu, Yuan-Ming. "Exotic phases of correlated electrons in two dimensions." Thesis, Boston College, 2011. http://hdl.handle.net/2345/2363.
Full textExotic phases and associated phase transitions in low dimensions have been a fascinating frontier and a driving force in modern condensed matter physics since the 80s. Due to strong correlation effect, they are beyond the description of mean-field theory based on a single-particle picture and Landau's symmetry-breaking theory of phase transitions. These new phases of matter require new physical quantities to characterize them and new languages to describe them. This thesis is devoted to the study on exotic phases of correlated electrons in two spatial dimensions. We present the following efforts in understanding two-dimensional exotic phases: (1) Using Zn vertex algebra, we give a complete classification and characterization of different one-component fractional quantum Hall (FQH) states, including their ground state properties and quasiparticles. (2) In terms of a non-unitary transformation, we obtain the exact form of statistical interactions between composite fermions in the lowest Landau level (LLL) with v=1/(2m), m=1,2... By studying the pairing instability of composite fermions we theoretically explains recently observed FQHE in LLL with v=1/2,1/4. (3) We classify different Z2 spin liquids (SLs) on kagome lattice in Schwinger-fermion representation using projective symmetry group (PSG). We propose one most promising candidate for the numerically discovered SL state in nearest-neighbor Heisenberg model on kagome lattice}. (4) By analyzing different Z2 spin liquids on honeycomb lattice within PSG classification, we find out the nature of the gapped SL phase in honeycomb lattice Hubbard model, labeled sublattice pairing state (SPS) in Schwinger-fermion representation. We also identify the neighboring magnetic phase of SPS as a chiral-antiferromagnetic (CAF) phase and analyze the continuous phase transition between SPS and CAF phase. For the first time we identify a SL called 0-flux state in Schwinger-boson representation with one (SPS) in Schwinger-fermion representation by a duality transformation. (5) We show that when certain non-collinear magnetic order coexists in a singlet nodal superconductor, there will be Majorana bound states in vortex cores/on the edges of the superconductor. This proposal opens a window for discovering Majorana fermions in strongly correlated electrons. (6) Motivated by recent numerical discovery of fractionalized phases in topological flat bands, we construct wavefunctions for spin-polarized fractional Chern insulators (FCI) and time reversal symmetric fractional topological insulators (FTI) by parton approach. We show that lattice symmetries give rise to different FCI/FTI states even with the same filling fraction. For the first time we construct FTI wavefunctions in the absence of spin conservation which preserve all lattice symmetries. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations
Thesis (PhD) — Boston College, 2011
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
McCord, John J. "Investigating the topological order of an ansatz for the fractional quantum Hall effect in the half-filled second Landau level." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10240257.
Full textThe Moore-Read Pfaffian and anti-Pfaffian states have been under scrupulous review as candidates which describe the fractional quantum Hall effect at filling factor 5/2. Quantum states in the universality class of the Moore-Read Pfaffian/anti-Pfaffian have non-trivial intrinsic topological order and support low-energy non-Abelian excitations that have applications in fault-tolerant topological quantum computing schemes. Both states are exact ground states of three-body Hamiltonians that explicitly break particle-hole symmetry. We study the topological order of a competing ansatz state &PSgr;2 that is the exact ground state of a two-body Hamiltonian that preserves particle-hole symmetry. In particular, we calculate the bipartite entanglement entropy and spectra in the lowest Landau level in the spherical geometry for &PSgr; 2. We perform such calculations for a finite number of electrons up to 14. We then extrapolate to the thermodynamic limit the topological entanglement entropy γ as a measure of the topological order of the ansatz and compare to the known value of the Moore-Read Pfaffian/anti-Pfaffian state. We also study the orbital entanglement spectra for &PSgr;2 and compare with the Moore-Read Pfaffian and two-body Coulomb ground states. We show that our extrapolation of γ lies within the uncertainty of the known value of γ for the Moore-Read Pfaffian state, and that the orbital entanglement spectra of &PSgr;2 assumes a similar structure to that of the two-body Coulomb interaction.
Eriksson, Hjalmar. "From the quantum Hall effect to topological insulators : A theoretical overview of recent fundamental developments in condensed matter physics." Thesis, Uppsala University, Theoretical Physics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126860.
Full textIn this overview I describe the simplest models for the quantum Hall and quantum spin Hall effects, and give some general indications as to the description of topological insulators. As a background to the theoretical models I will first trace the development leading up to the description of topological insulators . Then I will present Laughlin's original model for the quantum Hall effect and briefly discuss its limitations. After that I will describe the Kane and Mele model for the quantum spin Hall effect in graphene and discuss its relation to a general quantum spin Hall system. I will conclude by giving a conceptual description of topological insulators and mention some potential applications of such states.
Janot, Alexander [Verfasser], Bernd [Akademischer Betreuer] Rosenow, Bernd [Gutachter] Rosenow, and Ehud [Gutachter] Altman. "Quantum Condensates and Topological Bosons in Coupled Light-Matter Excitations / Alexander Janot ; Gutachter: Bernd Rosenow, Ehud Altman ; Betreuer: Bernd Rosenow." Leipzig : Universitätsbibliothek Leipzig, 2016. http://d-nb.info/1240398077/34.
Full textSchönle, Joachim. "Quantum transport studies for spintronics implementation : from supramolecular carbon nanotube systems to topological crystalline insulator." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY022/document.
Full textMolecular electronics is one of the most intriguing fields of modern research, which could bring forth a modular and scalable building system for nanoscale spintronics applications. A particularly promising example are single-molecule magnets, which have already successfully shown to be suitable for spin valve or spin qubit operations. One of the biggest challenges of the field is the integration of these nanometer-sized objects in complex circuits in order to allow for detection and manipulation of moleculear spin states. As shown in recent years by the NanoSpin group, carbon nanotubes (CNTs) can serve as such type of carrier for the single-molecule magnets, combining features of both constituents.A corner stone of this thesis project was hence the development of a dependable fabrication technique for high-quality CNT devices, controllable by multiple local gate electrodes in order to enable local control of molecular hybrid systems. A process based on conventional one-chip fabrication was developed from scratch, for which optimization of sample design, lithography and deposition techniques as well as material choices had to be carefully incorporated, in order to accomodate the restrictions imposed by the CNT growth conditions on the prevention of leakage currents. We succeeded in producing clean CNT devices, which could support a double dot configuration, tunable from p- to n-type characteristics. The segments created in this way can be stabily controlled over the entire device length and should hence provide a suitable backbone to study molecular physics.Topological matter constitutes an enticing platform to investigate both fundamental principles as well as possible applications from spintronics to quantum computation. Topological crystalline insulators, with tin telluride ( SnTe ) as a prime example, represent a new state of matter within this zoo of 3D topological materials. Soon after first experimental realizations, suggestions were made about the possibility of an unconventional type of superconductivity hosted at the interface between topological matter and conventional superconductors. Possible implications of such systems include Cooper pairing with finite momentum, the FFLO phase, or topological quantum computing, based on peculiar excitations, called Majorana bound states.This thesis project aimed to participate in the investigation of signs of unconventional superconductivity in SnTe . Transport experiments on bare films in Hall bar geometries and superconducting hybrid devices, realized as both Josephson junctions and SQUIDs, are discussed. A surprisingly strong coupling of SnTe to Ta superconductor was found and dependencies of superconductivity on sample geometries, temperature and magnetic field were investigated. The current-phase relation was analyzed in the limit of strong kinetic effects. Electrostatic gating and rf exposure was explored, but predominant physics in such configurations turned out to be of purely conventional type, pointing out the importance of improvements on the material side.In-plane magnetic field measurements gave rise to the manifestation of ϕ0-SQUIDs with tunable 0−π-transitions, providing evidence for possible controlled transitions from trivial superconductivity to unconventional coupling regimes in SnTe
Théveniaut, Hugo. "Méthodes d'apprentissage automatique et phases quantiques de la matière." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30228.
Full textMy PhD thesis presents three applications of machine learning to condensed matter theory. Firstly, I will explain how the problem of detecting phase transitions can be rephrased as an image classification task, paving the way to the automatic mapping of phase diagrams. I tested the reliability of this approach and showed its limits for models exhibiting a many-body localized phase in 1 and 2 dimensions. Secondly, I will introduce a variational representation of quantum many-body ground-states in the form of neural-networks and show our results on a constrained model of hardcore bosons in 2d using variational and projection methods. In particular, we confirmed the phase diagram obtained independently earlier and extends its validity to larger system sizes. Moreover we also established the ability of neural-network quantum states to approximate accurately solid and liquid bosonic phases of matter. Finally, I will present a new approach to quantum error correction based on the same techniques used to conceive the best Go game engine. We showed that efficient correction strategies can be uncovered with evolutionary optimization algorithms, competitive with gradient-based optimization techniques. In particular, we found that shallow neural-networks are competitive with deep neural-networks