Academic literature on the topic 'Topological vector spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topological vector spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Topological vector spaces"
Rajesh, N., and V. Vijayabharathi. "On strongly preirresolute topological vector spaces." Mathematica Bohemica 138, no. 1 (2013): 37–42. http://dx.doi.org/10.21136/mb.2013.143228.
Full textChiney, Moumita, and S. K. Samanta. "IF topological vector spaces." Notes on Intuitionistic Fuzzy Sets 24, no. 2 (May 2018): 33–51. http://dx.doi.org/10.7546/nifs.2018.24.2.33-51.
Full textIbrahim, Hariwan. "α-Topological Vector Spaces." Science Journal of University of Zakho 5, no. 1 (March 30, 2017): 107–11. http://dx.doi.org/10.25271/2017.5.1.310.
Full textGabriyelyan, Saak S., and Sidney A. Morris. "Free topological vector spaces." Topology and its Applications 223 (June 2017): 30–49. http://dx.doi.org/10.1016/j.topol.2017.03.006.
Full textKhurana, Surjit Singh. "Order convergence of vector measures on topological spaces." Mathematica Bohemica 133, no. 1 (2008): 19–27. http://dx.doi.org/10.21136/mb.2008.133944.
Full textMuller, M. A. "Bornologiese pseudotopologiese vektorruimtes." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 9, no. 1 (July 5, 1990): 15–18. http://dx.doi.org/10.4102/satnt.v9i1.434.
Full textYan, Cong-Hua, and Cong-Xin Wu. "L-fuzzifying topological vector spaces." International Journal of Mathematics and Mathematical Sciences 2005, no. 13 (2005): 2081–93. http://dx.doi.org/10.1155/ijmms.2005.2081.
Full textAbbas, Fadhil, and Hassan A. Alhayo. "Fuzzy ideal topological vector spaces." Mathematica Slovaca 72, no. 4 (August 1, 2021): 993–1000. http://dx.doi.org/10.1515/ms-2022-0069.
Full textYan, Cong-hua, and Jin-xuan Fang. "I(L)-topological vector spaces and its level topological spaces." Fuzzy Sets and Systems 149, no. 3 (February 2005): 485–92. http://dx.doi.org/10.1016/j.fss.2004.01.006.
Full textKhan, Moizud Din, and Muhammad Asad Iqbal. "On Irresolute Topological Vector Spaces." Advances in Pure Mathematics 06, no. 02 (2016): 105–12. http://dx.doi.org/10.4236/apm.2016.62009.
Full textDissertations / Theses on the topic "Topological vector spaces"
Nielsen, Mark J. "Tilings of topological vector spaces /." Thesis, Connect to this title online; UW restricted, 1990. http://hdl.handle.net/1773/5763.
Full textVera, Mendoza Rigoberto. "Linear operations on locally convex topological vector spaces." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186699.
Full textPinchuck, Andrew. "Extension theorems on L-topological spaces and L-fuzzy vector spaces." Thesis, Rhodes University, 2002. http://hdl.handle.net/10962/d1005219.
Full textLear, Jeffrey Charles. "Barrelled spaces." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1993. http://www.kutztown.edu/library/services/remote_access.asp.
Full textSource: Masters Abstracts International, Volume: 45-06, page: 3171. Abstract precedes thesis title page as [2] preliminary leaves. Typescript. Includes bibliographical references (leaf 39).
Griesan, Raymond William. "Nabla spaces, the theory of the locally convex topologies (2-norms, etc.) which arise from the mensuration of triangles." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184510.
Full textAlbuquerque, Nacib André Gurgel e. "Hardy-Littlewood/Bohnenblust-Hille multilinear inequalities and Peano curves on topological vector spaces." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7448.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work is divided in two subjects. The first concerns about the Bohnenblust-Hille and Hardy- Littlewood multilinear inequalities. We obtain optimal and definitive generalizations for both inequalities. Moreover, the approach presented provides much simpler and straightforward proofs than the previous one known, and we are able to show that in most cases the exponents involved are optimal. The technique used is a combination of probabilistic tools and of an interpolative approach; this former technique is also employed in this thesis to improve the constants for vector-valued Bohnenblust-Hille type inequalities. The second subject has as starting point the existence of Peano spaces, that is, Haurdor spaces that are continuous image of the unit interval. From the point of view of lineability we analyze the set of continuous surjections from an arbitrary euclidean spaces on topological spaces that are, in some natural sense, covered by Peano spaces, and we conclude that large algebras are found within the families studied. We provide several optimal and definitive result on euclidean spaces, and, moreover, an optimal lineability result on those special topological vector spaces.
Este trabalho édividido em dois temas. O primeiro diz respeito às desigualdades multilineares de Bohnenblust-Hille e Hardy-Littlewood. Obtemos generalizações ótimas e definitivas para ambas desigualdades. Mais ainda, a abordagem apresentada fornece demonstrações mais simples e diretas do que as conhecidas anteriormente, além de sermos capazes de mostrar que os expoentes envolvidos são ótimos em varias situações. A técnica utilizada combina ferramentas probabilísticas e interpolativas; esta ultima e ainda usada para melhorar as estimativas das versões vetoriais da desigualdade de Bohnenblust-Hille. O segundo tema possui como ponto de partida a existência de espaços de Peano, ou seja, os espaços de Hausdor que são imagem contínua do intervalo unitário. Sob o ponto de vista da lineabilidade, analisamos o conjunto das sobrejecoes contínuas de um espaço euclidiano arbitrário em um espaço topológico que, de certa forma, e coberto por espaços de Peano, e concluímos que grandes álgebras são encontradas nas famílias estudadas. Fornecemos vários resultados ótimos e definitivos em espaços euclidianos, e, mais ainda, um resultado de lineabilidade ótimo naqueles espaços vetoriais topológicos especiais.
Toolan, Timothy M. "Advances in sliding window subspace tracking /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3206257.
Full textCosta, Debora Cristina Brandt. "Operadores hipercíclicos em espaços vetoriais topológicos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-01082007-115014/.
Full textLet E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.
Cavalcante, Wasthenny Vasconcelos. "Espaços Vetoriais Topológicos." Universidade Federal da Paraíba, 2015. http://tede.biblioteca.ufpb.br:8080/handle/tede/9277.
Full textMade available in DSpace on 2017-08-17T14:00:23Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1661057 bytes, checksum: 913a7f671e2e028b60d14a02274f932a (MD5) Previous issue date: 2015-02-27
In this work we investigate the concept of topological vector spaces and their properties. In the rst chapter we present two sections of basic results and in the other sections we present a more general study of such spaces. In the second chapter we restrict ourselves to the real scalar eld and we study, in the context of locally convex spaces, the Hahn-Banach and Banach-Alaoglu theorems. We also build the weak, weak-star, of bounded convergence and of pointwise convergence topologies. Finally we investigate the Theorem of Banach-Steinhauss, the Open Mapping Theorem and the Closed Graph Theorem.
Neste trabalho, estudamos o conceito de espa cos vetoriais topol ogicos e suas propriedades. No primeiro cap tulo, apresentamos duas se c~oes de resultados b asicos e, nas demais se c~oes, apresentamos um estudo sobre tais espa cos de forma mais ampla. No segundo cap tulo, restringimo-nos ao corpo dos reais e fazemos um estudo sobre os espa cos localmente convexos, o Teorema de Hahn-Banach, o Teorema de Banach- Alaoglu, constru mos as topologias fraca, fraca-estrela, da converg^encia limitada e da converg^encia pontual. Por ultimo, estudamos o Teorema da Limita c~ao Uniforme, o Teorema do Gr a co Fechado e o da Aplica c~ao Aberta no contexto mais geral dos espa cos de Fr echet.
Karliczek, Martin. "Elements of conditional optimization and their applications to order theory." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/17085.
Full textIn this thesis, we prove results relevant for optimization problems in L0-modules and study applications to order theory. The first part deals with the notion of an Assessment Index (AI). For an L0 -module X an AI is a quasiconcave, monotone and local function mapping to L0. We prove a robust representation of these AIs. In the second chapter of this thesis, we develop Ekeland’s variational principle for L0-modules allowing for an L0-metric. We prove an L0-Version of a generalization of Ekeland’s theorem. A further application of L0 -theory is examined in the third chapter of this thesis, namely an extension of the Brouwer fixed point theorem to functions on (L0)^d . We define a conditional simplex, which is a simplex with respect to L0 , and prove that every local, sequentially continuous function has a fixed point. We extend the fixed point theorem to arbitrary closed, L0-convex sets. A more general structure than L0 -modules is the concept of conditional sets. In the fourth chapter of the thesis, we study conditional topological vector spaces. We examine the concept of duality for conditional sets and prove results of functional analysis: among others, the Banach-Alaoglu and the Krein-Šmulian theorem. Any L0 -module being a conditional set allows to apply all results to L0 -theory. In the fifth chapter, we discuss the property of transitivity of relations and its connection to certain forms of representations. After a survey of common representations of preferences, we attend to relations induced by moving convex sets which are relations of the form that x is preferred to y if and only if x − y is in a convex set depending on y. We examine in which cases such a representation is transitive. Finally, we exhibit nontransitivity due to dissimilarity of the compared object and discuss representations for relations of that type.
Books on the topic "Topological vector spaces"
1940-, Beckenstein Edward, ed. Topological vector spaces. 2nd ed. Boca Raton: Taylor & Francis, 2011.
Find full textSchaefer, H. H., and M. P. Wolff. Topological Vector Spaces. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7.
Full textBourbaki, Nicolas. Topological Vector Spaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-61715-7.
Full textNarici, Lawrence. Topological vector spaces. 2nd ed. Boca Raton, FL: CRC Press, 2011.
Find full text1940-, Beckenstein Edward, ed. Topological vector spaces. New York: M. Dekker, 1985.
Find full textTopological vector spaces and distributions. Mineola, N.Y: Dover Publications, 2012.
Find full textHorváth, John. Topological vector spaces and distributions. Mineola, N.Y: Dover Publications, 2012.
Find full textBook chapters on the topic "Topological vector spaces"
Schaefer, H. H., and M. P. Wolff. "Topological Vector Spaces." In Topological Vector Spaces, 12–35. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_2.
Full textBourbaki, Nicolas. "Topological vector spaces over a valued division ring." In Topological Vector Spaces, 1–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_1.
Full textBourbaki, Nicolas. "Convex sets and locally convex spaces." In Topological Vector Spaces, 31–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_2.
Full textBourbaki, Nicolas. "Spaces of continuous linear mappings." In Topological Vector Spaces, 127–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_3.
Full textBourbaki, Nicolas. "Duality in topological vector spaces." In Topological Vector Spaces, 177–252. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_4.
Full textBourbaki, Nicolas. "Hilbertian spaces (elementary theory)." In Topological Vector Spaces, 253–331. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-61715-7_5.
Full textSchaefer, H. H., and M. P. Wolff. "Prerequisites." In Topological Vector Spaces, 1–11. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_1.
Full textSchaefer, H. H., and M. P. Wolff. "Locally Convex Topological Vector Spaces." In Topological Vector Spaces, 36–72. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_3.
Full textSchaefer, H. H., and M. P. Wolff. "Linear Mappings." In Topological Vector Spaces, 73–121. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_4.
Full textSchaefer, H. H., and M. P. Wolff. "Duality." In Topological Vector Spaces, 122–202. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7_5.
Full textConference papers on the topic "Topological vector spaces"
Latif, Raja Mohammad. "Almost Alpha – Topological Vector Spaces." In 2020 International Conference on Mathematics and Computers in Science and Engineering (MACISE). IEEE, 2020. http://dx.doi.org/10.1109/macise49704.2020.00019.
Full textHussein, Jalal Hatem, and Talal Ali Al-Hawary. "On δ-topological vector spaces." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0116708.
Full textWu, Zhiyong. "Vector Equilibrium Problem in Topological Vector Spaces." In 2018 6th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icmmct-18.2018.8.
Full textZhang, Hua-Peng. "Generalized local boundedness of induced I(L)-topological vector spaces." In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7381916.
Full textKraus, Eugene J., Henk J. A. M. Heijmans, and Edward R. Dougherty. "Spatial-scaling-compatible morphological granulometries on locally convex topological vector spaces." In San Diego '92, edited by Paul D. Gader, Edward R. Dougherty, and Jean C. Serra. SPIE, 1992. http://dx.doi.org/10.1117/12.60649.
Full textAbbas, Ruaa K., and Boushra Y. Hussein. "A new kind of topological vector space: Topological approach vector space." In 3RD INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0066971.
Full textBao, Yuanlu, Zhenan Liu, and Jin Qu. "An effective topological adjustment on vector maps for AVL." In International Conference on Space information Technology, edited by Cheng Wang, Shan Zhong, and Xiulin Hu. SPIE, 2005. http://dx.doi.org/10.1117/12.657414.
Full textGu, Guomin, and Weihong Wang. "Improved Vector Route Algorithm Bases on Raster Topological Space Model." In TENCON 2005 - 2005 IEEE Region 10 Conference. IEEE, 2005. http://dx.doi.org/10.1109/tencon.2005.301072.
Full textKong, Yuqi, Fanchao Meng, and Ben Carterette. "A Topological Method for Comparing Document Semantics." In 9th International Conference on Natural Language Processing (NLP 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101411.
Full textHobbs, Linn W. "What Can Topological Models Tell Us About Glass Structure and Properties?" In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsua.2.
Full textReports on the topic "Topological vector spaces"
Al Shumrani, Mohammed A. Partially Topological Vector Spaces. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.01.
Full text