Academic literature on the topic 'Topology. Hyperspace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Topology. Hyperspace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Topology. Hyperspace"

1

Curtis, D. W. "Application of a Selection Theorem to Hyperspace Contractibility." Canadian Journal of Mathematics 37, no. 4 (August 1, 1985): 747–59. http://dx.doi.org/10.4153/cjm-1985-040-7.

Full text
Abstract:
For X a metric continuum, 2X denotes the hyper space of all nonempty subcompacta, with the topology induced by the Hausdorff metric H, and C(X) ⊂ 2X the hyperspace of subcontinua. These hyperspaces are continua, in fact are arcwise-connected, since there exist order arcs between each hyperspace element and the element X. They also have trivial shape, i.e., maps of the hyperspaces into ANRs are homotopic to constant maps. For a detailed discussion of these and other general hyperspace properties, we refer the reader to Nadler's monograph [4].The question of hyperspace contractibility was first considered by Wojdyslawski [8], who showed that 2X and C(X) are contractible if X is locally connected. Kelley [2] gave a more general condition (now called property K) which is sufficient, but not necessary, for hyperspace contractibility. The continuum X has property K if for every there exists δ > 0 such that, for every pair of points x, y with d(x, y) < δ and every subcontinuum M containing x, there exists a subcontinuum N containing y with .
APA, Harvard, Vancouver, ISO, and other styles
2

Constantini, Camillo, and Wieslaw Kubís. "Paths in hyperspaces." Applied General Topology 4, no. 2 (October 1, 2003): 377. http://dx.doi.org/10.4995/agt.2003.2040.

Full text
Abstract:
<p>We prove that the hyperspace of closed bounded sets with the Hausdor_ topology, over an almost convex metric space, is an absolute retract. Dense subspaces of normed linear spaces are examples of, not necessarily connected, almost convex metric spaces. We give some necessary conditions for the path-wise connectedness of the Hausdorff metric topology on closed bounded sets. Finally, we describe properties of a separable metric space, under which its hyperspace with the Wijsman topology is path-wise connected.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Illanes, Alejandro, and Verónica Martı́nez-de-la-Vega. "Product topology in the hyperspace of subcontinua." Topology and its Applications 105, no. 3 (August 2000): 305–17. http://dx.doi.org/10.1016/s0166-8641(99)00065-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holá, Lubica. "Embeddings in the Fell and Wijsman topologies." Filomat 33, no. 9 (2019): 2747–50. http://dx.doi.org/10.2298/fil1909747h.

Full text
Abstract:
It is shown that if a T2 topological space X contains a closed uncountable discrete subspace, then the spaces (?1 + 1)? and (?1 + 1)?1 embed into (CL(X),?F), the hyperspace of nonempty closed subsets of X equipped with the Fell topology. If (X, d) is a non-separable perfect topological space, then (?1 + 1)? and (?1 +1)?1 embed into (CL(X), ?w(d)), the hyperspace of nonempty closed subsets of X equipped with the Wijsman topology, giving a partial answer to the Question 3.4 in [2].
APA, Harvard, Vancouver, ISO, and other styles
5

Naimpally, S. A., and P. L. Sharma. "Fine uniformity and the locally finite hyperspace topology." Proceedings of the American Mathematical Society 103, no. 2 (February 1, 1988): 641. http://dx.doi.org/10.1090/s0002-9939-1988-0943098-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Thakyin, and Jen-Chun Fang. "Weak topology and Browder–Kirk's theorem on hyperspace." Journal of Mathematical Analysis and Applications 334, no. 2 (October 2007): 799–803. http://dx.doi.org/10.1016/j.jmaa.2006.12.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Acosta, Gerardo. "Continua with almost unique hyperspace." Topology and its Applications 117, no. 2 (January 2002): 175–89. http://dx.doi.org/10.1016/s0166-8641(01)00018-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Camargo, Javier, and Sergio Macías. "Embedding suspensions into hyperspace suspensions." Topology and its Applications 160, no. 10 (June 2013): 1115–22. http://dx.doi.org/10.1016/j.topol.2013.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vroegrijk, Tom. "Bornological modifications of hyperspace topologies." Topology and its Applications 161 (January 2014): 330–42. http://dx.doi.org/10.1016/j.topol.2013.10.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

García-Ferreira, S., and Y. F. Ortiz-Castillo. "The hyperspace of convergent sequences." Topology and its Applications 196 (December 2015): 795–804. http://dx.doi.org/10.1016/j.topol.2015.05.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Topology. Hyperspace"

1

Freeman, Jeannette Broad. "Hyperspace Topologies." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2902/.

Full text
Abstract:
In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.
APA, Harvard, Vancouver, ISO, and other styles
2

Varagona, Scott Smith Michel. "Inverse limit spaces." Auburn, Ala, 2008. http://hdl.handle.net/10415/1486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stone, Jennifer Williamson Heath Jo W. Smith Michel. "Non-metric continua that support Whitney maps." Auburn, Ala., 2007. http://hdl.handle.net/10415/1375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hadj-Moussa, Arab Meriem. "Topologies sur les hyper-espaces. Consonance et hyperconsonance." Rouen, 1995. http://www.theses.fr/1995ROUES018.

Full text
Abstract:
Cette thèse se subdivise en trois chapitres. Le premier chapitre est un rappel sur différentes topologies classiques sur les hyper-espaces de Fermes. Citons parmi d'autres la topologie de Hausdorff pour les espaces métriques, la topologie de Vietoris, celle de Fell et celle de la convergence. Certains résultats complètent ceux de la monographie de E. Klein et A. Thompson. Le deuxième chapitre représente la partie originale de la thèse. Elle concerne l'étude de la coïncidence de la topologie co-compacte et la topologie supérieure de Kuratowski (consonance), et la coïncidence de la topologie de Fell et la topologie de la convergence (l'hyperconsonance). Il est aussi établi dans le cadre des espaces-points de type A (un espace-point est un espace séparé dénombrable ayant exactement un point limite), le rapport entre consonance et hyperconsonance. Le troisième chapitre est une étude des hyper-espaces de Fermes d'espaces métriques. On détaille les résultats de G. Beer sur les rapports entre la topologie de Fell, la topologie de Boule, les topologies classiques sur l'ensemble des fonctions distances et les limites de suites ordinaires de Fermes au sens de Kuratowski
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez, Álvarez José Manuel. "Semi-lipschitz functions, best approximation, and fuzzy quasi-metric hyperspaces." Doctoral thesis, Universitat Politècnica de València, 2009. http://hdl.handle.net/10251/5769.

Full text
Abstract:
En los últimos años se ha desarrollado una teoría matemática que permite generalizar algunas teorías matemáticas clásicas: hiperespacios, espacios de funciones, topología algebraica, etc. Este hecho viene motivado, en parte, por ciertos problemas de análisis funcional, concentración de medidas, sistemas dinámicos, teoría de las ciencias de la computación, matemática económica, etc. Esta tesis doctoral está dedicada al estudio de algunas de estas generalizaciones desde un punto de vista no simétrico. En la primera parte, estudiamos el conjunto de funciones semi-Lipschitz; mostramos que este conjunto admite una estructura de cono normado. Estudiaremos diversos tipos de completitud (bicompletitud, right k-completitud, D-completitud, etc), y también analizaremos cuando la casi-distancia correspondiente es balanceada. Además presentamos un modelo adecuado para el computo de la complejidad de ciertos algoritmos mediante el uso de normas relativas. Esto se consigue seleccionando un espacio de funciones semi-Lipschitz apropiado. Por otra parte, mostraremos que estos espacios proporcionan un contexto adecuado en el que caracterizar los puntos de mejor aproximación en espacios casi-métricos. El hecho de que varias hipertopologías hayan sido aplicadas con éxito en diversas áreas de Ciencias de la Computación ha contribuido a un considerable aumento del interés en el estudio de los hiperespacios desde un punto de vista no simétrico. Así, en la segunda parte de la tesis, estudiamos algunas condiciones de mejor aproximación en el contexto de hiperespacios casi-métricos. Por otro lado, caracterizamos la completitud de un espacio uniforme usando la completitud de Sieber-Pervin, la de Smyth y la D-completitud de su casi-uniformidad superior de Hausdorff-Bourbaki, definida en los subconjuntos compactos no vacíos. Finalmente, introducimos dos nociones de hiperespacio casi-métrico fuzzy.
Sánchez Álvarez, JM. (2009). Semi-lipschitz functions, best approximation, and fuzzy quasi-metric hyperspaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5769
Palancia
APA, Harvard, Vancouver, ISO, and other styles
6

Di, Caprio Debora. "Selections, orderability and complete systems : formally convex-valued multifunctions, minimum maps and the tightness of upper hyperspaces /." 2004. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ99161.

Full text
Abstract:
Thesis (Ph.D.)--York University, 2004. Graduate Programme in Mathematics and Statistics.
Typescript. Includes bibliographical references (leaves 148-156). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ99161
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Topology. Hyperspace"

1

Beer, Gerald Alan. Topologies on closed and closed convex sets. Dordrecht: Kluwer Academic Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Topology. Hyperspace"

1

Zhang, Meili, Qiong Qin, and Weili Liu. "Density and Character of Hyperspace $$2^{X}$$ with the Locally Finite Topology." In Advances in Intelligent Automation and Soft Computing, 579–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81007-8_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Todorcevic, Stevo. "Hyperspaces." In Topics in Topology, 121–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0096299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wicks, Keith R. "Nonstandard development of the vietoris topology." In Fractals and Hyperspaces, 13–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0089159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gutev, Valentin. "Selections and Hyperspaces." In Recent Progress in General Topology III, 535–79. Paris: Atlantis Press, 2013. http://dx.doi.org/10.2991/978-94-6239-024-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Hyperspace Topologies." In Topology with Applications, 209–17. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814407663_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"5 Hyperspace Topologies." In Proximity Approach to Problems in Topology and Analysis, 61–86. München: Oldenbourg Verlag, 2009. http://dx.doi.org/10.1524/9783486598605.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holá, L'ubica, and Jan Pelant. "Recent Progress in Hyperspace Topologies." In Recent Progress in General Topology II, 253–85. Elsevier, 2002. http://dx.doi.org/10.1016/b978-044450980-2/50010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mizokami, Takemi, and Norihito Shimane. "Hyperspaces." In Encyclopedia of General Topology, 49–52. Elsevier, 2003. http://dx.doi.org/10.1016/b978-044450355-8/50014-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Illanes, Alejandro. "Hyperspaces of continua." In Open Problems in Topology II, 279–88. Elsevier, 2007. http://dx.doi.org/10.1016/b978-044452208-5/50032-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gutev, Valentin, and Tsugunori Nogura. "Selection problems for hyperspaces." In Open Problems in Topology II, 161–70. Elsevier, 2007. http://dx.doi.org/10.1016/b978-044452208-5/50017-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Topology. Hyperspace"

1

Zhang, Meili, Bo Deng, Yue Yang, and Pilin Che. "Some Connectedness and Related Property of Hyperspace with Vietoris Topology." In 2015 International Conference on Modeling, Simulation and Applied Mathematics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/msam-15.2015.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography