To see the other types of publications on this topic, follow the link: Torque detected electron spin resonance.

Journal articles on the topic 'Torque detected electron spin resonance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Torque detected electron spin resonance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

El Hallak, Fadi, Joris van Slageren, and Martin Dressel. "Torque detected broad band electron spin resonance." Review of Scientific Instruments 81, no. 9 (September 2010): 095105. http://dx.doi.org/10.1063/1.3482158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dörfel, María, Michal Kern, Heiko Bamberger, Petr Neugebauer, Katharina Bader, Raphael Marx, Andrea Cornia, et al. "Torque-Detected Electron Spin Resonance as a Tool to Investigate Magnetic Anisotropy in Molecular Nanomagnets." Magnetochemistry 2, no. 2 (May 6, 2016): 25. http://dx.doi.org/10.3390/magnetochemistry2020025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cruickshank, Paul A. S., and Graham M. Smith. "Force detected electron spin resonance at 94GHz." Review of Scientific Instruments 78, no. 1 (January 2007): 015101. http://dx.doi.org/10.1063/1.2424452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colligiani, A., M. Giordano, D. Leporini, M. Lucchesi, M. Martinelli, L. Pardi, and S. Santucci. "Longitudinally detected electron spin resonance: Recent developments." Applied Magnetic Resonance 3, no. 1 (January 1992): 107–29. http://dx.doi.org/10.1007/bf03166784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zeng, S., L. C. Smith, J. J. Davies, D. Wolverson, S. J. Bingham, and G. N. Aliev. "Optically detected electron spin-flip resonance in CdMnTe." physica status solidi (b) 243, no. 4 (March 2006): 887–91. http://dx.doi.org/10.1002/pssb.200564686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wago, K., D. Botkin, C. S. Yannoni, and D. Rugar. "Force-detected electron-spin resonance: Adiabatic inversion, nutation, and spin echo." Physical Review B 57, no. 2 (January 1, 1998): 1108–14. http://dx.doi.org/10.1103/physrevb.57.1108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bingham, Stephen J., Daniel Wolverson, and Andrew J. Thomson. "Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism." Biochemical Society Transactions 36, no. 6 (November 19, 2008): 1187–90. http://dx.doi.org/10.1042/bst0361187.

Full text
Abstract:
The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence CuA centre of nitrous oxide reductase (N2OR) from Paracoccus pantotrophus.
APA, Harvard, Vancouver, ISO, and other styles
8

Juppe, S., and O. F. Schirmer. "Thermally detected electron spin resonance of Fe2+ in LiNbO3." Solid State Communications 76, no. 3 (October 1990): 299–302. http://dx.doi.org/10.1016/0038-1098(90)90841-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keatley, P. S., K. Chatzimpaloglou, T. Manago, P. Androvitsaneas, T. H. J. Loughran, R. J. Hicken, G. Mihajlović, L. Wan, Y. Choi, and J. A. Katine. "Optically detected spin–orbit torque ferromagnetic resonance in an in-plane magnetized ellipse." Applied Physics Letters 118, no. 12 (March 22, 2021): 122405. http://dx.doi.org/10.1063/5.0035582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ARATA, Toshiaki. "Conformational Dynamics of Motor Proteins Detected by Electron Spin Resonance." Seibutsu Butsuri 52, no. 4 (2012): 172–77. http://dx.doi.org/10.2142/biophys.52.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bouterfas, M., S. Mouaziz, and R. S. Popovic. "14 GHz longitudinally detected electron spin resonance using microHall sensors." Journal of Magnetic Resonance 282 (September 2017): 47–53. http://dx.doi.org/10.1016/j.jmr.2017.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hiromitsu, I., Y. Kaimori, M. Kitano, R. Shinto, and T. Ito. "Electrically detected electron spin resonance of doped-phthalocyanine/C60 heterojunction." Synthetic Metals 102, no. 1-3 (June 1999): 1439–40. http://dx.doi.org/10.1016/s0379-6779(98)01443-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Resmer, Frank, Ian Nicholson, and James M. S. Hutchison. "A quadrature excitation coil for longitudinally detected electron spin resonance." Review of Scientific Instruments 72, no. 7 (July 2001): 3073–78. http://dx.doi.org/10.1063/1.1373668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tang, Wei, Zhen-wei Zhou, Yao-zhuang Nie, Qing-lin Xia, Zhong-ming Zeng, and Guang-hua Guo. "Spin wave modes of width modulated Ni80Fe20/Pt nanostrip detected by spin-orbit torque induced ferromagnetic resonance." Applied Physics Letters 111, no. 17 (October 23, 2017): 172407. http://dx.doi.org/10.1063/1.4999818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bose, Arnab, Sutapa Dutta, Swapnil Bhuktare, Hanuman Singh, and Ashwin A. Tulapurkar. "Sensitive measurement of spin-orbit torque driven ferromagnetic resonance detected by planar Hall geometry." Applied Physics Letters 111, no. 16 (October 16, 2017): 162405. http://dx.doi.org/10.1063/1.4999948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kadirov, M. K., E. V. Tret’yakov, Yu G. Budnikova, K. V. Kholin, M. I. Valitov, V. N. Vavilova, V. I. Ovcharenko, R. Z. Sagdeev, and O. G. Sinyashin. "Cyclic voltammetry of nitronyl- and iminonitroxyls detected by electron spin resonance." Russian Journal of Physical Chemistry A 83, no. 12 (January 2009): 2163–69. http://dx.doi.org/10.1134/s0036024409120280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ukai, M., and Y. Shimoyama. "Free radicals in irradiated wheat flour detected by electron spin resonance." Applied Magnetic Resonance 29, no. 2 (June 2005): 315–24. http://dx.doi.org/10.1007/bf03167019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Suzuki, Takayuki. "Simultaneous detection of electrically detected magnetic resonance and electron spin resonance using composite modulation." Review of Scientific Instruments 90, no. 7 (July 2019): 073102. http://dx.doi.org/10.1063/1.5093215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kikuchi, Masahiro, Hiromi Kameya, Yuhei Shimoyama, Mitsuko Ukai, and Yasuhiko Kobayashi. "Electron-spin relaxation phenomena in irradiated saccharides detected by pulsed electron paramagnetic resonance spectroscopy." Radiation Physics and Chemistry 81, no. 10 (October 2012): 1639–45. http://dx.doi.org/10.1016/j.radphyschem.2012.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Krilov, Dubravka, Greta Pifat, and Janko N. Herak. "Electron spin resonance spin-trapping study of peroxidation of human low density lipoprotein." Canadian Journal of Chemistry 66, no. 8 (August 1, 1988): 1957–60. http://dx.doi.org/10.1139/v88-315.

Full text
Abstract:
The electron spin resonance spin-trapping method has been used for detection of radicals in human low density lipoprotein (LDL) solution saturated with oxygen. The trapped radicals could be detected after about a day in an antioxidant-free solution. Two types of radicals are formed and stabilized in the lipid domain of LDL. The nature of the trapped radicals remains unclear:kinetic considerations suggest the trapped radicals to be of the LO- type, while the spectroscopic parameters are in favour of L- type radicals.
APA, Harvard, Vancouver, ISO, and other styles
21

HAMMEL, P. C. "FORCE-DETECTED SCANNED PROBE MAGNETIC RESONANCE MICROSCOPY." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3378. http://dx.doi.org/10.1142/s0217979202014474.

Full text
Abstract:
Magnetic Resonance Force Microscopy (MRFM) is a novel scanned probe technique that combines the three-dimensional imaging capabilities of magnetic resonance imaging (MRI) with the high sensitivity and resolution of atomic force microscopy (AFM). This emerging technology holds clear potential for resolution at the atomic scale. When fully realized, MRFM will provide a unique method for non-destructive, chemically specifc, subsurface imaging with applicability to a wide variety of materials. I will review results to date spanning applications of MRFM to nuclear spin, electron spin, and ferromagnetic resonance. I will outline the MRFM technique, discuss its present status and indicate future directions of our effort.
APA, Harvard, Vancouver, ISO, and other styles
22

Fockele, M., F. Lohse, and J. M. Spaeth. "The Structure of Pb+Laser Centres in KMgF3from Optically Detected Electron Spin Resonance and Electron Nuclear Double Resonance." Israel Journal of Chemistry 29, no. 1 (1989): 13–20. http://dx.doi.org/10.1002/ijch.198900003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ohmichi, Eiji, Toshihiro Miki, Hidekazu Horie, Tsubasa Okamoto, Hideyuki Takahashi, Yoshinori Higashi, Shoichi Itoh, and Hitoshi Ohta. "Mechanically detected terahertz electron spin resonance using SOI-based thin piezoresistive microcantilevers." Journal of Magnetic Resonance 287 (February 2018): 41–46. http://dx.doi.org/10.1016/j.jmr.2017.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fockele, M., B. K. Meyer, J. M. Spaeth, M. Heuken, and K. Heime. "Arsenic antisite defects inAlxGa1−xAs observed by luminescence-detected electron-spin resonance." Physical Review B 40, no. 3 (July 15, 1989): 2001–4. http://dx.doi.org/10.1103/physrevb.40.2001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ibrahim, Manjula M., and Mohindar S. Seehra. "Sulfur-Promoted Degradation of Polyethylene/Polypropylene Detected by Electron Spin Resonance Spectroscopy." Energy & Fuels 11, no. 4 (July 1997): 926–30. http://dx.doi.org/10.1021/ef960206e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mouhajir, F., J. A. Pedersen, M. Rejdali, and G. H. N. Towers. "Antimicrobial Thymohydroquinones of Moroccan Nigella Sativa Seeds Detected by Electron Spin Resonance." Pharmaceutical Biology 37, no. 5 (January 1999): 391–95. http://dx.doi.org/10.1076/phbi.37.5.391.6052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, Yang Cang, Yuan Lin Cao, Ping Guo, Yi Tao, and Bao Lu Zhao. "Detection of Nitric Oxide in Plants by Electron Spin Resonance." Phytopathology® 94, no. 4 (April 2004): 402–7. http://dx.doi.org/10.1094/phyto.2004.94.4.402.

Full text
Abstract:
Three methods to detect nitric oxide (NO•) are reported here. The first method was determining NO• in extracted plant tissue. NO• was trapped by spin trapping reagent containing diethyldithiocarbamate (DETC) and FeSO4, extracted by ethyl acetate, and determined with an electron spin resonance (ESR) spectrometer. The second method was indirectly determining NO• in live wheat leaves. Seedlings were cultured in a medium containing FeSO4, and the leaves were brushed by DETC. Then, the leaves were ground and the complex of (DETC)2-Fe2+-NO was extracted and determined with an ESR spectrometer. The third method was directly determining NO• in live wheat leaves. After treating plant materials as in the second method, part of the water in leaves was transpired, and the leaf disks were inserted directly into quartz tubes to determine NO• with an ESR spectrometer. The NO• scavenger 2-phenyl-4,4,5,5,-tetramethylimidazoline- 1-oxyl 3-oxide (PTIO) decreased NO• signal detected either by an indirect or a direct method. This result indicates that both methods could detect NO• in the live plant. Using the first methods, we detected NO• change in wheat infected by Puccinia striiformis race CY22-2 pathogen (incompatible interaction) at different inoculation times, and it was found that the NO• content dramatically increased at 24 h postinoculation, quickly decreased at 48 h, and increased again at 96 h.
APA, Harvard, Vancouver, ISO, and other styles
28

Sharma, Poorva, Jiyu Fan, Ashwini Kumar, Arvind Yogi, Yisheng Chai, Wei Ren, Shixun Cao, et al. "Spin reorientation transition and spin dynamics study of perovskite orthoferrite TmFeO3 detected by electron paramagnetic resonance." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21403–11. http://dx.doi.org/10.1039/d0cp00918k.

Full text
Abstract:
(Right) EPR spectrum of TmFeO3 from 20–300 K. (Left) (a) Asymmetry behavior w.r.t. temperature (K), (b) ΔHppvs. T, (c) Plot as ln(ΔHpp × T) vs. 1000/T, (d) DIN (inset represents χdcvs. T at different temperatures).
APA, Harvard, Vancouver, ISO, and other styles
29

Hiromitsu, I., M. Kitano, R. Shinto, and T. Ito. "Electrically detected electron spin resonance of Pt/C60/In/Al Schottky-barrier cell." Synthetic Metals 121, no. 1-3 (March 2001): 1539–40. http://dx.doi.org/10.1016/s0379-6779(00)01191-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yokoyama, Hidekatsu, Toshiyuki Satoh, Hiroaki Ohya-Nishiguchi, Hitoshi Kamada, Nahoko Kasai, and Tomokazu Matsue. "Microelectrode-Detected Electron Spin Resonance (MEDESR) Signals of Free Radicals in Electrolyte Solutions." Chemistry Letters 24, no. 10 (October 1995): 919–20. http://dx.doi.org/10.1246/cl.1995.919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hiromitsu, Ichiro, Takahiro Kitauchi, and Takashi Ito. "Electrically Detected Electron Spin Resonance of Pt/C70/In/Al Schottky-Junction System." Journal of the Physical Society of Japan 70, no. 1 (January 15, 2001): 311–12. http://dx.doi.org/10.1143/jpsj.70.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hegyi, Alex, and Eli Yablonovitch. "Molecular Imaging by Optically Detected Electron Spin Resonance of Nitrogen-Vacancies in Nanodiamonds." Nano Letters 13, no. 3 (February 8, 2013): 1173–78. http://dx.doi.org/10.1021/nl304570b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nakazawa, H., K. Ichimori, Y. Shinozaki, H. Okino, and S. Hori. "Is superoxide demonstration by electron-spin resonance spectroscopy really superoxide?" American Journal of Physiology-Heart and Circulatory Physiology 255, no. 1 (July 1, 1988): H213—H215. http://dx.doi.org/10.1152/ajpheart.1988.255.1.h213.

Full text
Abstract:
A recent study has indicated that the generation of an oxygen radical in freeze-clamped myocardium on reperfusion can be directly demonstrated using electron-spin resonance spectroscopy (ESR). However, the results need to be analyzed with caution, since artifactual radicals are misleading problems common to this method. To test whether that reported superoxide is truly the biologically existing radical or an artifactual radical, we performed experiments using isolated, perfused rat and rabbit hearts and open-chest canine hearts subjected to ischemia/reperfusion. Radicals were freeze trapped at 77 degrees K, and ESR measurements were made. The ESR spectra exhibited four free radicals. Among these, two radicals which had been previously claimed as superoxide and a nitrogen-centered radical were shown as mechanically yielded artifactual radicals. These were produced by pulverization of the frozen sample. In artifact-free samples, superoxide could not be detected. The radicals native to the myocardium were identified as coenzyme Q10-. and another radical the species of which remains unclear.
APA, Harvard, Vancouver, ISO, and other styles
34

Colton, J. S., and L. R. Wienkes. "Resonant microwave cavity for 8.5–12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance." Review of Scientific Instruments 80, no. 3 (March 2009): 035106. http://dx.doi.org/10.1063/1.3095683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Krapf, M., G. Denninger, H. Pascher, G. Weimann, and W. Schlapp. "Optically detected conduction electron spin resonance, overhauser shift and nuclear magnetic resonance in p-GaAlAs/GaAs heterostructures." Superlattices and Microstructures 8, no. 1 (January 1990): 91–96. http://dx.doi.org/10.1016/0749-6036(90)90282-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hiromitsu, I., Y. Kaimori, and T. Ito. "Photovoltaic effect and electrically detected electron spin resonance of a H2-phthalocyanine/C60 heterojunction." Solid State Communications 104, no. 9 (December 1997): 511–15. http://dx.doi.org/10.1016/s0038-1098(97)00344-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wrachtrup, J., and A. Gruber. "Projection noise in the optically detected magnetic resonance signal of a single electron spin." Solid State Nuclear Magnetic Resonance 11, no. 1-2 (March 1998): 59–64. http://dx.doi.org/10.1016/s0926-2040(97)00096-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Erilov, Denis A., Rosa Bartucci, Rita Guzzi, Derek Marsh, Sergei A. Dzuba, and Luigi Sportelli. "Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems." Journal of Physical Chemistry B 108, no. 14 (April 2004): 4501–7. http://dx.doi.org/10.1021/jp037249y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kadirov, M. K., K. V. Kholin, E. Yu Tselishcheva, V. A. Burilov, and A. R. Mustafina. "Cyclic voltammetry of tris(2,2′-bipyridine)zinc(ii) diperchlorate detected by electron spin resonance." Russian Chemical Bulletin 62, no. 6 (June 2013): 1327–31. http://dx.doi.org/10.1007/s11172-013-0187-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berman, Gennady P., Alan R. Bishop, Boris M. Chernobrod, Marilyn E. Hawley, Geoffrey W. Brown, and Vladimir I. Tsifrinovich. "Measurement of single electron and nuclear spin states based on optically detected magnetic resonance." Journal of Physics: Conference Series 38 (May 10, 2006): 167–70. http://dx.doi.org/10.1088/1742-6596/38/1/040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Krapf, M., G. Denninger, H. Pascher, G. Weimann, and W. Schlapp. "Optically detected conduction electron spin resonance and overhauser shift in p-GaAlAs/GaAs-heterostructures." Solid State Communications 74, no. 10 (June 1990): 1141–45. http://dx.doi.org/10.1016/0038-1098(90)90727-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dombrowski, K. F., U. Kaufmann, M. Kunzer, K. Maier, J. Schneider, V. B. Shields, and M. G. Spencer. "Identification of the neutralV4+impurity in cubic 3C-SiC by electron-spin resonance and optically detected magnetic resonance." Physical Review B 50, no. 24 (December 15, 1994): 18034–39. http://dx.doi.org/10.1103/physrevb.50.18034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Prati, E., M. Fanciulli, A. Kovalev, J. D. Caldwell, C. R. Bowers, F. Capotondi, G. Biasiol, and L. Sorba. "Magnetoresistively Detected Electron Spin Resonance in Low-Density Two-Dimensional Electron Gas in GaAs–AlGaAs Single Quantum Wells." IEEE Transactions On Nanotechnology 4, no. 1 (January 2005): 100–105. http://dx.doi.org/10.1109/tnano.2004.840185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Takahashi, Hideyuki, Kento Ishimura, Tsubasa Okamoto, Eiji Ohmichi, and Hitoshi Ohta. "Note: Force- and torque-detection of high frequency electron spin resonance using a membrane-type surface-stress sensor." Review of Scientific Instruments 89, no. 3 (March 2018): 036108. http://dx.doi.org/10.1063/1.5018831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Colton, J. S., T. A. Kennedy, A. S. Bracker, J. B. Miller, and D. Gammon. "Dependence of optically oriented and detected electron spin resonance on donor concentration in n-GaAs." Solid State Communications 132, no. 9 (December 2004): 613–16. http://dx.doi.org/10.1016/j.ssc.2004.08.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ito, Shinobu, Tomohisa Mori, Hideko Kanazawa, and Toshiko Sawaguchi. "Estimation of the Postmortem Duration of Mouse Tissue by Electron Spin Resonance Spectroscopy." Journal of Toxicology 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/973172.

Full text
Abstract:
Electron spin resonance (ESR) method is a simple method for detecting various free radicals simultaneously and directly. However, ESR spin trap method is unsuited to analyze weak ESR signals in organs because of water-induced dielectric loss (WIDL). To minimize WIDL occurring in biotissues and to improve detection sensitivity to free radicals in tissues, ESR cuvette was modified and used with 5,5-dimethtyl-1-pyrroline N-oxide (DMPO). The tissue samples were mouse brain, hart, lung, liver, kidney, pancreas, muscle, skin, and whole blood, where various ESR spin adduct signals including DMPO-ascorbyl radical (AsA∗), DMPO-superoxide anion radical (OOH), and DMPO-hydrogen radical (H) signal were detected. Postmortem changes in DMPO-AsA∗and DMPO-OOH were observed in various tissues of mouse. The signal peak of spin adduct was monitored until the 205th day postmortem. DMPO-AsA∗in liver (y=113.8–40.7 log (day),R1=-0.779,R2=0.6,P<.001) was found to linearly decrease with the logarithm of postmortem duration days. Therefore, DMPO-AsA∗signal may be suitable for detecting an oxidation stress tracer from tissue in comparison with other spin adduct signal on ESR spin trap method.
APA, Harvard, Vancouver, ISO, and other styles
47

Umeda, T., Y. Nakano, E. Higa, T. Okuda, T. Kimoto, T. Hosoi, H. Watanabe, M. Sometani, and S. Harada. "Electron-spin-resonance and electrically detected-magnetic-resonance characterization on PbC center in various 4H-SiC(0001)/SiO2 interfaces." Journal of Applied Physics 127, no. 14 (April 14, 2020): 145301. http://dx.doi.org/10.1063/1.5134648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ichikawa, Tsuneki, and Hiroshi Yoshida. "Mechanism of resolution enhancement for the electron spin echo detected electron spin resonance spectrum of alkyl radical in .gamma.-irradiated n-hexane single crystal." Journal of Physical Chemistry 92, no. 20 (October 1988): 5684–88. http://dx.doi.org/10.1021/j100331a027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Milov, Alexander D., Rimma I. Samoilova, Yuri D. Tsvetkov, Marta De Zotti, Fernando Formaggio, Claudio Toniolo, Jan-Willem Handgraaf, and Jan Raap. "Structure of Self-Aggregated Alamethicin in ePC Membranes Detected by Pulsed Electron-Electron Double Resonance and Electron Spin Echo Envelope Modulation Spectroscopies." Biophysical Journal 96, no. 8 (April 2009): 3197–209. http://dx.doi.org/10.1016/j.bpj.2009.01.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kotake, Yashige, and Edward G. Janzen. "Bimodal inclusion of nitroxide radicals by .beta.-cyclodextrin in water as detected by electron spin resonance." Journal of the American Chemical Society 110, no. 11 (May 1988): 3699–701. http://dx.doi.org/10.1021/ja00219a077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography