Academic literature on the topic 'Torricelli'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Torricelli.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Torricelli"

1

Robinson, Philip J. "Evangelista Torricelli." Mathematical Gazette 78, no. 481 (1994): 37. http://dx.doi.org/10.2307/3619429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ORMAN, BRYAN A. "Torricelli Revisited." Teaching Mathematics and its Applications 12, no. 3 (1993): 124–29. http://dx.doi.org/10.1093/teamat/12.3.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adeeyo, Opeyemi Adewale, Samuel Sunday Adefila, and Augustine Omoniyi Ayeni. "Dynamics of Steady-State Gravity-Driven Inviscid Flow in an Open System." International Journal of Innovative Research and Scientific Studies 6, no. 1 (2022): 80–88. http://dx.doi.org/10.53894/ijirss.v6i1.1101.

Full text
Abstract:
Various factors can be responsible for the flow of incompressible fluid under gravity. Torricelli's theorem gives the relationship between the efflux velocity of an incompressible, gravity-driven flow from an orifice and the height of liquid above it. The concept of the original derivation of Torricelli’s theorem is limited in application because of certain inherent assumptions in the method of derivation. An alternate method of derivation is the use of Bernoulli’s principle. However, its result tends towards Torricelli’s flow only with some assumptions. In this study, an inherent assumption w
APA, Harvard, Vancouver, ISO, and other styles
4

Mazauric, Simone. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 1–44. http://dx.doi.org/10.4000/philosophiascientiae.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rougier, Louis. "De Torricelli à Pascal." Philosophia Scientae, no. 14-2 (October 1, 2010): 45–50. http://dx.doi.org/10.4000/philosophiascientiae.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hager, Willi H. "Diskussionsbeitrag: Torricelli hat Recht." WASSERWIRTSCHAFT 111, no. 7-8 (2021): 74. http://dx.doi.org/10.1007/s35147-021-0869-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clanet, C. "Clepsydrae, from Galilei to Torricelli." Physics of Fluids 12, no. 11 (2000): 2743. http://dx.doi.org/10.1063/1.1310622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Verriest, Erik I. "Variations on Fermat-Steiner-Torricelli." IFAC-PapersOnLine 55, no. 30 (2022): 218–23. http://dx.doi.org/10.1016/j.ifacol.2022.11.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Epple, Philipp, Michael Steppert, Luis Wunder, and Michael Steber. "Verification of Torricelli’s Efflux Equation with the Analytical Momentum Equation and with Numerical CFD Computations." Applied Mechanics and Materials 871 (October 2017): 220–29. http://dx.doi.org/10.4028/www.scientific.net/amm.871.220.

Full text
Abstract:
The efflux velocity equation from Torricelli is well known in fluid mechanics. It can be derived analytically applying Bernoulli’s equation. Bernoulli’s equation is obtained integrating the momentum equation on a stream line. For verification purposes the efflux velocity for a large tank or vessel was also computed analytically applying the momentum equation, delivering, however, a different result as the Torricelli equation. In order to validate these theoretical results the vertical and the horizontal efflux velocity case was simulated with computational fluid dynamics CFD. Furthermore, simp
APA, Harvard, Vancouver, ISO, and other styles
10

BRAICA, PETRU, MIRCEA FARCAS, and DALY MARCIUC. "The locus of generalized Toricelli-Fermat points." Creative Mathematics and Informatics 24, no. 2 (2015): 125–29. http://dx.doi.org/10.37193/cmi.2015.02.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!