To see the other types of publications on this topic, follow the link: Toxicodynamie.

Journal articles on the topic 'Toxicodynamie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Toxicodynamie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kasteel, Emma E. J., Sandra M. Nijmeijer, Keyvin Darney, et al. "Acetylcholinesterase inhibition in electric eel and human donor blood: an in vitro approach to investigate interspecies differences and human variability in toxicodynamics." Archives of Toxicology 94, no. 12 (2020): 4055–65. http://dx.doi.org/10.1007/s00204-020-02927-8.

Full text
Abstract:
Abstract In chemical risk assessment, default uncertainty factors are used to account for interspecies and interindividual differences, and differences in toxicokinetics and toxicodynamics herein. However, these default factors come with little scientific support. Therefore, our aim was to develop an in vitro method, using acetylcholinesterase (AChE) inhibition as a proof of principle, to assess both interspecies and interindividual differences in toxicodynamics. Electric eel enzyme and human blood of 20 different donors (12 men/8 women) were exposed to eight different compounds (chlorpyrifos,
APA, Harvard, Vancouver, ISO, and other styles
2

Boak, Lauren M., Craig R. Rayner, M. Lindsay Grayson, et al. "Clinical Population Pharmacokinetics and Toxicodynamics of Linezolid." Antimicrobial Agents and Chemotherapy 58, no. 4 (2014): 2334–43. http://dx.doi.org/10.1128/aac.01885-13.

Full text
Abstract:
ABSTRACTThrombocytopenia is a common side effect of linezolid, an oxazolidinone antibiotic often used to treat multidrug-resistant Gram-positive bacterial infections. Various risk factors have been suggested, including linezolid dose and duration of therapy, baseline platelet counts, and renal dysfunction; still, the mechanisms behind this potentially treatment-limiting toxicity are largely unknown. A clinical study was conducted to investigate the relationship between linezolid pharmacokinetics and toxicodynamics and inform strategies to prevent and manage linezolid-associated toxicity. Forty
APA, Harvard, Vancouver, ISO, and other styles
3

Blanchette, Alexander D., Sarah D. Burnett, Fabian A. Grimm, Ivan Rusyn, and Weihsueh A. Chiu. "A Bayesian Method for Population-wide Cardiotoxicity Hazard and Risk Characterization Using an In Vitro Human Model." Toxicological Sciences 178, no. 2 (2020): 391–403. http://dx.doi.org/10.1093/toxsci/kfaa151.

Full text
Abstract:
Abstract Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes are an established model for testing potential chemical hazards. Interindividual variability in toxicodynamic sensitivity has also been demonstrated in vitro; however, quantitative characterization of the population-wide variability has not been fully explored. We sought to develop a method to address this gap by combining a population-based iPSC-derived cardiomyocyte model with Bayesian concentration-response modeling. A total of 136 compounds, including 54 pharmaceuticals and 82 environmental chemicals, were tested in
APA, Harvard, Vancouver, ISO, and other styles
4

Kavlock, Robert J., and Gabriel L. Plaa. "Session summary: toxicodynamic interactive mechanisms." Toxicology 105, no. 2-3 (1995): 235–36. http://dx.doi.org/10.1016/0300-483x(95)03218-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ashauer, Roman, and Colin Brown. "TOXICODYNAMIC ASSUMPTIONS IN ECOTOXICOLOGICAL HAZARD MODELS." Environmental Toxicology and Chemistry preprint, no. 2008 (2007): 1. http://dx.doi.org/10.1897/07-642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ashauer, Roman, and Colin D. Brown. "TOXICODYNAMIC ASSUMPTIONS IN ECOTOXICOLOGICAL HAZARD MODELS." Environmental Toxicology and Chemistry 27, no. 8 (2008): 1817. http://dx.doi.org/10.1897/07-642.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Serkova, Natalie J., and Uwe Christians. "Biomarkers for Toxicodynamic Monitoring of Immunosuppressants." Therapeutic Drug Monitoring 27, no. 6 (2005): 733–37. http://dx.doi.org/10.1097/01.ftd.0000179846.30342.65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gots, Ronald E., and Suellen W. Pirages. "Multiple Chemical Sensitivities: Psychogenic or Toxicodynamic Origins." International Journal of Toxicology 18, no. 6 (1999): 393–400. http://dx.doi.org/10.1080/109158199225107.

Full text
Abstract:
The multiple chemical sensitivity (MCS) phenomenon can cause significant dysfunction and symptomatology and presents a difficult challenge for patient management. Central to the MCS debate is whether this phenomenon results from a primary emotional response to perceived chemical exposures or from pathological interactions between chemicals and biological systems. Those who believe the latter argue that toxic interactions result in physiological impairment and that subsequent emotional problems derive from such impairment. Distinguishing between psychogenic (emotional) or a toxicodynamic (chemi
APA, Harvard, Vancouver, ISO, and other styles
9

Reeves, Andrew L. "Beryllium: Toxicological Research of the Last Decade." Journal of the American College of Toxicology 8, no. 7 (1989): 1307–13. http://dx.doi.org/10.3109/10915818909009122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Danilov-Danilyan, V. I., and O. M. Rozental. "Logistic Model of Population Toxicodynamics." Water Resources 49, no. 2 (2022): 231–39. http://dx.doi.org/10.1134/s0097807822020038.

Full text
Abstract:
Abstract The effect of pollutant in water on a population of aquatic organisms as a function of exposure time is studied. Natural assumptions are formulated regarding the character of this process, primarily, the linear relationship between the rate of decrease in the population, on the one hand, and the population size and the number of organisms killed by intoxication, on the other hand. The formulated assumptions are used to construct a model of population toxicodynamics, which describes the kinetics of suppression of the population by a logistic function. The results of model calculations
APA, Harvard, Vancouver, ISO, and other styles
11

Frazier, J. M. "Predictive toxicodynamics: Empirical/mechanistic approaches." Toxicology in Vitro 11, no. 5 (1997): 465–72. http://dx.doi.org/10.1016/s0887-2333(97)00073-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Maxwell, D. M., K. M. Brecht, F. C. T. Chang, I. Koplovitz, T. M. Shih, and R. E. Sweeney. "Toxicodynamic Modeling of Highly Toxic Organophosphorus Compounds." Journal of Molecular Neuroscience 30, no. 1-2 (2006): 129–32. http://dx.doi.org/10.1385/jmn:30:1:129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Batra, Vijay K. "Toxicokinetics/Toxicodynamic Correlations: Goals, Methods, and Limitations." Toxicologic Pathology 23, no. 2 (1995): 158–64. http://dx.doi.org/10.1177/019262339502300209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gergs, André, Faten Gabsi, Armin Zenker, and Thomas G. Preuss. "Demographic Toxicokinetic–Toxicodynamic Modeling of Lethal Effects." Environmental Science & Technology 50, no. 11 (2016): 6017–24. http://dx.doi.org/10.1021/acs.est.6b01113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Duval, Jérôme F. L. "Coupled metal partitioning dynamics and toxicodynamics at biointerfaces: a theory beyond the biotic ligand model framework." Physical Chemistry Chemical Physics 18, no. 14 (2016): 9453–69. http://dx.doi.org/10.1039/c5cp07780j.

Full text
Abstract:
A theory is developed for coupled toxicodynamics and interfacial metal partitioning dynamics, with integration of intertwined metal adsorption–internalisation–excretion-transport at the biointerface, cell growth and metal depletion from solution.
APA, Harvard, Vancouver, ISO, and other styles
16

Novo, Marta, Elma Lahive, María Díez Ortiz, David J. Spurgeon, and Peter Kille. "Toxicogenomics in a soil sentinel exposure to Zn nanoparticles and ions reveals the comparative role of toxicokinetic and toxicodynamic mechanisms." Environmental Science: Nano 7, no. 5 (2020): 1464–80. http://dx.doi.org/10.1039/c9en01124b.

Full text
Abstract:
Exposures to Zn in ion or NPs form results in stimulation of the same cellular pathways (conserved toxicodynamics), whilst exposure to NPs enhances the amplitude of the response by influencing the mechanism of uptake (altered toxicokinetics).
APA, Harvard, Vancouver, ISO, and other styles
17

Abass, Khaled, Olavi Pelkonen, and Arja Rautio. "Corrigendum to: Chloro-s-triazenes-toxicokinetic, Toxicodynamic, Human Exposure, and Regulatory Considerations." Current Drug Metabolism 22, no. 12 (2021): 996. http://dx.doi.org/10.2174/138920022212211220114628.

Full text
Abstract:
An error appeared in the graphical abstract and figure no. 1 of the article entitled “Chloro-s-triazines-toxicokinetic, toxicodynamic, human exposure, and regulatory considerations” by Khaled Abass, Olavi Pelkonen and Arja Rautio, Current Drug Metabolism 2021, 22(8), 645-656. <p> We regret the error and apologize to readers. <p> The original article can be found online at https://doi.org/10.2174/1389200222666210701164945
APA, Harvard, Vancouver, ISO, and other styles
18

Albert, C., R. Ashauer, H. R. Künsch, and P. Reichert. "Bayesian experimental design for a toxicokinetic–toxicodynamic model." Journal of Statistical Planning and Inference 142, no. 1 (2012): 263–75. http://dx.doi.org/10.1016/j.jspi.2011.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Spyker, Daniel A., and Anil Minocha. "Toxicodynamic approach to management of the poisoned patient." Journal of Emergency Medicine 6, no. 2 (1988): 117–20. http://dx.doi.org/10.1016/0736-4679(88)90150-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gots, Ronald E. "Multiple Chemical Sensitivities: Distinguishing between Psychogenic and Toxicodynamic." Regulatory Toxicology and Pharmacology 24, no. 1 (1996): S8—S15. http://dx.doi.org/10.1006/rtph.1996.0071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Golovko, A. I. "Amethystic agents influencing toxicodynamics of ethanol." Biomeditsinskaya Khimiya 59, no. 6 (2013): 604–21. http://dx.doi.org/10.18097/pbmc20135906604.

Full text
Abstract:
The pathogenetic mechanisms of acute alcoholic intoxications are examined and is based the expediency of the search for the amethystic agents, which influence neurotransmitter systems. Promising should be considered the agents, which modulate GABA-systems (partial reverse agonists of benzodiazepine receptors), glutamate (antagonists of metabotropic receptors mGluR2/3), opioid neuropeptides (antagonists of opioid receptors), acetylcholine (reversible inhibitors of acetylcholinesterase and M-cholinoagonists), adenosine (selective antagonists of A -receptors). The amethystic effect manifest also
APA, Harvard, Vancouver, ISO, and other styles
22

Tenenbein, Milton. "Toxicokinetics and toxicodynamics of iron poisoning." Toxicology Letters 102-103 (December 1998): 653–56. http://dx.doi.org/10.1016/s0378-4274(98)00279-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tenenbein, M. "Toxicokinetics and toxicodynamics of iron poisoning." Toxicology Letters 95 (July 1998): 35. http://dx.doi.org/10.1016/s0378-4274(98)80137-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Knudsen, Thomas B., Richard M. Spencer, Jocylin D. Pierro, and Nancy C. Baker. "Computational biology and in silico toxicodynamics." Current Opinion in Toxicology 23-24 (October 2020): 119–26. http://dx.doi.org/10.1016/j.cotox.2020.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jung, Suryun, Mingyu Kim, Suji Kim та Sooyeun Lee. "Interaction between γ-Hydroxybutyric Acid and Ethanol: A Review from Toxicokinetic and Toxicodynamic Perspectives". Metabolites 13, № 2 (2023): 180. http://dx.doi.org/10.3390/metabo13020180.

Full text
Abstract:
Gamma-hydroxybutyric acid (GHB) is a potent, short-acting central nervous system depressant as well as an inhibitory neurotransmitter or neuromodulator derived from gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The sodium salt of GHB, sodium oxybate, has been used for the treatment of narcolepsy and cataplexy, whereas GHB was termed as a date rape drug or a club drug in the 1990s. Ethanol is the most co-ingested drug in acute GHB intoxication. In this review, the latest findings on the combined effects of GHB and ethanol are summarized from toxicokinetic and toxicodynami
APA, Harvard, Vancouver, ISO, and other styles
26

Gergs, André, Jutta Hager, Eric Bruns, and Thomas G. Preuss. "Disentangling Mechanisms Behind Chronic Lethality through Toxicokinetic–Toxicodynamic Modeling." Environmental Toxicology and Chemistry 40, no. 6 (2021): 1706–12. http://dx.doi.org/10.1002/etc.5027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hack, C. Eric. "Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models." Toxicology 221, no. 2-3 (2006): 241–48. http://dx.doi.org/10.1016/j.tox.2005.12.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Baek, Jin Hyen, Ayla Yalamanoglu, Ronald P. Brown, David M. Saylor, Richard A. Malinauskas, and Paul W. Buehler. "Renal Toxicodynamic Effects of Extracellular Hemoglobin After Acute Exposure." Toxicological Sciences 166, no. 1 (2018): 180–91. http://dx.doi.org/10.1093/toxsci/kfy193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vale, J. A. "Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning." Toxicology Letters 102-103 (December 1998): 649–52. http://dx.doi.org/10.1016/s0378-4274(98)00277-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vale, J. A. "Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning." Toxicology Letters 95 (July 1998): 35. http://dx.doi.org/10.1016/s0378-4274(98)80136-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Alrushaid, Samaa, Casey Sayre, Jaime Yáñez, et al. "Pharmacokinetic and Toxicodynamic Characterization of a Novel Doxorubicin Derivative." Pharmaceutics 9, no. 4 (2017): 35. http://dx.doi.org/10.3390/pharmaceutics9030035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Anand, Sathanandam S., and Harihara M. Mehendale. "Liver regeneration: a critical toxicodynamic response in predictive toxicology." Environmental Toxicology and Pharmacology 18, no. 2 (2004): 149–60. http://dx.doi.org/10.1016/j.etap.2004.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fiserova-Bergerova, V., and J. Vlach. "Exposure limits for unconventional shifts: Toxicokinetic and toxicodynamic considerations." American Journal of Industrial Medicine 31, no. 6 (1997): 744–55. http://dx.doi.org/10.1002/(sici)1097-0274(199706)31:6<744::aid-ajim12>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Heinrich-Hirsch, Barbara, Stephan Madle, Axel Oberemm, and Ursula Gundert-Remy. "The use of toxicodynamics in risk assessment." Toxicology Letters 120, no. 1-3 (2001): 131–41. http://dx.doi.org/10.1016/s0378-4274(01)00291-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hergenhahn, M., U. Kloz, M. Fellhauer, G. L. Tremp, and E. Hecker. "Toxicodynamics of tumour promoters of mouse skin." Journal of Cancer Research and Clinical Oncology 117, no. 5 (1991): 385–95. http://dx.doi.org/10.1007/bf01612756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

He, Erkai, and Cornelis A. M. van Gestel. "Toxicokinetics and toxicodynamics of nickel inEnchytraeus crypticus." Environmental Toxicology and Chemistry 32, no. 8 (2013): 1835–41. http://dx.doi.org/10.1002/etc.2253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Silva, Bárbara, Jorge Soares, Carolina Rocha-Pereira, Přemysl Mladěnka, and Fernando Remião. "Khat, a Cultural Chewing Drug: A Toxicokinetic and Toxicodynamic Summary." Toxins 14, no. 2 (2022): 71. http://dx.doi.org/10.3390/toxins14020071.

Full text
Abstract:
Khat (Catha edulis) is a recreational, chewed herbal drug that has been used as a psychostimulant for centuries in East Africa and the Arabian Peninsula, namely in Somalia, Ethiopia, and Yemen. However, the growing worldwide availability of khat has produced widespread concern. The plant comprises a large number of active substances, among which cathinone, cathine, and norephedrine are the main constituents, which can be included in the group of sympathomimetics of natural origin. In fact, these compounds are amphetamine analogues, and, as such, they have amphetamine-like nervous system stimul
APA, Harvard, Vancouver, ISO, and other styles
38

Soontornchat, S., MH Li, PS Cooke, and LG Hansen. "Toxicokinetic and Toxicodynamic Influences on Endocrine Disruption by Polychlorinated Biphenyls." Environmental Health Perspectives 102, no. 6-7 (1994): 568–71. http://dx.doi.org/10.1289/ehp.94102568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mégarbane, Bruno, Nicolas Deye, Vanessa Bloch, et al. "Intentional overdose with insulin: prognostic factors and toxicokinetic/toxicodynamic profiles." Critical Care 11, no. 5 (2007): R115. http://dx.doi.org/10.1186/cc6168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Christians, Uwe, Volker Schmitz, Wenzel Schöning, et al. "Toxicodynamic Therapeutic Drug Monitoring of Immunosuppressants: Promises, Reality, and Challenges." Therapeutic Drug Monitoring 30, no. 2 (2008): 151–58. http://dx.doi.org/10.1097/ftd.0b013e31816b9063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Matsui, Megumi, Shinji Kobuchi, Yukako Ito, and Toshiyuki Sakaeda. "UFT-induced myelosuppression and its pharmacokinetic-toxicodynamic model in rats." Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (2018): PO2–14–35. http://dx.doi.org/10.1254/jpssuppl.wcp2018.0_po2-14-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Blaauboer, Bas J. "Toxicodynamic modelling and the interpretation of in vitro toxicity data." Toxicology Letters 120, no. 1-3 (2001): 111–23. http://dx.doi.org/10.1016/s0378-4274(01)00289-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Roeben, Vanessa, Susanne Oberdoerster, Kim J. Rakel, et al. "Towards a spatiotemporally explicit toxicokinetic-toxicodynamic model for earthworm toxicity." Science of The Total Environment 722 (June 2020): 137673. http://dx.doi.org/10.1016/j.scitotenv.2020.137673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jager, Tjalling, Benoit Goussen, and André Gergs. "Using the standard DEB animal model for toxicokinetic-toxicodynamic analysis." Ecological Modelling 475 (January 2023): 110187. http://dx.doi.org/10.1016/j.ecolmodel.2022.110187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, X., P. M. Dixon, Y. Zhao, and M. C. Newman. "Diagnostics to assess toxicokinetic-toxicodynamic models with interval-censored data." Environmetrics 24, no. 5 (2013): 332–41. http://dx.doi.org/10.1002/env.2216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hultén, Bengt-Åke, Andrew Heath, Kai Knudsen, Gösta Nyberg, Jan-Erik Starmark, and Eric Mårtensson. "Severe amitriptyline overdose: Relationship between toxicokinetics and toxicodynamics." Journal of Toxicology: Clinical Toxicology 30, no. 2 (1992): 171–79. http://dx.doi.org/10.3109/15563659209038629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lestner, Jodi M., Steven A. Roberts, Caroline B. Moore, Susan J. Howard, David W. Denning, and William W. Hope. "Toxicodynamics of Itraconazole: Implications for Therapeutic Drug Monitoring." Clinical Infectious Diseases 49, no. 6 (2009): 928–30. http://dx.doi.org/10.1086/605499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gekle, Michael, and Stefan Silbernagl. "Renal Toxicodynamics of Ochratoxin A: A Pathophysiological Approach." Kidney and Blood Pressure Research 19, no. 5 (1996): 225–35. http://dx.doi.org/10.1159/000174080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ringot, Diana, Abalo Chango, Yves-Jacques Schneider, and Yvan Larondelle. "Toxicokinetics and toxicodynamics of ochratoxin A, an update." Chemico-Biological Interactions 159, no. 1 (2006): 18–46. http://dx.doi.org/10.1016/j.cbi.2005.10.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Trevisan, Andrea, Federica Chiara, Michele Mongillo, Luigi Quintieri, and Patrizia Cristofori. "Sex-related differences in renal toxicodynamics in rodents." Expert Opinion on Drug Metabolism & Toxicology 8, no. 9 (2012): 1173–88. http://dx.doi.org/10.1517/17425255.2012.698262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!