Journal articles on the topic 'Training and Testing Dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Training and Testing Dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lo, Jui-En, Eugene Yu-Chuan Kang, Yun-Nung Chen, et al. "Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy." Journal of Diabetes Research 2021 (December 28, 2021): 1–9. http://dx.doi.org/10.1155/2021/2751695.
Full textOyegoke, Temitayo O., Kehinde K. Akomolede, Adesola G. Aderounmu, and Emmanuel R. Adagunodo. "A Multi-Layer Perceptron Model for Classification of E-mail Fraud." European Journal of Information Technologies and Computer Science 1, no. 5 (2021): 16–22. http://dx.doi.org/10.24018/compute.2021.1.5.24.
Full textAn, Chansik, Yae Won Park, Sung Soo Ahn, Kyunghwa Han, Hwiyoung Kim, and Seung-Koo Lee. "Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results." PLOS ONE 16, no. 8 (2021): e0256152. http://dx.doi.org/10.1371/journal.pone.0256152.
Full textMabuni, D., and S. Aquter Babu. "High Accurate and a Variant of k-fold Cross Validation Technique for Predicting the Decision Tree Classifier Accuracy." International Journal of Innovative Technology and Exploring Engineering 10, no. 2 (2021): 105–10. http://dx.doi.org/10.35940/ijitee.c8403.0110321.
Full textD., Mabuni, and Aquter Babu S. "High Accurate and a Variant of k-fold Cross Validation Technique for Predicting the Decision Tree Classifier Accuracy." International Journal of Innovative Technology and Exploring Engineering (IJITEE) 10, no. 3 (2021): 105–10. https://doi.org/10.35940/ijitee.C8403.0110321.
Full textLee, Yongju, Sungjun Jang, Han Byeol Bae, Taejae Jeon, and Sangyoun Lee. "Multitask Learning Strategy with Pseudo-Labeling: Face Recognition, Facial Landmark Detection, and Head Pose Estimation." Sensors 24, no. 10 (2024): 3212. http://dx.doi.org/10.3390/s24103212.
Full textApeināns, Ilmars. "OPTIMAL SIZE OF AGRICULTURAL DATASET FOR YOLOV8 TRAINING." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 22, 2024): 38–42. http://dx.doi.org/10.17770/etr2024vol2.8041.
Full textMurugesan, S., R. S. Bhuvaneswaran, H. Khanna Nehemiah, S. Keerthana Sankari, and Y. Nancy Jane. "Feature Selection and Classification of Clinical Datasets Using Bioinspired Algorithms and Super Learner." Computational and Mathematical Methods in Medicine 2021 (May 17, 2021): 1–18. http://dx.doi.org/10.1155/2021/6662420.
Full textChua, Tuan-Hong, and Iftekhar Salam. "Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset." Symmetry 15, no. 6 (2023): 1251. http://dx.doi.org/10.3390/sym15061251.
Full textSheshkus, A., A. Chirvonaya, and V. L. Arlazarov. "Tiny CNN for feature point description for document analysis: approach and dataset." Computer Optics 46, no. 3 (2022): 429–35. http://dx.doi.org/10.18287/2412-6179-co-1016.
Full textLin, Zhe, and Wenxuan Guo. "Cotton Stand Counting from Unmanned Aerial System Imagery Using MobileNet and CenterNet Deep Learning Models." Remote Sensing 13, no. 14 (2021): 2822. http://dx.doi.org/10.3390/rs13142822.
Full textHan, Ce, Hao Zheng, Fang He, and Tianmin Zhang. "A method for detecting anomalies in die forging presses using the pearson correlation coefficient." Journal of Physics: Conference Series 3009, no. 1 (2025): 012072. https://doi.org/10.1088/1742-6596/3009/1/012072.
Full textYu, Fanqianhui, Tao Lu, and Changhu Xue. "Deep Learning-Based Intelligent Apple Variety Classification System and Model Interpretability Analysis." Foods 12, no. 4 (2023): 885. http://dx.doi.org/10.3390/foods12040885.
Full textArief, Muhammad, Made Gunawan, Agung Septiadi, et al. "A novel framework for analyzing internet of things datasets for machine learning and deep learning-based intrusion detection systems." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 2 (2024): 1574. http://dx.doi.org/10.11591/ijai.v13.i2.pp1574-1584.
Full textMuhammad, Arief, Gunawan Made, Septiadi Agung, et al. "A novel framework for analyzing internet of things datasets for machine learning and deep learning-based intrusion detection systems." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 2 (2024): 1574–84. https://doi.org/10.11591/ijai.v13.i2.pp1574-1584.
Full textLiu, Hua. "Realization of Text Categorization for Small-Scaled Dataset." Advanced Materials Research 532-533 (June 2012): 1239–42. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.1239.
Full textZorman, Milan, Sandi Pohorec, Bojan Butolen, Bojan Žlahtič, and Peter Kokol. "Cross–testing Symbolic and Connectionist Machine Learning Approaches in Specialized Acute Appendicitis Databases." Acta Medico-Biotechnica 5, no. 2 (2021): 23–32. http://dx.doi.org/10.18690/actabiomed.72.
Full textWu, Yike, Shiwan Zhao, Ying Zhang, Xiaojie Yuan, and Zhong Su. "When Pairs Meet Triplets: Improving Low-Resource Captioning via Multi-Objective Optimization." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 3 (2022): 1–20. http://dx.doi.org/10.1145/3492325.
Full textAkinpelu, Adeola Akeem, Mazen K. Nazal, Md Shafiullah, et al. "A Multivariate Machine Learning Model of Adsorptive Lindane Removal from Contaminated Water." Applied Sciences 13, no. 12 (2023): 7086. http://dx.doi.org/10.3390/app13127086.
Full textHow, Chun Kit, Ismail Mohd Khairuddin, Mohd Azraai Mohd Razman, Anwar P. P. Abdul Majeed, and Wan Hasbullah Mohd Isa. "Development of Audio-Visual Speech Recognition using Deep-Learning Technique." MEKATRONIKA 4, no. 1 (2022): 88–95. http://dx.doi.org/10.15282/mekatronika.v4i1.8625.
Full textQusay Alshebly *, Omar, and Suhail Najm Abdullah. "The Fuzziness Models with The Proposed New Conjugate Gradient Method for The Classification of High-Dimensional Data in Bioinformatics." Journal of Economics and Administrative Sciences 30, no. 142 (2024): 425–48. http://dx.doi.org/10.33095/ahnw8r72.
Full textUpadhyay, Jitendrakumar B. "BUILT A DATASET OF GUJARATI ISOLATED HANDWRITTEN CHARACTERS AND RECOGNITION THROUGH DEEP LEARNING." international journal of advanced research in computer science 16, no. 1 (2025): 42–47. https://doi.org/10.26483/ijarcs.v16i1.7182.
Full textTalaat, Mohamed, Xiuhua Si, and Jinxiang Xi. "Multi-Level Training and Testing of CNN Models in Diagnosing Multi-Center COVID-19 and Pneumonia X-ray Images." Applied Sciences 13, no. 18 (2023): 10270. http://dx.doi.org/10.3390/app131810270.
Full textGuha, Ritam, Manosij Ghosh, Pawan Kumar Singh, Ram Sarkar, and Mita Nasipuri. "M-HMOGA: A New Multi-Objective Feature Selection Algorithm for Handwritten Numeral Classification." Journal of Intelligent Systems 29, no. 1 (2019): 1453–67. http://dx.doi.org/10.1515/jisys-2019-0064.
Full textHanif, Iqbal, and Regita Fachri Septiani. "Ensemble Learning For Television Program Rating Prediction." Indonesian Journal of Statistics and Its Applications 5, no. 2 (2021): 377–95. http://dx.doi.org/10.29244/ijsa.v5i2p377-395.
Full textAli, Maria, Fatima Pervez, Muhammad Nouman Atta, Abdullah Khan, and Asfandyar Khan. "Sine Cosine Algorithm for Enhancing Convergence Rates of Artificial Neural Network: A Comparative Study." Journal of Engineering Technology and Applied Physics 6, no. 2 (2024): 32–37. http://dx.doi.org/10.33093/jetap.2024.6.2.5.
Full textChang, Hong-Chan, Yi-Che Wang, Yu-Yang Shih, and Cheng-Chien Kuo. "Fault Diagnosis of Induction Motors with Imbalanced Data Using Deep Convolutional Generative Adversarial Network." Applied Sciences 12, no. 8 (2022): 4080. http://dx.doi.org/10.3390/app12084080.
Full textMa, Zhengchi, Ruoyu Ouyang, and Hanzhang Wang. "The Study of Performance for Cross-Platform Spam Filtering Based on the Random Forest Algorithm." Highlights in Science, Engineering and Technology 57 (July 11, 2023): 32–36. http://dx.doi.org/10.54097/hset.v57i.9893.
Full textArnap, Adam, and Kusrini. "Enhancing SQL Injection Attack Detection Using Naïve Bayes and SMOTE Method on Imbalanced Datasets." Journal of Artificial Intelligence and Engineering Applications (JAIEA) 4, no. 1 (2024): 74–81. http://dx.doi.org/10.59934/jaiea.v4i1.559.
Full textRomero, Carlo N., Matt Ervin G. Mital, Zagie D. Rostata, and Mark Angelo M. Martinez. "Investigating the Impact of Training and Testing Ratios on the Performance of an AI-Based Malware Detector using MATLAB." E3S Web of Conferences 500 (2024): 01015. http://dx.doi.org/10.1051/e3sconf/202450001015.
Full textMusu, Wilem, Abdul Ibrahim, and Heriadi Heriadi. "Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4.5." SISITI : Seminar Ilmiah Sistem Informasi dan Teknologi Informasi 10, no. 1 (2021): 186–95. https://doi.org/10.36774/sisiti.v10i1.802.
Full textKim, Jung Hwan, Alwin Poulose, and Dong Seog Han. "The Extensive Usage of the Facial Image Threshing Machine for Facial Emotion Recognition Performance." Sensors 21, no. 6 (2021): 2026. http://dx.doi.org/10.3390/s21062026.
Full textZakria, Jianhua Deng, Jingye Cai, Muhammad Umar Aftab, Muhammad Saddam Khokhar, and Rajesh Kumar. "Visual Features with Spatio-Temporal-Based Fusion Model for Cross-Dataset Vehicle Re-Identification." Electronics 9, no. 7 (2020): 1083. http://dx.doi.org/10.3390/electronics9071083.
Full textYen, Chih-Ta, Sheng-Nan Chang, and Cheng-Hong Liao. "Deep learning algorithm evaluation of hypertension classification in less photoplethysmography signals conditions." Measurement and Control 54, no. 3-4 (2021): 439–45. http://dx.doi.org/10.1177/00202940211001904.
Full textOu, Yuduan, and Gerónimo Quiñónez-Barraza. "Modeling Height–Diameter Relationship Using Artificial Neural Networks for Durango Pine (Pinus durangensis Martínez) Species in Mexico." Forests 14, no. 8 (2023): 1544. http://dx.doi.org/10.3390/f14081544.
Full textJin, Jiayi, and Chengyun Zhao. "Performance Analysis and Comparison of Heart Disease Prediction Models." Highlights in Science, Engineering and Technology 123 (December 24, 2024): 618–24. https://doi.org/10.54097/yb7t2031.
Full textRaihani Mohamed, Nur Hidayah Azizan, Thinagaran Perumal, Syaifulnizam Abd Manaf, Erzam Marlisah, and Medria Kusuma Dewi Hardhienata. "Discovering and Recognizing of Imbalance Human Activity in Healthcare Monitoring using Data Resampling Technique and Decision Tree Model." Journal of Advanced Research in Applied Sciences and Engineering Technology 33, no. 2 (2023): 340–50. http://dx.doi.org/10.37934/araset.33.2.340350.
Full textKarjadi, Daniel Avian, Bayu Yasa Wedha, and Handri Santoso. "Heavy-loaded Vehicles Detection Model Testing using Synthetic Dataset." SinkrOn 7, no. 2 (2022): 464–71. http://dx.doi.org/10.33395/sinkron.v7i2.11378.
Full textRiduan, Achmad, Febriyanti Panjaitan, Syahril Rizal, Nurul Huda, and Susan Dian Purnamasari. "Detection of Inorganic Waste Using Convolutional Neural Network Method." Journal of Information Systems and Informatics 6, no. 1 (2024): 290–300. http://dx.doi.org/10.51519/journalisi.v6i1.662.
Full textRay, Sujan, Khaldoon Alshouiliy, and Dharma P. Agrawal. "Dimensionality Reduction for Human Activity Recognition Using Google Colab." Information 12, no. 1 (2020): 6. http://dx.doi.org/10.3390/info12010006.
Full textAnand, Battu, and T. NagaTeja. "Traffic Sign Board Recognition Using Computational Techniques." Journal of Physics: Conference Series 2779, no. 1 (2024): 012021. http://dx.doi.org/10.1088/1742-6596/2779/1/012021.
Full textHasan, Mahmudul, Md Abdus Sahid, Md Palash Uddin, Md Abu Marjan, Seifedine Kadry, and Jungeun Kim. "Performance discrepancy mitigation in heart disease prediction for multisensory inter-datasets." PeerJ Computer Science 10 (March 18, 2024): e1917. http://dx.doi.org/10.7717/peerj-cs.1917.
Full textKim, Jong-Ho, Byantara Darsan Purusatama, Alvin Muhammad Savero, et al. "Performance Influencing Factors of Convolutional Neural Network Models for Classifying Certain Softwood Species." Forests 14, no. 6 (2023): 1249. http://dx.doi.org/10.3390/f14061249.
Full textXia, Jianglin. "Credit Card Fraud Detection Based on Support Vector Machine." Highlights in Science, Engineering and Technology 23 (December 3, 2022): 93–97. http://dx.doi.org/10.54097/hset.v23i.3202.
Full textMoldovanu, Simona, Iulia-Nela Anghelache Nastase, Mihaela Miron, and Luminita Moraru. "Performance comparison of two non-parametric classifiers for classification using geometric features." Annals of the ”Dunarea de Jos” University of Galati Fascicle II Mathematics Physics Theoretical Mechanics 45, no. 2 (2022): 59–62. http://dx.doi.org/10.35219/ann-ugal-math-phys-mec.2022.2.04.
Full textMao, Gang, Zhongzheng Zhang, Sixiang Jia, Khandaker Noman, and Yongbo Li. "Partial Transfer Ensemble Learning Framework: A Method for Intelligent Diagnosis of Rotating Machinery Based on an Incomplete Source Domain." Sensors 22, no. 7 (2022): 2579. http://dx.doi.org/10.3390/s22072579.
Full textSarwati Rahayu, Sulis Sandiwarno, Erwin Dwika Putra, Marissa Utami, and Hadiguna Setiawan. "Model Sequential Resnet50 Untuk Pengenalan Tulisan Tangan Aksara Arab." JSAI (Journal Scientific and Applied Informatics) 6, no. 2 (2023): 234–41. http://dx.doi.org/10.36085/jsai.v6i2.5379.
Full textAman, Fazal, Azhar Rauf, Rahman Ali, Jamil Hussain, and Ibrar Ahmed. "Balancing Complex Signals for Robust Predictive Modeling." Sensors 21, no. 24 (2021): 8465. http://dx.doi.org/10.3390/s21248465.
Full textZebari, Dilovan Asaad, Dheyaa Ahmed Ibrahim, Diyar Qader Zeebaree, et al. "Breast Cancer Detection Using Mammogram Images with Improved Multi-Fractal Dimension Approach and Feature Fusion." Applied Sciences 11, no. 24 (2021): 12122. http://dx.doi.org/10.3390/app112412122.
Full textKanjanawattana, Sarunya, Worawit Teerawatthanaprapha, Panchalee Praneetpholkrang, Gun Bhakdisongkhram, and Suchada Weeragulpiriya. "Pineapple Sweetness Classification Using Deep Learning Based on Pineapple Images." Journal of Image and Graphics 11, no. 1 (2023): 47–52. http://dx.doi.org/10.18178/joig.11.1.47-52.
Full text