Academic literature on the topic 'Transcription by bacterial RNA polymerase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transcription by bacterial RNA polymerase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transcription by bacterial RNA polymerase"
Djordjevic, Marko. "Modeling Transcription Initiation By Bacterial RNA Polymerase." Biophysical Journal 96, no. 3 (February 2009): 57a. http://dx.doi.org/10.1016/j.bpj.2008.12.193.
Full textMosaei, Hamed, and John Harbottle. "Mechanisms of antibiotics inhibiting bacterial RNA polymerase." Biochemical Society Transactions 47, no. 1 (January 15, 2019): 339–50. http://dx.doi.org/10.1042/bst20180499.
Full textZhang, Nan, Vidya C. Darbari, Robert Glyde, Xiaodong Zhang, and Martin Buck. "The bacterial enhancer-dependent RNA polymerase." Biochemical Journal 473, no. 21 (October 27, 2016): 3741–53. http://dx.doi.org/10.1042/bcj20160741c.
Full textSzalewska-Pałasz, Agnieszka. "Properties of Escherichia coli RNA polymerase from a strain devoid of the stringent response alarmone ppGpp." Acta Biochimica Polonica 55, no. 2 (June 14, 2008): 317–23. http://dx.doi.org/10.18388/abp.2008_3078.
Full textAgapov, Aleksei, Artem Ignatov, Matti Turtola, Georgiy Belogurov, Daria Esyunina, and Andrey Kulbachinskiy. "Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase." Journal of Biological Chemistry 295, no. 28 (May 21, 2020): 9583–95. http://dx.doi.org/10.1074/jbc.ra119.011844.
Full textHarden, Timothy T., Christopher D. Wells, Larry J. Friedman, Robert Landick, Ann Hochschild, Jane Kondev, and Jeff Gelles. "Bacterial RNA polymerase can retain σ70 throughout transcription." Proceedings of the National Academy of Sciences 113, no. 3 (January 5, 2016): 602–7. http://dx.doi.org/10.1073/pnas.1513899113.
Full textOuhammouch, Mohamed, Finn Werner, Robert O. J. Weinzierl, and E. Peter Geiduschek. "A Fully Recombinant System for Activator-dependent Archaeal Transcription." Journal of Biological Chemistry 279, no. 50 (October 14, 2004): 51719–21. http://dx.doi.org/10.1074/jbc.c400446200.
Full textWillkomm, Dagmar K., and Roland K. Hartmann. "6S RNA – an ancient regulator of bacterial RNA polymerase rediscovered." Biological Chemistry 386, no. 12 (December 1, 2005): 1273–77. http://dx.doi.org/10.1515/bc.2005.144.
Full textPupov, Danil, Daria Esyunina, Andrey Feklistov, and Andrey Kulbachinskiy. "Single-strand promoter traps for bacterial RNA polymerase." Biochemical Journal 452, no. 2 (May 10, 2013): 241–48. http://dx.doi.org/10.1042/bj20130069.
Full textNielsen, Soren, Yulia Yuzenkova, and Nikolay Zenkin. "Mechanism of Eukaryotic RNA Polymerase III Transcription Termination." Science 340, no. 6140 (June 27, 2013): 1577–80. http://dx.doi.org/10.1126/science.1237934.
Full textDissertations / Theses on the topic "Transcription by bacterial RNA polymerase"
Ferguson, Anna Louise. "Interactions of bacterial sigma subunits with core RNA polymerase." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341839.
Full textSouthern, Emma. "The role of #sigma#'54 region II in transcription initiation." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302057.
Full textFurman, Ran. "DksA Beyond the Stringent Response: Investigating the Functions of a Diverse Bacterial Transcription Factor." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1367584519.
Full textTupin, Audrey. "Inhibiteurs de la transcription bactérienne : étude du mécanisme d'action de la lipiarmycine et dépendance au facteur de transcription σ." Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON13512/document.
Full textThe growing number of antibiotic-resistant bacteria added to the problem caused by persistent cells stress the need for developing new antibiotics and for understanding their mechanism of action. RNA polymerase is the main enzyme of the transcription process and is an interesting target for antibiotics. In this study we focus on a particular inhibitor of RNA polymerase : lipiarmycin. It is a macrocyclic inhibitor of transcription inhibiting Gram + bacteria that is developed in phase III clinical trials for treatment of Clostridium difficile infections. The objective of this work was to determine the mechanism of action of lipiarmycin and the mechanism confering resistance against the molecule. We first define more precisely its binding site on RNA polymerase and then used genetic and biochemical approaches to determine its mechanism of action and the effect of some specific mutations on transcription. Our experiments reveal a new mechanism of t ranscription inhibitor action
Chakraborty, Atanu. "Mechanism Of mom Gene Transactivation By Transcription Factor C Of Phage MU." Thesis, Indian Institute of Science, 2006. http://hdl.handle.net/2005/275.
Full textDuval-Valentin, Guy. "Reconnaissance proteines-acides nucleiques : etudes structurales et dynamiques de l'interaction de l'arn-polymerase d'e. coli sur deux promoteurs aux comportements heterologues." Paris 6, 1987. http://www.theses.fr/1987PA066354.
Full textFernández, Coll Llorenç. "Secondary channel of the RNA polymerase, a target for transcriptional regulation in bacteria." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/298719.
Full textEl control de l’expressió gènica en bacteris recau principalment sobre un complex enzimàtic anomenat ARN polimerasa (ARNpol). A procariotes, la seva unitat bàsica (core) està formada per 5 subunitats proteiques (a2bb’w). S’han determinat dos canals entre les diferents subunitats de l’ARNpol: el canal primari, on es desenvolupa la transcripció, i el canal secundari, que comunica el medi exterior amb el centre catalític de l’ARNpol. Tot i així, aquest holoenzim necessita la unió d’una subunitat σ per ser capaç de reconèixer una seqüència promotora i iniciar la transcripció. S’han descrit diferents factors, tant proteics com no proteics, que poden interaccionar amb el canal secundari de l’ARNpol i causar alteracions a l’expressió gènica. En aquesta tesi ens hem centrat en la possible competència entre els diferents factors que poden interaccionar amb el canal secundari de l’ARNpol. Estudis anterior duts a terme en el nostre grup d’investigació, ens van permetre postular una possible competència entre els diferents factors que interaccionen amb el canal secundari de l’ARNpol, més concretament entre les proteïnes GreA i DksA. Aquesta competència provocaria alteracions en el patró d’expressió gènica d’Escherichia coli. En aquest treball s’han dut a terme estudis funcionals, estructurals i filogenètics de la proteïna GreA que ens han permès determinar quins aminoàcids, i com a conseqüència quins dominis, podrien ser importants per la funcionalitat de la proteïna, la seva capacitat d’unir-se a l’ARNpol i la seva capacitat de competir amb altres factors. A més, hem estudiat quin efecte té la competència entre els diferents factors que interaccionen amb el canal secundari sobre l’expressió d’un gen diana. Canvis en els nivells de la proteïna GreA, poden afectar la competència pel canal secundari de l’ARNpol Per això hem determinat el patró d’expressió del gen greA, així com l’existència d’una regulació creuada entre les diferents proteïnes que interaccionen amb el canal secundari. Finalment, hem dut a terme un estudi transcriptòmic en Salmonella enterica serovar Typhimurium, amb l’objectiu de determinar quin és l’efecte d’aquesta competència en l’expressió de factors de virulència.
Neugebauer, Karla M., Inna Grishina, Anita S. Bledau, and Imke Listerman. "Extragenic Accumulation of RNA Polymerase II Enhances Transcription by RNA Polymerase III." PLOS, 2007. https://tud.qucosa.de/id/qucosa%3A27951.
Full textNeugebauer, Karla M., Inna Grishina, Anita S. Bledau, and Imke Listerman. "Extragenic Accumulation of RNA Polymerase II Enhances Transcription by RNA Polymerase III." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-184076.
Full textWhite, Eleanor. "Transcription termination by RNA polymerase II." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558432.
Full textBooks on the topic "Transcription by bacterial RNA polymerase"
Artsimovitch, Irina, and Thomas J. Santangelo. Bacterial transcriptional control: Methods and protocols. New York: Humana Press, 2015.
Find full textJ, White Robert. RNA polymerase III transcription. 2nd ed. Austin, TX: Landes Bioscience, 1998.
Find full textWhite, Robert J. RNA Polymerase III Transcription. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03518-4.
Full textEmili, Andrew. Activation of RNA polymerase II mediated transcription. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Find full textTranscription of ribosomal RNA genes by eukaryotic RNA polymerase I. Berlin: Springer, 1998.
Find full textBurns, Helen Dawn. Factors affecting open complex formation during transcription initiation by Escherichia coli RNA polymerase. Birmingham: University of Birmingham, 1995.
Find full textWisconsin--Madison), Steenbock Symposium (16th 1986 University of. RNA polymerase and the regulation of transcription: Proceedings of the Sixteenth Steenbock Symposium held July 13th through July 17th, 1986, at the University of Wisconsin--Madison, U.S.A. New York: Elsevier, 1987.
Find full textWu, Jiusheng. In vitro characterization of mutant yeast RNA polymerase II with reduced binding for transcription-elongation factor tfiis. Ottawa: National Library of Canada, 1996.
Find full textBook chapters on the topic "Transcription by bacterial RNA polymerase"
Moran, Charles P. "RNA Polymerase and Transcription Factors." In Bacillus subtilis and Other Gram-Positive Bacteria, 651–67. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818388.ch45.
Full textCohen, G. N. "Transcription: RNA Polymerase." In Microbial Biochemistry, 195–204. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8908-0_15.
Full textCohen, Georges N. "Transcription. RNA polymerase." In Microbial Biochemistry, 97–101. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2237-1_13.
Full textCohen, Georges N. "Transcription: RNA Polymerase." In Microbial Biochemistry, 263–79. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7579-3_15.
Full textCohen, G. N. "Transcription: RNA Polymerase." In Microbial Biochemistry, 179–87. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9437-7_15.
Full textWhite, Robert J. "Transcription." In RNA Polymerase III Transcription, 163–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03518-4_6.
Full textWhite, Robert J. "RNA Polymerase III." In RNA Polymerase III Transcription, 57–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03518-4_3.
Full textDrygin, Denis, and Ross Hannan. "RNA Polymerase I Transcription." In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7174-3.
Full textDrygin, Denis, and Ross Hannan. "RNA Polymerase I Transcription." In Encyclopedia of Cancer, 4095–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_7174.
Full textMcAllister, W. T. "Transcription by T7 RNA Polymerase." In Mechanisms of Transcription, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60691-5_2.
Full textConference papers on the topic "Transcription by bacterial RNA polymerase"
Grierson, Patrick, Kate Lillard, Gregory Behbehani, Kelly Combs, Saumitri Bhattacharyya, Acharya Samir, and Joanna Groden. "Abstract PR3: The BLM helicase facilitates RNA polymerase l-mediated ribosomal RNA transcription." In Abstracts: Second AACR International Conference on Frontiers in Basic Cancer Research--Sep 14-18, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.fbcr11-pr3.
Full textBelgacem, Ismail, Edith Grac, Delphine Ropers, and Jean-Luc Gouze. "Stability analysis of a reduced transcription-translation model of RNA polymerase." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039999.
Full textLeonidou, A., H. King, J. Gouge, and A. Vannini. "PO-250 Investigating BRF2-dependent RNA polymerase III transcription deregulation in cancer." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.283.
Full textDass, Randall, Aishe Sarshad, Brittany Carson, Jennifer Feenstra, Amanpreet Kaur, Ales Obrdlik, Matthew Parks, et al. "Abstract A46: Wnt5a signals through DVL1 to repress ribosomal DNA transcription by RNA polymerase I." In Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-a46.
Full textShah, Kalpit, Justin Foley, Michael L. Nickerson, Michael Dean, and Neil Bradbury. "Abstract 2379: Nuclear lemur tyrosine kinase-2 regulates RNA polymerase II dependent transcription in prostate cancer." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2379.
Full textAndreeva, A. A., and N. V. Kudryakova. "Homonal regulation of gene expression of proteins associated with plastid RNA-bacterial polymerase during ontogenesis of Arabidopsis thaliana." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-41.
Full textAndreeva, A. A., M. N. Danilova, N. V. Kudryakova, and V. V. Kusnetsov. "GENES OF ARABIDOPSIS THALIANA PROTEINS ASSOCIATED WITH PLASTID RNA POLYMERASE OF BACTERIAL TYPE: EXPRESSION UNDER CONDITIONS OF ABIOTIC STRESS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-84-88.
Full textSheng, Jinghao, Chi Luo, Yuxiang Jiang, Philip W. Hinds, Zhengping Xu, and Guo-fu Hu. "Abstract 1401: Transcription of angiogenin and ribonuclease 4 is regulated by RNA polymerase III elements and a CTCF-dependent intragenic chromatin loop." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1401.
Full textFleming, Paul, and Tara Dalton. "One-Step Reverse-Transcription PCR on a High-Throughput Micro-Fluidic Device." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206623.
Full textStoicescu, Ramona, Razvan-Alexandru Stoicescu, Codrin Gheorghe, Adina Honcea, and Iulian Bratu. "CONSIDERATIONS ON SARS-COV-2 DIAGNOSIS IN THE LABORATORY OF UNIVERSITY EMERGENCY CLINICAL HOSPITAL OF CONSTANTA." In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/07.
Full text