Contents
Academic literature on the topic 'Transcriptome-metabolome relationships'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transcriptome-metabolome relationships.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transcriptome-metabolome relationships"
Zhu, Chenglin, Sabrina Fasoli, Gloria Isani, and Luca Laghi. "First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy." Metabolites 10, no. 4 (2020): 157. http://dx.doi.org/10.3390/metabo10040157.
Full textGeorgii, Elisabeth, Ming Jin, Jin Zhao, et al. "Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis." BMC Plant Biology 17, no. 1 (2017): 120. https://doi.org/10.1186/s12870-017-1062-y.
Full textDai, Jiage, Jiabao Cai, Taipeng Zhang, et al. "Transcriptome and Metabolome Analyses Reveal the Mechanism of Corpus Luteum Cyst Formation in Pigs." Genes 14, no. 10 (2023): 1848. http://dx.doi.org/10.3390/genes14101848.
Full textZhang, Jiahu, Sen Wang, Haibo Wang, et al. "Metabolome and Transcriptome Profiling Reveals the Function of MdSYP121 in the Apple Response to Botryosphaeria dothidea." International Journal of Molecular Sciences 24, no. 22 (2023): 16242. http://dx.doi.org/10.3390/ijms242216242.
Full textWang, Xiaoting, Mingyu Wang, Yongshun Huang, et al. "Genome-Wide Identification and Analysis of Stress Response of Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase Genes in Quinoa." International Journal of Molecular Sciences 24, no. 8 (2023): 6950. http://dx.doi.org/10.3390/ijms24086950.
Full textDong, Zeyu, Shaoguan Zhao, Yizhang Xing, et al. "Time-Series Metabolome and Transcriptome Analyses Reveal the Genetic Basis of Vanillin Biosynthesis in Vanilla." Plants 14, no. 13 (2025): 1922. https://doi.org/10.3390/plants14131922.
Full textXie, Jiahui, Yi Sun, Yue Cao, et al. "Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus." Marine Biotechnology 24, no. 1 (2022): 151–62. http://dx.doi.org/10.1007/s10126-022-10093-4.
Full textTang, Meiqiong, Chunying Liang, Yude Peng, et al. "Comparative Transcriptome and Metabolome Analyses Provide New Insights into the Molecular Mechanisms Underlying Taproot Development and Bioactive Compound Biosynthesis in Ficus hirta vahl." Genes 16, no. 7 (2025): 784. https://doi.org/10.3390/genes16070784.
Full textChen, Lei, Xuesong Wang, Long Cui, et al. "Transcriptome and metabolome analyses reveal anthocyanins pathways associated with fruit color changes in plum (Prunus salicina Lindl.)." PeerJ 10 (December 13, 2022): e14413. http://dx.doi.org/10.7717/peerj.14413.
Full textHan, Danni, Xiaojun Ma, Lei Zhang, et al. "Serial-Omics and Molecular Function Study Provide Novel Insight into Cucumber Variety Improvement." Plants 11, no. 12 (2022): 1609. http://dx.doi.org/10.3390/plants11121609.
Full textBooks on the topic "Transcriptome-metabolome relationships"
Schadt, Eric E. Network Methods for Elucidating the Complexity of Common Human Diseases. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0002.
Full text