To see the other types of publications on this topic, follow the link: Transference numbers.

Journal articles on the topic 'Transference numbers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Transference numbers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Darling, Robert M., James D. Saraidaridis, Christopher Shovlin, and Michael Fortin. "Transference Numbers of Vanadium Cations in Nafion." Journal of The Electrochemical Society 167, no. 2 (2020): 020529. http://dx.doi.org/10.1149/1945-7111/ab6b0f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Journal, Baghdad Science. "Transference Number Measurement of Zinc Salts in Aqueous Solution." Baghdad Science Journal 7, no. 1 (2010): 593–600. http://dx.doi.org/10.21123/bsj.7.1.593-600.

Full text
Abstract:
Transference numbers of the aqueous zinc chloride and zinc sulphate solutions have been measured for the concentrations 0.03, 0.05, 0.07, 0.09 and 0.1 mol.dm-3at 298.15K, by using the modified Hittorf method. The dependence of transference number on concentration of each electrolyte was also investigated in an attempt to explain the value of the limiting transference number. The Longsworth method has been used for the extrapolation of zinc transference number in aqueous solutions, using the values of the limiting transference numbers of the appropriate values of the limiting equivalent conduct
APA, Harvard, Vancouver, ISO, and other styles
3

Ratkje, Signe Kjelstrup, Habiba Rajabu, and Tormod Førland. "Transference coefficients and transference numbers in salt mixtures relevant for the aluminium electrolysis." Electrochimica Acta 38, no. 2-3 (1993): 415–23. http://dx.doi.org/10.1016/0013-4686(93)85159-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Castellote, M., C. Andrade, and C. Alonso. "Chloride transference numbers in steady-state migration tests." Magazine of Concrete Research 52, no. 2 (2000): 93–100. http://dx.doi.org/10.1680/macr.2000.52.2.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frömling, T., M. Kunze, M. Schönhoff, J. Sundermeyer, and B. Roling. "Enhanced Lithium Transference Numbers in Ionic Liquid Electrolytes." Journal of Physical Chemistry B 112, no. 41 (2008): 12985–90. http://dx.doi.org/10.1021/jp804097j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Evans, James, Colin A. Vincent, and Peter G. Bruce. "Electrochemical measurement of transference numbers in polymer electrolytes." Polymer 28, no. 13 (1987): 2324–28. http://dx.doi.org/10.1016/0032-3861(87)90394-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ottøy, Magnar, Tormod Førland, Signe Kjelstrup Ratkje, and Steffen Møller-Holst. "Membrane transference numbers from a new emf method." Journal of Membrane Science 74, no. 1-2 (1992): 1–8. http://dx.doi.org/10.1016/0376-7388(92)87067-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weing�rtner, Hermann, Bernd M. Braun, and Jutta M. Schmoll. "Determination of transference numbers with ion-selective electrodes. Transference numbers and activity coefficients of concentrated aqueous solutions of potassium fluoride." Journal of Solution Chemistry 16, no. 6 (1987): 419–31. http://dx.doi.org/10.1007/bf00648593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gheribi, Aïmen E., Mathieu Salanne, Didier Zanghi, Kelly Machado, Catherine Bessada, and Patrice Chartrand. "First-Principles Determination of Transference Numbers in Cryolitic Melts." Industrial & Engineering Chemistry Research 59, no. 29 (2020): 13305–14. http://dx.doi.org/10.1021/acs.iecr.0c02281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cohen, Avraham, and Moshe Shoham. "Principle of transference – An extension to hyper-dual numbers." Mechanism and Machine Theory 125 (July 2018): 101–10. http://dx.doi.org/10.1016/j.mechmachtheory.2017.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pesko, Danielle M., Ksenia Timachova, Rajashree Bhattacharya, et al. "Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes." Journal of The Electrochemical Society 164, no. 11 (2017): E3569—E3575. http://dx.doi.org/10.1149/2.0581711jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Miller, Stephen D., and Noah Stephens-Davidowitz. "Kissing Numbers and Transference Theorems from Generalized Tail Bounds." SIAM Journal on Discrete Mathematics 33, no. 3 (2019): 1313–25. http://dx.doi.org/10.1137/18m1210186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gouverneur, Martin, Jakob Kopp, Leo van Wüllen, and Monika Schönhoff. "Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR." Physical Chemistry Chemical Physics 17, no. 45 (2015): 30680–86. http://dx.doi.org/10.1039/c5cp05753a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schönhoff, Monika, Cornelia Cramer, and Florian Schmidt. "Reply to the ‘Comment on “Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?”’ by K. R. Harris,Phys. Chem. Chem. Phys., 2018,20, DOI: 10.1039/C8CP02595A." Physical Chemistry Chemical Physics 20, no. 47 (2018): 30046–52. http://dx.doi.org/10.1039/c8cp06075d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dong, Dengpan, Fabian Sälzer, Bernhard Roling, and Dmitry Bedrov. "How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery?" Physical Chemistry Chemical Physics 20, no. 46 (2018): 29174–83. http://dx.doi.org/10.1039/c8cp06214e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gouverneur, M., F. Schmidt, and M. Schönhoff. "Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?" Physical Chemistry Chemical Physics 20, no. 11 (2018): 7470–78. http://dx.doi.org/10.1039/c7cp08580j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Deng, Kuirong, Qingguang Zeng, Da Wang, et al. "Single-ion conducting gel polymer electrolytes: design, preparation and application." Journal of Materials Chemistry A 8, no. 4 (2020): 1557–77. http://dx.doi.org/10.1039/c9ta11178f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Meyer, Mathieu, Lydie Viau, Ahmad Mehdi, Sophie Monge, Patrick Judeinstein, and André Vioux. "What use for polysilsesquioxane lithium salts in lithium batteries?" New Journal of Chemistry 40, no. 9 (2016): 7657–62. http://dx.doi.org/10.1039/c6nj00979d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zdunek, A. D., and J. R. Selman. "Estimating Conductivity and Transference Numbers of Concentrated ZnCl2 / KCl Electrolytes." Journal of The Electrochemical Society 138, no. 6 (1991): 1563–65. http://dx.doi.org/10.1149/1.2085833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vardner, Jonathan T., Tie Ling, Sebastian T. Russell, et al. "Method of Measuring Salt Transference Numbers in Ion-Selective Membranes." Journal of The Electrochemical Society 164, no. 13 (2017): A2940—A2947. http://dx.doi.org/10.1149/2.0321713jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Timachova, Ksenia, Mahati Chintapalli, Kevin R. Olson, Sue J. Mecham, Joseph M. DeSimone, and Nitash P. Balsara. "Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt." Soft Matter 13, no. 32 (2017): 5389–96. http://dx.doi.org/10.1039/c7sm00794a.

Full text
Abstract:
Perfluoropolyethers (PFPEs) are polymer electrolytes with fluorinated carbon backbones that have high flash points and have been shown to exhibit moderate conductivities and high cation transference numbers when mixed with lithium salts.
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Fangfang, and Maria Forsyth. "Correction: Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts." Physical Chemistry Chemical Physics 19, no. 36 (2017): 25220. http://dx.doi.org/10.1039/c7cp90203d.

Full text
Abstract:
Correction for ‘Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts’ by Fangfang Chen et al., Phys. Chem. Chem. Phys., 2016, 18, 19336–19344.
APA, Harvard, Vancouver, ISO, and other styles
23

Tao, Ruoyuan, Daisuke Miyamoto, Takahiro Aoki, and Tatsuo Fujinami. "Novel liquid lithium borates characterized with high lithium ion transference numbers." Journal of Power Sources 135, no. 1-2 (2004): 267–72. http://dx.doi.org/10.1016/j.jpowsour.2004.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dai, Hongli, and Thomas A. Zawodzinski. "Determination of Lithium Ion Transference Numbers by Electrophoretic Nuclear Magnetic Resonance." Journal of The Electrochemical Society 143, no. 6 (1996): L107—L109. http://dx.doi.org/10.1149/1.1836891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rosenwinkel, Mark P., and Monika Schönhoff. "Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR." Journal of The Electrochemical Society 166, no. 10 (2019): A1977—A1983. http://dx.doi.org/10.1149/2.0831910jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ueno, Masakatsu, Sh\={o}go I, and Kiyoshi Shimizu. "Temperature Effect on Transference Numbers for KCl in Ethanol–Water Mixtures." Bulletin of the Chemical Society of Japan 58, no. 4 (1985): 1225–27. http://dx.doi.org/10.1246/bcsj.58.1225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rajabu, H. "Transference Numbers in Molten Fluorides by an Operationally Defined emf Method." ECS Proceedings Volumes 1992-16, no. 1 (1992): 595–610. http://dx.doi.org/10.1149/199216.0595pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pesko, Danielle M., Simar Sawhney, John Newman, and Nitash P. Balsara. "Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes." Journal of The Electrochemical Society 165, no. 13 (2018): A3014—A3021. http://dx.doi.org/10.1149/2.0231813jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tian, Chengliang, Mingjie Liu, and Guangwu Xu. "Measure inequalities and the transference theorem in the geometry of numbers." Proceedings of the American Mathematical Society 142, no. 1 (2013): 47–57. http://dx.doi.org/10.1090/s0002-9939-2013-11744-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shah, Deep B., Hien Q. Nguyen, Lorena S. Grundy, et al. "Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes." Physical Chemistry Chemical Physics 21, no. 15 (2019): 7857–66. http://dx.doi.org/10.1039/c9cp00216b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Banaszczyk, W. "New bounds in some transference theorems in the geometry of numbers." Mathematische Annalen 296, no. 1 (1993): 625–35. http://dx.doi.org/10.1007/bf01445125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhurov, Konstantin, Edmund J. F. Dickinson, and Richard G. Compton. "Dynamic simulation of the moving boundary method for measuring transference numbers." Chemical Physics Letters 513, no. 1-3 (2011): 136–38. http://dx.doi.org/10.1016/j.cplett.2011.07.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MA, CHAO, and SHAOHUA ZHANG. "JARNÍK’S THEOREM WITHOUT THE MONOTONICITY ON THE APPROXIMATING FUNCTION." Fractals 27, no. 04 (2019): 1950044. http://dx.doi.org/10.1142/s0218348x19500440.

Full text
Abstract:
Let [Formula: see text] be a non-negative function such that [Formula: see text] as [Formula: see text]. The well-known Jarník–Besicovtich theorem concerns the Hausdorff dimension of the set of [Formula: see text]- approximable numbers. In this paper, we give an alternative but short proof of the Jarník–Besicovitch theorem for approximating functions with no monotonicity. The main tool is the appropriate usage of the mass transference principle of Beresnevich–Velani [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2) 164(3) (2006) 971–99
APA, Harvard, Vancouver, ISO, and other styles
34

Mu, Runqing, Ke Yun, Xiaoou Yu, et al. "A study on reference interval transference via linear regression." Clinical Chemistry and Laboratory Medicine (CCLM) 58, no. 1 (2019): 116–29. http://dx.doi.org/10.1515/cclm-2019-0055.

Full text
Abstract:
Abstract Background Reference intervals (RIs) transference can expand the applicability of established RIs. However, the study on transference methodology is insufficient, and RIs validation based on small samples cannot adequately identify transferred risk under complex situations. This study aimed to find appropriate conditions to ensure the effect of transference. Methods We established the RIs of Roche and Beckman systems for 27 analytes based on 681 healthy individuals. Roche RIs were converted into the Beckman RIs using linear regression (least squares method) which is divided into two m
APA, Harvard, Vancouver, ISO, and other styles
35

Nagaraj, N., P. Mohan Babu, and K. V. Ramesh Babu. "DC Conductivity and Transference number in pure and potassium thiocyanate-doped polyvinyl alcohol films." Material Science Research India 16, no. 2 (2019): 136–41. http://dx.doi.org/10.13005/msri/160207.

Full text
Abstract:
Poly (vinyl alcohol) (PVA) – based solid electrolyte films with potassium thiocyanate (KSCN) were prepared by solution-cast technique. The pure and KSCN- doped PVA films have been investigated for the charge transport mechanism in the polymer electrolyte system by using the DC conductivity (The composition dependence and temperature dependence in 300-385K range) and transference number measurements. The graphs related to conductivity – temperature shows that an increase in conductivity with respect to rise in the temperature. At room temperature, the conductivity of the (PVA+KSCN) electrolyte
APA, Harvard, Vancouver, ISO, and other styles
36

Martin, Louise, Bonita Lloyd, Paul Cammell, and Frank Yeomans. "Transference-Focused Psychotherapy in Australian psychiatric training and practice." Australasian Psychiatry 25, no. 3 (2016): 233–35. http://dx.doi.org/10.1177/1039856216671661.

Full text
Abstract:
Objective: This article discusses Transference-Focused Psychotherapy, a contemporary evidence-based and manualised form of psychoanalytic psychotherapy for borderline personality disorder. Transference focused psychotherapy has evolved from decades of research in the object-relations approach developed by Professor Otto Kernberg and his collaborators. It is being adopted increasingly throughout North and South America and Europe, and this article explores the role its adoption might play in psychiatric training as well as public and private service provision contexts in Australia. Conclusions:
APA, Harvard, Vancouver, ISO, and other styles
37

Chinnam, Parameswara Rao, Vijay Chatare, Sumanth Chereddy, et al. "Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators." Journal of Materials Chemistry A 4, no. 37 (2016): 14380–91. http://dx.doi.org/10.1039/c6ta05499d.

Full text
Abstract:
Solid ion-gel separators for lithium or lithium ion batteries have been prepared with high lithium ion transference numbers (t<sub>Li+</sub> = 0.36), high room temperature ionic conductivities (σ → 10<sup>−3</sup> S cm<sup>−1</sup>), and moduli in the MPa range.
APA, Harvard, Vancouver, ISO, and other styles
38

Thomas, Karen E., Steve E. Sloop, John B. Kerr, and John Newman. "Comparison of lithium-polymer cell performance with unity and nonunity transference numbers." Journal of Power Sources 89, no. 2 (2000): 132–38. http://dx.doi.org/10.1016/s0378-7753(00)00420-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tao, Ruoyuan, Yan Zhao, and Tatsuo Fujinami. "Lithium borate–PEO polymer electrolytes characterized with high lithium ion transference numbers." Materials Science and Engineering: B 137, no. 1-3 (2007): 69–73. http://dx.doi.org/10.1016/j.mseb.2006.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Zidan, Bill K. Wheatle, Jakub Krajniak, Jordan R. Keith, and Venkat Ganesan. "Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids." ACS Macro Letters 9, no. 1 (2019): 84–89. http://dx.doi.org/10.1021/acsmacrolett.9b00908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fujinami, Tatsuo, and Yasushi Buzoujima. "Novel lithium salts exhibiting high lithium ion transference numbers in polymer electrolytes." Journal of Power Sources 119-121 (June 2003): 438–41. http://dx.doi.org/10.1016/s0378-7753(03)00185-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Harris, Kenneth R. "Correction: Comment on “Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?” by M. Gouverneur, F. Schmidt and M. Schönhoff, Phys. Chem. Chem. Phys., 2018, 20, 7470." Physical Chemistry Chemical Physics 21, no. 2 (2019): 929. http://dx.doi.org/10.1039/c8cp91941k.

Full text
Abstract:
Correction for ‘Comment on “Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?” by M. Gouverneur, F. Schmidt and M. Schönhoff, Phys. Chem. Chem. Phys., 2018, 20, 7470’ by Kenneth R. Harris, Phys. Chem. Chem. Phys., 2018, 20, 30041–30045.
APA, Harvard, Vancouver, ISO, and other styles
43

Stokes, R. H. "Activity coefficients and transference numbers in aqueous cadmium chloride from electromotive force data." Journal of Physical Chemistry 94, no. 20 (1990): 7769–71. http://dx.doi.org/10.1021/j100383a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

MAURO, V., A. DAPRANO, F. CROCE, and M. SALOMON. "Direct determination of transference numbers of LiClO solutions in propylene carbonate and acetonitrile." Journal of Power Sources 141, no. 1 (2005): 167–70. http://dx.doi.org/10.1016/j.jpowsour.2004.09.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bruce, Peter G., Martin T. Hardgrave, and Colin A. Vincent. "The determination of transference numbers in solid polymer electrolytes using the Hittorf method." Solid State Ionics 53-56 (July 1992): 1087–94. http://dx.doi.org/10.1016/0167-2738(92)90295-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fong, Kara D., Julian Self, Bryan D. McCloskey, and Kristin A. Persson. "Onsager Transport Coefficients and Transference Numbers in Polyelectrolyte Solutions and Polymerized Ionic Liquids." Macromolecules 53, no. 21 (2020): 9503–12. http://dx.doi.org/10.1021/acs.macromol.0c02001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mathews, Kayla L., Angela M. Budgin, Srinivas Beeram, et al. "Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers." J. Mater. Chem. A 1, no. 4 (2013): 1108–16. http://dx.doi.org/10.1039/c2ta00628f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xu, Jun, and G. C. Farrington. "A Novel Electrochemical Method for Measuring Salt Diffusion Coefficients and Ion Transference Numbers." Journal of The Electrochemical Society 143, no. 2 (1996): L44—L47. http://dx.doi.org/10.1149/1.1836453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lott, Kyle F., Braja D. Ghosh, and Jason E. Ritchie. "Measurement of Anion Diffusion and Transference Numbers in an Anhydrous Proton Conducting Electrolyte." Electrochemical and Solid-State Letters 8, no. 10 (2005): A513. http://dx.doi.org/10.1149/1.2017768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Castellote, M., C. Andrade, and C. Alonso. "Modelling of the processes during steady-state migration tests: Quantification of transference numbers." Materials and Structures 32, no. 3 (1999): 180–86. http://dx.doi.org/10.1007/bf02481513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!