Journal articles on the topic 'Transference numbers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Transference numbers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Darling, Robert M., James D. Saraidaridis, Christopher Shovlin, and Michael Fortin. "Transference Numbers of Vanadium Cations in Nafion." Journal of The Electrochemical Society 167, no. 2 (2020): 020529. http://dx.doi.org/10.1149/1945-7111/ab6b0f.
Full textJournal, Baghdad Science. "Transference Number Measurement of Zinc Salts in Aqueous Solution." Baghdad Science Journal 7, no. 1 (2010): 593–600. http://dx.doi.org/10.21123/bsj.7.1.593-600.
Full textRatkje, Signe Kjelstrup, Habiba Rajabu, and Tormod Førland. "Transference coefficients and transference numbers in salt mixtures relevant for the aluminium electrolysis." Electrochimica Acta 38, no. 2-3 (1993): 415–23. http://dx.doi.org/10.1016/0013-4686(93)85159-v.
Full textCastellote, M., C. Andrade, and C. Alonso. "Chloride transference numbers in steady-state migration tests." Magazine of Concrete Research 52, no. 2 (2000): 93–100. http://dx.doi.org/10.1680/macr.2000.52.2.93.
Full textFrömling, T., M. Kunze, M. Schönhoff, J. Sundermeyer, and B. Roling. "Enhanced Lithium Transference Numbers in Ionic Liquid Electrolytes." Journal of Physical Chemistry B 112, no. 41 (2008): 12985–90. http://dx.doi.org/10.1021/jp804097j.
Full textEvans, James, Colin A. Vincent, and Peter G. Bruce. "Electrochemical measurement of transference numbers in polymer electrolytes." Polymer 28, no. 13 (1987): 2324–28. http://dx.doi.org/10.1016/0032-3861(87)90394-6.
Full textOttøy, Magnar, Tormod Førland, Signe Kjelstrup Ratkje, and Steffen Møller-Holst. "Membrane transference numbers from a new emf method." Journal of Membrane Science 74, no. 1-2 (1992): 1–8. http://dx.doi.org/10.1016/0376-7388(92)87067-8.
Full textWeing�rtner, Hermann, Bernd M. Braun, and Jutta M. Schmoll. "Determination of transference numbers with ion-selective electrodes. Transference numbers and activity coefficients of concentrated aqueous solutions of potassium fluoride." Journal of Solution Chemistry 16, no. 6 (1987): 419–31. http://dx.doi.org/10.1007/bf00648593.
Full textGheribi, Aïmen E., Mathieu Salanne, Didier Zanghi, Kelly Machado, Catherine Bessada, and Patrice Chartrand. "First-Principles Determination of Transference Numbers in Cryolitic Melts." Industrial & Engineering Chemistry Research 59, no. 29 (2020): 13305–14. http://dx.doi.org/10.1021/acs.iecr.0c02281.
Full textCohen, Avraham, and Moshe Shoham. "Principle of transference – An extension to hyper-dual numbers." Mechanism and Machine Theory 125 (July 2018): 101–10. http://dx.doi.org/10.1016/j.mechmachtheory.2017.12.007.
Full textPesko, Danielle M., Ksenia Timachova, Rajashree Bhattacharya, et al. "Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes." Journal of The Electrochemical Society 164, no. 11 (2017): E3569—E3575. http://dx.doi.org/10.1149/2.0581711jes.
Full textMiller, Stephen D., and Noah Stephens-Davidowitz. "Kissing Numbers and Transference Theorems from Generalized Tail Bounds." SIAM Journal on Discrete Mathematics 33, no. 3 (2019): 1313–25. http://dx.doi.org/10.1137/18m1210186.
Full textGouverneur, Martin, Jakob Kopp, Leo van Wüllen, and Monika Schönhoff. "Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR." Physical Chemistry Chemical Physics 17, no. 45 (2015): 30680–86. http://dx.doi.org/10.1039/c5cp05753a.
Full textSchönhoff, Monika, Cornelia Cramer, and Florian Schmidt. "Reply to the ‘Comment on “Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?”’ by K. R. Harris,Phys. Chem. Chem. Phys., 2018,20, DOI: 10.1039/C8CP02595A." Physical Chemistry Chemical Physics 20, no. 47 (2018): 30046–52. http://dx.doi.org/10.1039/c8cp06075d.
Full textDong, Dengpan, Fabian Sälzer, Bernhard Roling, and Dmitry Bedrov. "How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery?" Physical Chemistry Chemical Physics 20, no. 46 (2018): 29174–83. http://dx.doi.org/10.1039/c8cp06214e.
Full textGouverneur, M., F. Schmidt, and M. Schönhoff. "Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?" Physical Chemistry Chemical Physics 20, no. 11 (2018): 7470–78. http://dx.doi.org/10.1039/c7cp08580j.
Full textDeng, Kuirong, Qingguang Zeng, Da Wang, et al. "Single-ion conducting gel polymer electrolytes: design, preparation and application." Journal of Materials Chemistry A 8, no. 4 (2020): 1557–77. http://dx.doi.org/10.1039/c9ta11178f.
Full textMeyer, Mathieu, Lydie Viau, Ahmad Mehdi, Sophie Monge, Patrick Judeinstein, and André Vioux. "What use for polysilsesquioxane lithium salts in lithium batteries?" New Journal of Chemistry 40, no. 9 (2016): 7657–62. http://dx.doi.org/10.1039/c6nj00979d.
Full textZdunek, A. D., and J. R. Selman. "Estimating Conductivity and Transference Numbers of Concentrated ZnCl2 / KCl Electrolytes." Journal of The Electrochemical Society 138, no. 6 (1991): 1563–65. http://dx.doi.org/10.1149/1.2085833.
Full textVardner, Jonathan T., Tie Ling, Sebastian T. Russell, et al. "Method of Measuring Salt Transference Numbers in Ion-Selective Membranes." Journal of The Electrochemical Society 164, no. 13 (2017): A2940—A2947. http://dx.doi.org/10.1149/2.0321713jes.
Full textTimachova, Ksenia, Mahati Chintapalli, Kevin R. Olson, Sue J. Mecham, Joseph M. DeSimone, and Nitash P. Balsara. "Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt." Soft Matter 13, no. 32 (2017): 5389–96. http://dx.doi.org/10.1039/c7sm00794a.
Full textChen, Fangfang, and Maria Forsyth. "Correction: Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts." Physical Chemistry Chemical Physics 19, no. 36 (2017): 25220. http://dx.doi.org/10.1039/c7cp90203d.
Full textTao, Ruoyuan, Daisuke Miyamoto, Takahiro Aoki, and Tatsuo Fujinami. "Novel liquid lithium borates characterized with high lithium ion transference numbers." Journal of Power Sources 135, no. 1-2 (2004): 267–72. http://dx.doi.org/10.1016/j.jpowsour.2004.04.002.
Full textDai, Hongli, and Thomas A. Zawodzinski. "Determination of Lithium Ion Transference Numbers by Electrophoretic Nuclear Magnetic Resonance." Journal of The Electrochemical Society 143, no. 6 (1996): L107—L109. http://dx.doi.org/10.1149/1.1836891.
Full textRosenwinkel, Mark P., and Monika Schönhoff. "Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR." Journal of The Electrochemical Society 166, no. 10 (2019): A1977—A1983. http://dx.doi.org/10.1149/2.0831910jes.
Full textUeno, Masakatsu, Sh\={o}go I, and Kiyoshi Shimizu. "Temperature Effect on Transference Numbers for KCl in Ethanol–Water Mixtures." Bulletin of the Chemical Society of Japan 58, no. 4 (1985): 1225–27. http://dx.doi.org/10.1246/bcsj.58.1225.
Full textRajabu, H. "Transference Numbers in Molten Fluorides by an Operationally Defined emf Method." ECS Proceedings Volumes 1992-16, no. 1 (1992): 595–610. http://dx.doi.org/10.1149/199216.0595pv.
Full textPesko, Danielle M., Simar Sawhney, John Newman, and Nitash P. Balsara. "Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes." Journal of The Electrochemical Society 165, no. 13 (2018): A3014—A3021. http://dx.doi.org/10.1149/2.0231813jes.
Full textTian, Chengliang, Mingjie Liu, and Guangwu Xu. "Measure inequalities and the transference theorem in the geometry of numbers." Proceedings of the American Mathematical Society 142, no. 1 (2013): 47–57. http://dx.doi.org/10.1090/s0002-9939-2013-11744-2.
Full textShah, Deep B., Hien Q. Nguyen, Lorena S. Grundy, et al. "Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes." Physical Chemistry Chemical Physics 21, no. 15 (2019): 7857–66. http://dx.doi.org/10.1039/c9cp00216b.
Full textBanaszczyk, W. "New bounds in some transference theorems in the geometry of numbers." Mathematische Annalen 296, no. 1 (1993): 625–35. http://dx.doi.org/10.1007/bf01445125.
Full textZhurov, Konstantin, Edmund J. F. Dickinson, and Richard G. Compton. "Dynamic simulation of the moving boundary method for measuring transference numbers." Chemical Physics Letters 513, no. 1-3 (2011): 136–38. http://dx.doi.org/10.1016/j.cplett.2011.07.063.
Full textMA, CHAO, and SHAOHUA ZHANG. "JARNÍK’S THEOREM WITHOUT THE MONOTONICITY ON THE APPROXIMATING FUNCTION." Fractals 27, no. 04 (2019): 1950044. http://dx.doi.org/10.1142/s0218348x19500440.
Full textMu, Runqing, Ke Yun, Xiaoou Yu, et al. "A study on reference interval transference via linear regression." Clinical Chemistry and Laboratory Medicine (CCLM) 58, no. 1 (2019): 116–29. http://dx.doi.org/10.1515/cclm-2019-0055.
Full textNagaraj, N., P. Mohan Babu, and K. V. Ramesh Babu. "DC Conductivity and Transference number in pure and potassium thiocyanate-doped polyvinyl alcohol films." Material Science Research India 16, no. 2 (2019): 136–41. http://dx.doi.org/10.13005/msri/160207.
Full textMartin, Louise, Bonita Lloyd, Paul Cammell, and Frank Yeomans. "Transference-Focused Psychotherapy in Australian psychiatric training and practice." Australasian Psychiatry 25, no. 3 (2016): 233–35. http://dx.doi.org/10.1177/1039856216671661.
Full textChinnam, Parameswara Rao, Vijay Chatare, Sumanth Chereddy, et al. "Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators." Journal of Materials Chemistry A 4, no. 37 (2016): 14380–91. http://dx.doi.org/10.1039/c6ta05499d.
Full textThomas, Karen E., Steve E. Sloop, John B. Kerr, and John Newman. "Comparison of lithium-polymer cell performance with unity and nonunity transference numbers." Journal of Power Sources 89, no. 2 (2000): 132–38. http://dx.doi.org/10.1016/s0378-7753(00)00420-1.
Full textTao, Ruoyuan, Yan Zhao, and Tatsuo Fujinami. "Lithium borate–PEO polymer electrolytes characterized with high lithium ion transference numbers." Materials Science and Engineering: B 137, no. 1-3 (2007): 69–73. http://dx.doi.org/10.1016/j.mseb.2006.10.010.
Full textZhang, Zidan, Bill K. Wheatle, Jakub Krajniak, Jordan R. Keith, and Venkat Ganesan. "Ion Mobilities, Transference Numbers, and Inverse Haven Ratios of Polymeric Ionic Liquids." ACS Macro Letters 9, no. 1 (2019): 84–89. http://dx.doi.org/10.1021/acsmacrolett.9b00908.
Full textFujinami, Tatsuo, and Yasushi Buzoujima. "Novel lithium salts exhibiting high lithium ion transference numbers in polymer electrolytes." Journal of Power Sources 119-121 (June 2003): 438–41. http://dx.doi.org/10.1016/s0378-7753(03)00185-x.
Full textHarris, Kenneth R. "Correction: Comment on “Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the “Wrong” direction?” by M. Gouverneur, F. Schmidt and M. Schönhoff, Phys. Chem. Chem. Phys., 2018, 20, 7470." Physical Chemistry Chemical Physics 21, no. 2 (2019): 929. http://dx.doi.org/10.1039/c8cp91941k.
Full textStokes, R. H. "Activity coefficients and transference numbers in aqueous cadmium chloride from electromotive force data." Journal of Physical Chemistry 94, no. 20 (1990): 7769–71. http://dx.doi.org/10.1021/j100383a005.
Full textMAURO, V., A. DAPRANO, F. CROCE, and M. SALOMON. "Direct determination of transference numbers of LiClO solutions in propylene carbonate and acetonitrile." Journal of Power Sources 141, no. 1 (2005): 167–70. http://dx.doi.org/10.1016/j.jpowsour.2004.09.015.
Full textBruce, Peter G., Martin T. Hardgrave, and Colin A. Vincent. "The determination of transference numbers in solid polymer electrolytes using the Hittorf method." Solid State Ionics 53-56 (July 1992): 1087–94. http://dx.doi.org/10.1016/0167-2738(92)90295-z.
Full textFong, Kara D., Julian Self, Bryan D. McCloskey, and Kristin A. Persson. "Onsager Transport Coefficients and Transference Numbers in Polyelectrolyte Solutions and Polymerized Ionic Liquids." Macromolecules 53, no. 21 (2020): 9503–12. http://dx.doi.org/10.1021/acs.macromol.0c02001.
Full textMathews, Kayla L., Angela M. Budgin, Srinivas Beeram, et al. "Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers." J. Mater. Chem. A 1, no. 4 (2013): 1108–16. http://dx.doi.org/10.1039/c2ta00628f.
Full textXu, Jun, and G. C. Farrington. "A Novel Electrochemical Method for Measuring Salt Diffusion Coefficients and Ion Transference Numbers." Journal of The Electrochemical Society 143, no. 2 (1996): L44—L47. http://dx.doi.org/10.1149/1.1836453.
Full textLott, Kyle F., Braja D. Ghosh, and Jason E. Ritchie. "Measurement of Anion Diffusion and Transference Numbers in an Anhydrous Proton Conducting Electrolyte." Electrochemical and Solid-State Letters 8, no. 10 (2005): A513. http://dx.doi.org/10.1149/1.2017768.
Full textCastellote, M., C. Andrade, and C. Alonso. "Modelling of the processes during steady-state migration tests: Quantification of transference numbers." Materials and Structures 32, no. 3 (1999): 180–86. http://dx.doi.org/10.1007/bf02481513.
Full text