Academic literature on the topic 'Transferts radiatif'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transferts radiatif.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transferts radiatif"

1

Farhat, Habib, and Mohamed-Sassi Radhouani. "Étude tridimensionnelle du transfert radiatif dans un milieu semi-transparent diffusant anisotrope par la méthode des transferts discrets modifiée." Revue Générale de Thermique 36, no. 5 (May 1997): 330–44. http://dx.doi.org/10.1016/s0035-3159(97)81597-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dubuisson, Philippe, and Adrien Deschamps. "Troisième atelier Trattoria consacré au transfert radiatif atmosphérique." La Météorologie, no. 113 (2021): 019. http://dx.doi.org/10.37053/lameteorologie-2021-0041.

Full text
Abstract:
Le Cnes, en collaboration avec le CNRS/Insu et Météo-France, organisait en janvier 2020 à Toulouse la troisième édition de l'atelier Trattoria (Transfert radiatif dans les atmosphères terrestres pour les observations spatiales). Cet atelier est principalement consacré aux codes de transfert radiatif dans l'atmosphère terrestre pour les applications de télédétection spatiale, opérant sur l'ensemble de la gamme des longueurs d'onde de l'ultraviolet aux micro-ondes. Ces codes numériques sont fondamentaux pour la préparation des instruments de télédétection, ainsi que pour le traitement et l'exploitation des données satellitaires. Cet atelier était ouvert à tous les chercheurs, ingénieurs, post-doctorants et doctorants du domaine. Les résultats et recommandations de l'atelier doivent servir de guide au Cnes et aux divers participants et utilisateurs français et européens de codes de transfert radiatif. The CNES, in collaboration with the CNRS/INSU and Météo-France, organized in January 2020 in Toulouse the third edition of the Trattoria workshop (Transfert radiatif dans les atmosphères terrestres pour les observations spatiales). This workshop is mainly devoted to radiation transfer codes in the Earth's atmosphere for space remote sensing applications, operating over the entire wavelength range from ultraviolet to microwaves. These numerical codes are fundamental for the preparation of remote sensing instruments, as well as for the processing and exploitation of satellite data. This workshop was open to all researchers, engineers, post-doctoral and doctoral students in the field. The results and recommendations of the workshop should serve as a "guide" for CNES and the various French and European participants and users of radiative transfer codes.
APA, Harvard, Vancouver, ISO, and other styles
3

Gasimov, Naghi, Muharrem Karaaslan, Cumali Sabah, and Faruk Karadag. "Some aspects of mass-energy equivalence which appears in left-handed metamaterials." EPJ Applied Metamaterials 6 (2019): 16. http://dx.doi.org/10.1051/epjam/2019013.

Full text
Abstract:
In this work, the concept of mass-energy equivalence in left-handed metamaterials is discussed by following Einstein's box thought experiment. Left-handed metamaterials are artificial composite structures that exhibit unusual properties, especially negative refractive index, in which phase and group velocities are directed oppositely. Equation E = mc2 assumes that, in vacuum, the propagation of an electromagnetic radiation from emitter to receiver is accompanied by the transfer of mass. It was hypothesized previously that if the space between emitter and receiver is medium with a negative refractive index, then radiation transfers the mass not from the emitter to receiver as expected, but rather from the receiver to the emitter due to the opposite directions of phase and group velocities. In this paper, it is shown that even though one radiating atom is taken, the negative mass transferring must be in force. In particular, it means that, if the atom radiates a photon in a medium with negative refractive index, photon transfers the mass not from the atom, but to the atom.
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Tien-Chun, Chung-Jen Tseng, Ling-Chia Weng, and Shih-Kuo Wu. "Combined natural convection and radiation with temperature-dependent properties." Thermal Science 22, no. 2 (2018): 921–30. http://dx.doi.org/10.2298/tsci160225171c.

Full text
Abstract:
This paper investigates the effects of temperature dependence of radiative properties of a medium on radiation and natural convection interaction in a rectangular enclosure. The radiative transfer equation is solved using the discrete ordinates method, and the momentum, continuity, and energy equations are solved by the finite volume method. Effects of the conduction-to-radiation parameter, Rayleigh number, and optical thickness are discussed. Results show that temperature dependence of radiative properties affects the temperature gradient, and hence the energy transport even in relatively weak radiation condition. On the other hand, temperature dependence of radiative properties has relatively insignificant effects on convection characteristics, even though it does affect the way that energy transfers into the system. As conduction-to-radiation parameter is decreased or Rayleigh number is increased, the effects of temperature dependence of radiative properties become more significant.
APA, Harvard, Vancouver, ISO, and other styles
5

Rabi, J. A., and M. L. De Souza Santos. "INCORPORATION OF A TWO-FLUX MODEL FOR RADIATIVE HEAT TRANSFER IN A COMPREHENSIVE FLUIDIZED BED SIMULATOR PART I: PRELIMINARY THEORETICAL INVESTIGATIONS." Revista de Engenharia Térmica 2, no. 1 (June 30, 2003): 64. http://dx.doi.org/10.5380/reterm.v2i1.3516.

Full text
Abstract:
Over the last two decades, a comprehensive mathematical model and its corresponding computational program, aimed to simulate steady-state operations of bubbling fluidized bed equipments, has been continuously improved and tested. Despite its success, the simulator has employed a simple approach for radiative heat transfers. In cases of high temperatures, thermal radiation becomes an important energy transfer mode and the original model could lead to deviations above acceptable levels. The purpose of the present work was to improve the model for thermal radiation heat transfer between all solid particles in the bed section by applying a two-flux method to a non-homogeneous polydispersed particulate media in radiative equilibrium. Gases in the emulsion and in the bubbles were assumed transparent to thermal radiation. This first part of the paper presents and discusses the basic structure of the former mathematical model and of the new one.
APA, Harvard, Vancouver, ISO, and other styles
6

TIIHONEN, T. "FINITE ELEMENT APPROXIMATION OF NONLOCAL HEAT RADIATION PROBLEMS." Mathematical Models and Methods in Applied Sciences 08, no. 06 (September 1998): 1071–89. http://dx.doi.org/10.1142/s0218202598000494.

Full text
Abstract:
This paper focuses on finite element error analysis for problems involving both conductive and radiative heat transfers. The radiative heat exchange is modeled with a nonlinear and nonlocal term that also makes the problem non-monotone. The continuous problem has a maximum principle which suggests the use of inverse monotone discretizations. We also estimate the error due to the approximation of the boundary by showing continuous dependence on the geometric data for the continuous problem. The final result of this paper is a rigorous justification and error analysis for methods that use the so-called view factors for numerical modeling of the heat radiation.
APA, Harvard, Vancouver, ISO, and other styles
7

Tan, Yixuan, Baoan Liu, Sheng Shen, and Zongfu Yu. "Enhancing radiative energy transfer through thermal extraction." Nanophotonics 5, no. 1 (June 1, 2016): 22–30. http://dx.doi.org/10.1515/nanoph-2016-0008.

Full text
Abstract:
Abstract Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal extraction. It is organized as follows. In Section 1, we will discuss the theory of thermal extraction [8]. In Section 2, we review an experimental implementation based on natural materials as the thermal extractor [8]. Lastly, in Section 3, we review the experiment that uses structured metamaterials as thermal extractors to enhance optical density of states and far-field emission [9].
APA, Harvard, Vancouver, ISO, and other styles
8

Luévano-Martínez, Luis Alberto, and Anna L. Duncan. "Origin and diversification of the cardiolipin biosynthetic pathway in the Eukarya domain." Biochemical Society Transactions 48, no. 3 (June 3, 2020): 1035–46. http://dx.doi.org/10.1042/bst20190967.

Full text
Abstract:
Cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are important anionic phospholipids widely distributed throughout all domains of life. They have key roles in several cellular processes by shaping membranes and modulating the activity of the proteins inserted into those membranes. They are synthesized by two main pathways, the so-called eukaryotic pathway, exclusively found in mitochondria, and the prokaryotic pathway, present in most bacteria and archaea. In the prokaryotic pathway, the first and the third reactions are catalyzed by phosphatidylglycerol phosphate synthase (Pgps) belonging to the transferase family and cardiolipin synthase (Cls) belonging to the hydrolase family, while in the eukaryotic pathway, those same reactions are catalyzed by unrelated homonymous enzymes: Pgps of the hydrolase family and Cls of the transferase family. Because of the enzymatic arrangement found in both pathways, it seems that the eukaryotic pathway evolved by convergence to the prokaryotic pathway. However, since mitochondria evolved from a bacterial endosymbiont, it would suggest that the eukaryotic pathway arose from the prokaryotic pathway. In this review, it is proposed that the eukaryote pathway evolved directly from a prokaryotic pathway by the neofunctionalization of the bacterial enzymes. Moreover, after the eukaryotic radiation, this pathway was reshaped by horizontal gene transfers or subsequent endosymbiotic processes.
APA, Harvard, Vancouver, ISO, and other styles
9

Mygal, V. P. "Influence of radiation heat transfer dynamics on crystal growth." Functional materials 25, no. 3 (September 27, 2018): 574–80. http://dx.doi.org/10.15407/fm25.03.574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jeong, S. H., and M. Y. Ha. "Computer Modeling of the Continuous Annealing Furnace." Journal of Energy Resources Technology 114, no. 4 (December 1, 1992): 345–50. http://dx.doi.org/10.1115/1.2905963.

Full text
Abstract:
A computer program to calculate the strip temperature heated in the continuous annealing furnace was developed, using the zone method for radiative heat transfer analysis with the measured gas temperature in the furnace. Using the FE operator, the present study considered the effects of soot and transient species in addition to the H2O-CO2 gas mixture on the gas radiative heat transfer. The predicted strip temperature distribution for FE = 1.05 represented well the measured data. The maximum difference in the heat flux transfered to the strip from the combustion gas for FE = 1.0 (without soot and transient species gas radiation) and 1.05 (with soot and transient species gas radiation) was about 15 percent. The present study also investigated the effects of line speed and thickness variations on the strip temperature, establishing the bases for the on-line computer model.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transferts radiatif"

1

Baud, Germain. "Conception de récepteurs solaires à lit fluidisé sous flux radiatif concentré." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0106/document.

Full text
Abstract:
L'objectif de ce travail est d’évaluer le positionnement et le potentiel des récepteurs à lit fluidisé à changement de section par rapport aux autres méthodes de chauffage de gaz à haute température par voie solaire. A cette fin, une connaissance approfondie des phénomènes thermiques et hydrodynamiques du récepteur est nécessaire. Pour acquérir cette connaissance, nous avons modélisé les transferts thermiques dans le récepteur en portant une attention particulière sur les transferts radiatifs en prenant en compte les diffusions multiples de la lumière dans le milieu particulaire, les effets de parois sur les transferts radiatifs et la directionnalité du rayonnement solaire concentré. La détermination précise de la distribution de particules dans le ciel du lit fluidisé s'est avérée un paramètre critique pour le calcul des transferts thermiques. Ces modèles, plus tard affinés par une confrontation avec des références expérimentales, nous ont permis d'explorer l'effet de la géométrie sur les transferts thermiques dans le récepteur. Il ont permis entre autres de mettre en évidence l'intérêt d'utiliser une colonne de fluidisation à changement de section et l'importance de l'optimisation du couple concentrateur solaire / récepteur afin d'éviter d'éventuelles surchauffes au niveau des parois du récepteur. De même, il semble que l'homogénéisation de la température dans le lit fluidisé contenu dans le récepteur soit favorable à son rendement
The aim of this work is to evaluate the position and the potential of solar fluidized bed receivers compared to other methods for the solar heating of gases at high temperature. To this end, a thorough knowledge of the heat transfer and hydrodynamic of the receiver is necessary. To acquire this knowledge, we modeled the heat transfer in the receiver with a focus on the radiative transfer by taking into account the multiple scattering of light in the particle medium, the effect of walls on radiative heat transfer and the directionality of the concentrated solar radiation. The accurate determination of the distribution of particles within the fluidized bed has been a critical parameter for the calculation of heat transfer. With these models, later refined by a confrontation with experimental references, we have studied the effect of geometry on heat transfer in the receiver. This study highlighted the necessity to use a switching section fluidization column and the importance to optimize the pair : solar concentrator / receiver to avoid any overheating at the walls of the receiver. Moreover, it appears that the homogenization of the temperature in the fluidized bed of the receiver increase its performance
APA, Harvard, Vancouver, ISO, and other styles
2

Benmansour, Jaouad. "Contribution a l'etude des mecanismes de transferts radiatif, thermique et massique dans un systeme plan multiphases semi-transparent." Poitiers, 1988. http://www.theses.fr/1988POIT2281.

Full text
Abstract:
Etude des transferts de chaleur et de masse couples dans un film ruisselant et son domaine environnant. Resolution de l'equation locale de conservation de la luminance monochromatique pour le rayonnement couple aux autres equations locales de transfert d'enthalpie et de matiere
APA, Harvard, Vancouver, ISO, and other styles
3

Bédon, Nicolas. "Modélisation des transferts radiatifs dans des écoulements hyperrenthalpiques de rentrée atmosphérique." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11071.

Full text
Abstract:
Afin de dimensionner le bouclier thermique des engins spatiaux, il est nécessaire de connaître le flux de chaleur à la surface de l’engin. Pour les entrées dans une atmosphère planétaire, au flux de chaleur convectif peut s’ajouter une contribution radiative non négligeable, dûe au rayonnement des espèces chimiques composant l’atmosphère. Dans cette thèse, nous présentons le développement et la mise en oeuvre de modèles et d’outils numériques pour prédire le champ d’écoulement et le rayonnement du mélange gazeux de la couche de choc entourant un engin spatial, ainsi que les flux de chaleur convectif et radiatif à sa surface. Après une présentation des équations régissant un écoulement hypersonique et dissipatif et des méthodes numériques pour les résoudre – telles qu’implémentées dans le code aérodynamique PINENS – nous donnons une modélisation raie par raie du rayonnement du dioxyde de carbone et des espèces chimiques issues de sa dissociation. La modélisation du rayonnement ainsi proposée est la base du code spectral PASTIS utilisé dans cette étude. S’ensuit une présentation de l’équation de transfert radiatif, qui est résolue numériquement au moyen d’une méthode de lancers de rayons. Cette étude est ensuite appliquée au cas de l’entrée d’une sonde spatiale de forme conique émoussée, dans une atmosphère de type Martienne composée de dioxyde de carbone
In order to dimension the heat shield of spacecrafts, it is necessary to predict the heat flux to the surface of the vehicle. For entries in planetary atmospheres, a non-negligible radiative contribution is added to the convective heat flux, due to the radiation of the chemical species of the atmosphere. In the present thesis, we present the development and the implementation of models and numerical tools to predict the flow field and the radiation of gas mixture in the shock layer surrounding a space vehicle, as well as the convective and radiative heat fluxes to its surface. After presenting the equations modeling a hypersonic and dissipative flow and the numerical methods to solve them – as implemented in the aerodynamics code PINENS – we give a line-by-line model for radiation of the carbon dioxide and the chemical species resulting from its dissociation. The proposed radiation model is the basis of the spectral code PASTIS used in the present study. Follows a presentation of the radiative transfer equation, that is numerically solved by means of a ray tracing method. This study is then applied to the entry of a blunt conic space probe into a Mars-type atmosphere composed of pure carbon dioxide
APA, Harvard, Vancouver, ISO, and other styles
4

Chamont, David. "Architecture logicielle pour la simulation des transferts radiatifs." Nancy 1, 1997. http://docnum.univ-lorraine.fr/public/SCD_T_1997_0254_CHAMONT.pdf.

Full text
Abstract:
La synthèse d'images est fondée depuis quelques années sur des bases physiques et mathématiques plus rigoureuses, notamment la modélisation des propriétés radiatives des surfaces et la simulation par éléments finis des transferts radiatifs entre ces surfaces. Une telle évolution permet d'envisager de nouvelles applications industrielles, en particulier en ingénierie de l'éclairage. Ce mémoire présente une architecture logicielle à base d'objets, conçue pour soutenir la recherche dans les disciplines évoquées ci-dessus et faciliter le développement de prototypes industriels. Elle repose d'une part sur une bibliothèque de classes abstraites tirées de l'équation de transfert, d'autre part sur un système de fichiers et de programmes calqués sur les étapes et les taches d'une simulation. A travers différents projets de recherche et plusieurs applications, nous montrons comment notre architecture a été mise en œuvre avec succès, en particulier pour évaluer de nouveaux modèles d'émission ou de réflexion de la lumière. Nous discutons également ses lacunes dans la représentation des algorithmes et la mise en œuvre du paradigme objet.
APA, Harvard, Vancouver, ISO, and other styles
5

Zarrouati, Marie. "Modélisation des transferts radiatifs dans des milieux poreux non Beeriens au voisinage des parois : Application aux procédés de vaporeformage de méthane." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2015. http://www.theses.fr/2015ECAP0028/document.

Full text
Abstract:
L'objectif industriel de cette thèse est de proposer un modèle de transfert radiatif dans un réacteur de reformage de méthane. Dans ce procédé, des gaz réactifs circulent dans le réacteur tubulaire rempli de pastilles catalytiques.L'empilement de pastilles constitue un milieu poreux où le rapport de la taille caractéristique des pores sur la dimension radiale du réacteur est grand (1=10 à 1=5). De plus, les très forts gradients de porosité dus à l'organisation des pastilles au voisinage des parois ont un impact important sur les transferts thermiques et en particulier les transferts radiatifs.L'objectif scientifique est de développer et valider un modèle de transfert radiatif applicable à des milieux poreux fortement hétérogènes et anisotropes ne suivant pas la loi de Beer. Dans un premier temps, les propriétés radiatives du milieu homogénéisé équivalent au milieu poreux réel sont complètement déterminées par la fonction de distribution cumulée d'extinction Gext, la fonction de phase p et la porosité Π. Ces fonctions, précédemment introduites pour des milieux homogènes éventuellement anisotropes, sont calculées avec une grande précision par une méthode de Monte Carlo. Elles ont été généralisées ici à des milieux hétérogènes. Il a été montré à partir d'un nouveau critère de validité adapté aux milieux hétérogènes que le milieu homogénéisé équivalent ne suit pas la loi de Beer, en particulier au voisinage des parois.De ce fait, l'équation de transfert radiatif généralisée (GRTE) doit prendre en compte l'émission par un milieu non Beerien fortement hétérogène même à la limite optiquement mince : un coefficient d'absorption n'y a pas de sens physique et des corrélations entre émission et transmission apparaissent dues au caractère non Beerien. Le principe de réciprocité et les propriétés des fonctions d'extinction Gext ont permis d'exprimer rigoureusement les termes sources d'émission dans ce type de milieux fortement hétérogènes non Beeriens. Un facteur de corrélation émission-transmission a été introduit. La GRTE, sous forme intégrale, a été résolue par une méthode de transfert de Monte Carlo. Le modèle complet a été appliqué après validation aux réacteurs de reformage de méthane de Air Liquide
The industrial goal of this work is to propose a radiative transfer model in a tubular reactor of steam methane reforming. During the reforming process, reactive gases are injected in the tubular reactor filled with catalytic pellets. The packed bed of pellets forms a porous medium, and a particular feature of it is that the characteristic pore size is large compared to the reactor inner dimension. In addition, the organization of the pellets in the near-wall region results in important porosity gradients which have a significant effect on the heat transfer, and more specifically on the radiative transfer.The scientific goal is to develop and validate a radiative transfer model applicable to strongly nonhomogeneous, anisotropic and non Beerian porous media.First, the radiative properties of the homogenised phase equivalent to the real porous medium are completely determined by the cumulated distribution function of extinction Gext, the phase function p, and the local porosity Π. These functions, previously introduced for statistically homogeneous and anisotropic porous media, are calculated very accurately by a Monte Carlo method. They have been extended to statistically non-homogeneous porous media. Similarly, the expression of the validity criterion of the Beer law is extended to statistically anisotropic and non-homogeneous porous media : it is proven that for the considered porous media the Beer law is not valid in the homogenised phase, in particular in the vicinity of the walls. As a result, the Generalized Radiative Transfer Equation (GRTE) is needed and the emission source terms must be determined in a strongly nonhomogeneous non Beerian even at the optically thin limit : an absorption coefficient doesn't have any physical meaning and correlations between emission and transmission appear due to the non-Beerian behavior.The reciprocity principle and the properties of the extinction functions Gext allow the emission source terms in this kind of strongly non-homogeneous and non-Beerian media to be accurately determined. A correlation factor emission-transmission has been introduced. The GRTE has been solved by a Monte Carlo method.The complete model is applied, after validation, to the steam methane reformers in use by Air Liquide
APA, Harvard, Vancouver, ISO, and other styles
6

Joseph, David Cuenot Bénédicte. "Modélisation des transferts radiatifs en combustion par méthode aux ordonnées discrètes sur des maillages non structurés tridimensionnels." Toulouse : INP Toulouse, 2004. http://ethesis.inp-toulouse.fr/archive/00000016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moukarzel, Camille. "Modélisation mathématique des transferts de masse et de chaleur dans des fours de verre plat." Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Draoui, Abdeslam. "Etudes numériques des transferts de chaleur couples rayonnement-conduction et rayonnement-convection dans un milieu semi-transparent bidimensionnel." Lyon, INSA, 1989. http://www.theses.fr/1989ISAL0012.

Full text
Abstract:
Les travaux que nous présentons s'articulent autour d'approches numériques des transferts de chaleur couplés rayonnement-conduction et rayonnement-convection au sein de milieux semi-transparents (M. S. T) de géométrie bidimensionnelle. La première partie est réservée au rappel des équations du transfert radiatif et à la présentation de trois méthodes numériques (Pl, P3, ZONES de HOTTEL) permettant de résoudre ce problème dans un milieu bidimensionnel. Après avoir comparé ces trois méthodes dans le cas où le rayonnement est le seul mode de transfert, nous consacrons le deuxième chapitre à l'étude du couplage rayonnement-conduction. Nous introduisons alors une quatrième méthode adaptée à la résolution de ce problème. Les comparaisons menées sur ces diverses méthodes nous permettent de mettre en évidence l'intérêt des méthodes aux harmoniques sphériques. Dans la troisième partie, la méthode Pl est retenue pour sa simplicité de mise en œuvre, et nous permet d'aborder le couplage du transfert radiatif avec les équations de la convection laminaire dans une cavité bidimensionnelle thermiquement entraînée. Les résultats obtenus montrent une influence significative de la participation radiative du fluide sur les champs thermiques et dynamiques rencontrés dans ce type de problèmes
The works we present here are a numerical approach of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium ; The first part deals with a view of equation of radiative transfer and introduces three numerical methods (P1, P2, Hottel's zone) which enable one to solve this problem in a two dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve the problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the P1 approximations is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem
APA, Harvard, Vancouver, ISO, and other styles
9

Abbassi, Mohamed Ammar. "Modélisation des transferts de chaleur par convention-rayonnement dans un four d'incinération des fumées de carbonisation du bois." Perpignan, 2009. http://www.theses.fr/2009PERP0938.

Full text
Abstract:
Ce travail concerne une étude essentiellement théorique des transferts de chaleur et de masse par convection mixte couplés aux transferts radiatif et la cinétique chimique et dans l' incinérateur de fumées d'une unité pilote de carbonisation de bois avec récupération et incinération des fumées de pyrolyse. Un modèle thermochimique a été élaborée pour prédire les températures, les débits molaires (notamment le débit molaire responsable de l'emballement de la réaction d'incinération des fumées) et les concentrations en chaque zone de l'unité pilote. Les transferts radiatifs dans les fumées composées d'une phase gazeuse et de suies sont modélisés en appliquant le modèle de la somme pondérée des gaz gris. Nous avons appliqué la méthode des volumes finies et la procédure « blocked-off-region » pour modéliser les transferts radiatifs dans les fumées assimilées à un milieu semi-transparent. Les équations qui régissent les transferts par convection mixte couplés aux transferts radiatif et à la cinétique chimique sont résolues par la méthode des volumes finis, les algorithmes TDMA et SIMPLE. Nous avons analysé l'influence sur les transferts de l'’ombre causé par les chicanes, de l'épaisseur optique des fumées, du nombre de Boltzmann, du nombre de couplage conduction-rayonnement, des nombres de Reynolds et de Richardson. Ainsi, nous déterminé le meilleur emplacement des chicanes et montré notamment que l’augmentation de la fraction volumique des suies provoque une augmentation du flux radiatif et la présence de suies dans les fumées à une température différente de celle des fumées provoque un déséquilibre thermique radiatif. Le rapport entre les pressions partielles de H2O et CO2 n’influence pas le flux de chaleur au niveau des parois l'incinérateur. La quantité de chaleur engendrée par l'incinération des composants des fumées provoque une intensification et une homogénéisation des transferts d'autant plus importante que le mode de transfert prédominant est la convection forcée. Les résultats du modèle thermochimique sont en bon accord qualitatif et quantitatif avec nos résultats expérimentaux
This work deals with a theoretical study of heat and mass transfer by combined mixed convection, radiation and chemical kinetics in an incinerator of wood carbonization with recovery and incineration of the pyrolysis fumes. A thermochemical model was elaborated to predict the temperatures, molar flows (in particular molar flow responsible for the racing of the incineration reaction) and the concentrations in each zone of the pilot plant. The radiative transfers in the gas phase and soot are modelled by applying the weighted sum of the grey gases model. We applied the finite volume method and the "blocked-off-region" procedure to handle the complex geometries. The equations governing the transfers by combined mixed convection, radiation and the chemical kinetics are solved by the finite volume method, TDMA and the SIMPLE algorithms. We analyzed the shadow effect caused by the baffles, the fumes optical thickness, the Boltzmann number, the conduction-radiation parameter, Reynolds number and the Richardson number. We determined the best configuration of the baffles and shown that the increase in the soot volume fraction causes an increase in radiative heat flux and the presence of soot at a temperature different from that of the fume causes a radiative thermal non equilibrium. The partial pressure ratio of H2O and CO2 does not effect the radiative heat flux on the walls of the incinerator. The heat generated by the incineration of the fumes causes intensification and homogenisation of the transfers in a forced convection mode. The results of the thermochemical model are in qualitative and quantitative good agreement with the experimental results
APA, Harvard, Vancouver, ISO, and other styles
10

Duval, Rodolphe. "Transfert radiatif dans des chambres de combustion de propulseurs à propergol solide aluminisé." Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0893.

Full text
Abstract:
Les transferts radiatifs dans des propulseurs à propergol solide aluminisé ont été étudiés afin d'évaluer les flux radiatifs entre les produits de combustion du propergol en écoulement diphasique et les parois. Une première étape a consisté à caractériser radiativement le milieu. La détermination des propriétés radiatives des espèces gazeuses s'est effectuée à partir d'un modèle statistique à bandes étroites. Quant à la caractérisation radiative des particules d'aluminium oxydées, leurs propriétés ont été déterminées à l'aide de la théorie de Mie et de leurs caractéristiques optiques et granulométriques. La deuxième étape de cette étude correspond à la modélisation du couplage entre le rayonnement et l'écoulement diphasique. Un modèle de transfert radiatif, localement monodimensonnel, tenant compte des fluctuations turbulentes de température et des déséquilibres thermiques entre les constituants du milieu est développé. Afin d'évaluer les grandeurs liées à la phase condensée, un modèle lagrangien de trajectoires prenant en compte les effets de turbulence en terme de dispersion particulaire ainsi que les échanges radiatifs entre les constituants du milieu est mis en oeuvre. Pour disposer des champs aérothermiques turbulents de l'écoulement gazeux, un modèle bas Reynolds à quatre équations supplémentaires est utilisé. Différents types de couplage entre l'écoulement et le rayonnement sont considérés. L'ensemble de ces modèles est appliqué à deux configurations du moteur MPS-P230. Dans l'ensemble arrière a été mis en évidence un blocage par les zones froides de la couche limite du rayonnement en provenance de zones externes plus chaudes, avec un rôle important pour les petites particules. Dans la zone col-divergent, la rétroaction de la phase dispersée sur la phase continue est prépondérante au niveau des couplages. Quant à la turbulence thermique, il est montré qu'elle peut affecter sensiblement le flux radiatif lorsque l'intensité de turbulence est élevée
Radiative transfer in combustion chamber of aluminised soli propellant rocket engines is investigated. A first step consisted on the determination of the radiative properties of gases such as H2O, CO2, CO and HC1. They are computed from a random statistical narrow-band model. For radiative properties of alumine produced during propellant burning, Mie theory is used with optical and granulometric characteristics. The second step concerns the modelling of interaction between radiation and two-phase flow. A radiative transfer model, locally one dimensional included temperature fluctuations and thermal non equilibrium between each component of the medium is developed. A lagrangian stochastic model taken into account turbulence effects and radiative source term in the heat-balance equation is used to determinate the alumine particles flow fields. A near-wall turbulence model is used to solve flow equations in a couped manner with the energy equation. Two types of configurations are studied for interaction between radiation and two-phase flow. In the rear area, radiation coming from external flow is blocked by cold zone of the boundary layer. It is shown that small particles paly a significant part in this process. In nozzle throat-divergent area, the interaction between dispersed and continue phases is found to be the most significant one. The effects of the thermal turbulence are all the more significant that thermal turbulence intensity is high
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transferts radiatif"

1

Lenoble, Jacqueline. Atmospheric radiative transfer. Hampton, Va., USA: A. Deepak Pub., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buglia, James J. Introduction to the theory of atmospheric radiative transfer. Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

An introduction to radiative transfer: Methods and applications in astrophysics. Cambridge: Cambridge University Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Radiative heat transfer. New York: McGraw-Hill, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Radiative heat transfer. 2nd ed. Amsterdam: Academic Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Freese, Dietmar. Solare und terrestrische Strahlungswechselwirkung zwischen arktischen Eisflächen und Wolken =: Solar and terrestrial radiation interaction between arctic sea ice and clouds. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Modest, Michael M. Radiative heat transfer. Maidenhead: McGraw-Hill, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Radiation heat transfer. Oxford: Oxford University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

American Society of Mechanical Engineers. Winter Meeting. Radiation heat transfer. New York, N.Y: The Society, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Natsuyama, Harriet H., Sueo Ueno, and Alan P. Wang. Terrestrial Radiative Transfer. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68527-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Transferts radiatif"

1

Becker, Martin. "Radiation." In Heat Transfer, 261–303. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-1256-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annaratone, Donatello. "Radiation." In Engineering Heat Transfer, 139–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03932-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

von Böckh, Peter, and Thomas Wetzel. "Thermal radiation." In Heat Transfer, 189–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19183-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Venkateshan, S. P. "Surface Radiation." In Heat Transfer, 359–403. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rouan, Daniel. "Radiative Transfer." In Encyclopedia of Astrobiology, 1410–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kokhanovsky, Alexander A. "Radiative Transfer." In Cloud Optics, 113–206. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4020-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rouan, Daniel. "Radiative Transfer." In Encyclopedia of Astrobiology, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1336-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fleishman, Gregory D., and Igor N. Toptygin. "Radiation Transfer." In Astrophysics and Space Science Library, 445–516. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5782-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rouan, Daniel. "Radiative Transfer." In Encyclopedia of Astrobiology, 2120–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Landi Degl’Innocenti, Egidio. "Radiative Transfer." In UNITEXT for Physics, 315–35. Milano: Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-2808-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transferts radiatif"

1

Hu, Lu, Arvind Narayanaswamy, Xiaoyuan Chen, and Gang Chen. "Measurement of Near-Field Thermal Radiation Between Two Closely-Spaced Glass Plates." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56412.

Full text
Abstract:
At a finite temperature, electrons and ions in any matter are under constant thermal agitation, acting as the random current source for thermal emission. The thermally-excited electromagnetic waves have two forms: the propagating modes that can leave the surface of the emitter and radiate freely into the space, and the non-propagating modes (evanescent modes) that do not radiate. The contribution from the propagating modes, or the far-field radiation modes, to the radiative heat flux is well-known and its maximum is governed by Planck’s law of blackbody radiation. The non-propagating modes do not propagate and thus do not carry energy in the direction normal to the surface, unless a second surface is brought close to the first to enable photon tunneling. The contribution from the non-propagating modes to radiative heat flux is the near-field radiative flux.
APA, Harvard, Vancouver, ISO, and other styles
2

Otanicar, Todd P. "Enhancing the Heat Transfer in Energy Systems From a Volumetric Approach." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44170.

Full text
Abstract:
Many energy systems rely on flat surfaces for energy conversion. The simplest example is the solar thermal collector which absorbs solar irradiance on a flat plate and then transfers heat via conduction, convection and radiation to both the surroundings and more importantly to the working fluid. Conversely a night-sky radiator tries to lose heat via convection and radiation to ambient and night sky respectively while being coupled either via convection or conduction to higher temperature system. The recent advent of nanoparticles, particularly liquid-nanoparticle suspensions termed nanofluids, have led to novel systems that can reduce some of these heat transfer steps by utilizing the whole fluid volume directly. This study looks at the advantages afforded by using the volumetric approach on both the radiative properties of the system and the simplification of the heat transfer networks within these systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Matthew R., and Vladimir P. Solovjov. "Green’s Function Approach to Nonlinear Conduction and Surface Radiation Problems." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88033.

Full text
Abstract:
An analytical approach for solving both transient and steady state conduction and surface radiation problems is presented. The method is based on the use of a Green’s function, and the temperature field is obtained by solving an integral equation. This is in contrast to the approach presented in radiative heat transfer texts in which temperature profiles are obtained from the simultaneous solution of coupled integral and differential equations. The analysis presented in this paper provides insight into the solution of this important class of problems. The method is illustrated by solving two representative problems. The first problem considered is the steady state analysis of radiating fins, which are frequently incorporated in the design of spacecraft. The second problem considered is the transient analysis of a radiating target, which is used to determine the temporal response of radiation thermometers.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Kyunghan, and Zhixiong Guo. "Discrete Ordinates Method for Transient Radiation Transfer in Cylindrical Enclosures." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47256.

Full text
Abstract:
The Discrete Ordinates Method (DOM) for solving transient radiation transfer equation in cylindrical coordinates is developed for radiation heat transfer in participating turbid media in pico-scale time domain. The application problems addressed here are laser tissue welding and soldering. The novelty of this study lies with the use of ultrashort laser pulses as the irradiation source. The characteristics of transient radiation heat transfer in ultrafast laser tissue welding and soldering are studied with the DOM developed. The temporal distribution of radiative energy inside the tissue cylinder as well as the radiative heat flux on the tissue surface is obtained. Comparisons are performed between laser welding without use of solder and laser soldering with use of solder. The use of solder is found to have highly concentrated radiation energy deposition in the solder-stained region and reduce the surface radiative heat flux accordingly. Comparisons of transient radiation heat transfer between the spatially square-variance and Gaussian-variance laser inputs and between the temporally Gaussian and skewed input profiles are also conducted.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Jingfu, and Guoqiang Li. "Analysis of Radiation Reabsorption Effects on Flame Characteristics and NOx Emission in Laminar Flames." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23061.

Full text
Abstract:
The radiation reabsorption effects on NOx formation and flame characteristics in CH4/Air laminar flames were numerically investigated by using full chemistry mechanism and detailed transport properties. The radiative gases were treated as non-gray gas and their spectral radiative properties were evaluated by means of the statistical narrow-band model. The radiative heat transfer equation was solved by the discrete ordinate method. It was found that the reabsorption of emitting radiation leads to substantially wider flame thickness and higher flame temperature than those calculated by using the optically thin model, and the radiation reabsorption effect on the “radiation extinction limit” becomes more important. The results show that the level of NOx is predicted to be highest in the adiabatic flames, that is, flames without radiation heat loss, and that the level of NOx is predicted to be lowest in the flames by the optically thin model. In the flames by the SNB model, the predicted amount of NOx lies between these two levels. The calculated results also show that the radiation reabsorption effect on NOx formation grows stronger as the stretch rate decreases, particularly when CO2, a strong absorber, is added to the unburned gas mixture. In this study, the effectiveness and validity of the optically thin radiation model for calculating NOx formation in laminar flames was also investigated in comparison with the SNB model.
APA, Harvard, Vancouver, ISO, and other styles
6

Fedorov, Andrei G., and Tai-Hsi Fan. "RADIATIVE TRANSFER IN A SEMITRANSPARENT HEMISPHERICAL SHELL." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ganesh Murali, J., and S. Katte Subrahmanya. "Experimental Study of Threaded and Grooved Radiating Pin Fin." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32043.

Full text
Abstract:
An experimental study was performed to provide information on the heat radiated to the space from grooved pin fin radiator of three different geometries. Since mass is at a premium on spacecraft, the space radiator used in its temperature control system needs to be optimized with respect to mass. A literature review shows that much of work on radiating fins has been carried out analytically and numerically. Presently, a radiating pin fin with threads and grooves on its outside surface is investigated experimentally. A test facility with a vacuum chamber and instrumentation is fabricated. The heat input to the fin is varied such that the base temperature is maintained constant under steady state. Based on a study of effect of vacuum, using available resources, the chamber is designed for a vacuum of 680 mm Hg such that the contribution of convection to the total heat transfer could be ignored. The study shows that there exists optimum thread per inch (TPI), angle of threads and depth of grooves for which the heat loss per unit mass is a maximum. The threaded and grooved radiating fin loses 1.2 to 1.34 times greater heat per unit mass, respectively, compared to the bare pin fin.
APA, Harvard, Vancouver, ISO, and other styles
8

Beale, Steven. "COMBINED STOCHASTIC AND TRANSFER MODEL FOR ATMOSPHERIC RADIATION." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Penner, S. S. "SPECTROSCOPY AND RADIATIVE TRANSFER: SELECTED RESEARCH AND APPLICATIONS." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, S. S., H. H. Chiu, and T. S. Lee. "Droplet Combustion With Radiative Heat Transfer." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-144.

Full text
Abstract:
Combustion of a droplet, either in stationary or convective motion under the effect of radiative heat transfer is studied. The closed form expression of gasification laws and the radiative flux distribution surrounding a stationary droplet are calculated using Potential Theory of Radiation in conjunction with the canonical theory of droplet recently developed. Various mechanisms contributing to gasification rate of a combusting droplet under radiative condition are determined by the Canonical Integral Method to assess their importance. It is found that radiation effect plays an important role when the droplet considered is of large size and under high environmental temperature. It is seen from the present study that for a typical application in turbine combustor, the enhancement of droplet combustion rate due to radiation ranges from 5 percents to 15 percents depending on the droplet size and the environmental conditions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Transferts radiatif"

1

Woods, Douglas Nelson, Mathew Allen Cleveland, Ryan Thomas Wollaeger, and James S. Warsa. High-Order Thermal Radiative Transfer. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1392890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Byrne, N. [Stochastic radiation transfer]. Final report. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/666236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mobley, Curtis D. Radiative Transfer Modeling for CoBOP. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mobley, Curtis D. Radiative Transfer Modeling for Cobop. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mobley, Curtis D. Radiative Transfer Modeling for CoBOP. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada622169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blandford, R. COVARIANT MAGNETOIONIC THEORY 2: RADIATIVE TRANSFER. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/826591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zimmerman, Richard C. Radiative Transfer in Submerged Macrophyte Canopies. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada627675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Evans, F. Stochastic Radiative transfer and real cloudiness. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/232591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography