Academic literature on the topic 'Transformation de Fourier-Mukai'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transformation de Fourier-Mukai.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transformation de Fourier-Mukai"

1

Biswas, Indranil, and Andreas Krug. "Fourier–Mukai transformation and logarithmic Higgs bundles on punctual Hilbert schemes." Journal of Geometry and Physics 150 (April 2020): 103597. http://dx.doi.org/10.1016/j.geomphys.2020.103597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minamide, Hiroki, Shintarou Yanagida, and Kōta Yoshioka. "The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 735 (2018): 1–107. http://dx.doi.org/10.1515/crelle-2015-0010.

Full text
Abstract:
AbstractThe wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where thet-structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. A
APA, Harvard, Vancouver, ISO, and other styles
3

Kawatani, Kotaro. "Fourier–Mukai transformations on K3 surfaces with ρ=1 and Atkin–Lehner involutions". Journal of Algebra 417 (листопад 2014): 103–15. http://dx.doi.org/10.1016/j.jalgebra.2014.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Biswas, Indranil, Umesh V. Dubey, Manish Kumar, and A. J. Parameswaran. "Quot schemes and Fourier-Mukai transformation." Complex Manifolds 10, no. 1 (2023). http://dx.doi.org/10.1515/coma-2023-0152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arvanitakis, Alex S., Christopher Blair, and Dan Thompson. "A QP perspective on topology change in Poisson-Lie T-duality." Journal of Physics A: Mathematical and Theoretical, May 12, 2023. http://dx.doi.org/10.1088/1751-8121/acd503.

Full text
Abstract:
Abstract We describe topological T-duality and Poisson-Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ``correspondence'' space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of a bibundle structure on correspondence space realises changes in the global fibration structure under Poisson-Lie duality. Our approach can be directly tr
APA, Harvard, Vancouver, ISO, and other styles
6

Hausel, Tamás, and Nigel Hitchin. "Very stable Higgs bundles, equivariant multiplicity and mirror symmetry." Inventiones mathematicae, January 21, 2022. http://dx.doi.org/10.1007/s00222-021-01093-7.

Full text
Abstract:
AbstractWe define and study the existence of very stable Higgs bundles on Riemann surfaces, how it implies a precise formula for the multiplicity of the very stable components of the global nilpotent cone and its relationship to mirror symmetry. The main ingredients are the Bialynicki-Birula theory of $${\mathbb {C}}^*$$ C ∗ -actions on semiprojective varieties, $${\mathbb {C}}^*$$ C ∗ characters of indices of $${\mathbb {C}}^*$$ C ∗ -equivariant coherent sheaves, Hecke transformation for Higgs bundles, relative Fourier–Mukai transform along the Hitchin fibration, hyperholomorphic structures o
APA, Harvard, Vancouver, ISO, and other styles
7

Hicks, Jeffrey. "Tropical Lagrangians in toric del-Pezzo surfaces." Selecta Mathematica 27, no. 1 (2021). http://dx.doi.org/10.1007/s00029-020-00614-1.

Full text
Abstract:
AbstractWe look at how one can construct from the data of a dimer model a Lagrangian submanifold in $$(\mathbb {C}^*)^n$$ ( C ∗ ) n whose valuation projection approximates a tropical hypersurface. Each face of the dimer corresponds to a Lagrangian disk with boundary on our tropical Lagrangian submanifold, forming a Lagrangian mutation seed. Using this we find tropical Lagrangian tori $$L_{T^2}$$ L T 2 in the complement of a smooth anticanonical divisor of a toric del-Pezzo whose wall-crossing transformations match those of monotone SYZ fibers. An example is worked out for the mirror pair $$(\m
APA, Harvard, Vancouver, ISO, and other styles
8

Demulder, Saskia, and Thomas Raml. "Poisson-Lie T-duality defects and target space fusion." Journal of High Energy Physics 2022, no. 11 (2022). http://dx.doi.org/10.1007/jhep11(2022)165.

Full text
Abstract:
Abstract Topological defects have long been known to encode symmetries and dualities between physical systems. In the context of string theory, defects have been intensively studied at the level of the worldsheet. Although marked by a number of pioneering milestones, the target space picture of defects is much less understood. In this paper, we show, at the level of the target space, that Poisson-Lie T-duality can be encoded as a topological defect. With this result at hand, we can postulate the kernel capturing the Fourier-Mukai transform associated to the action of Poisson-Lie T-duality on t
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Transformation de Fourier-Mukai"

1

Liu, Haohao. "Integral points, monodromy, generic vanishing and Fourier-Mukai transform." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS112.

Full text
Abstract:
Cette thèse est une compilation de plusieurs résultats vaguement liés. Ils concernent la non-densité des points entiers sur les variétés algébriques, la méthode de Lawrence-Venkatesh-Sawin et la géométrie analytique complexe. Dans Chapitre 2, parallèlement au principe alternatif d'Ullmo et Yafaev sur les points rationnels des variétés de Shimura, nous montrons que la conjecture de Lang sur les points intégraux des variétés de Shimura est soit vraie, soit très fausse. Le Chapitre 3 est un complément à la comparaison des monodromies dans les travaux respectifs de Lawrence-Sawin et Krämer-Maculan
APA, Harvard, Vancouver, ISO, and other styles
2

Toledo, Castro Angel Israel. "Espaces de produits tensoriels sur la catégorie dérivée d'une variété." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4001.

Full text
Abstract:
Dans cette thèse on est intéressé à l'étude des catégories dérivées d'une variété lisse et projective sur un corps. En particulier on étude l'information géométrique et catégorielle d'une variété et sa catégorie dérivée pour mieux comprendre l'ensemble de structures monoïdales qu'on peut munir à la catégorie dérivée. La motivation de ce projet s'inspire en deux théorèmes. L'un c'est le théorème de reconstruction de Bondal-Orlov qu'établisse que la catégorie dérivée d'une variété avec diviseur (anti-)canonique ample est assez pour récupérer la variété. D'un autre côté, on a la construction du s
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Transformation de Fourier-Mukai"

1

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry. Ebsco Publishing, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry (Oxford Mathematical Monographs). Oxford University Press, USA, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nahm and Fourier--Mukai Transforms in Geometry and Mathematical Physics (Progress in Mathematical Physics). Birkhäuser Boston, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transformation de Fourier-Mukai"

1

Leung, Naichung Conan, and Shing‐Tung Yau. "Mirror Symmetry of Fourier—Mukai Transformation for Elliptic Calabi—Yau Manifolds." In The Many Facets of Geometry. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!