Academic literature on the topic 'Transformation de Möbius'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transformation de Möbius.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transformation de Möbius"
Wang, Changping. "Surfaces in Möbius geometry." Nagoya Mathematical Journal 125 (March 1992): 53–72. http://dx.doi.org/10.1017/s0027763000003895.
Full textLee, Sunhong, Hyun Chol Lee, Mi Ran Lee, Seungpil Jeong, and Gwang-Il Kim. "Hermite Interpolation Using Möbius Transformations of Planar Pythagorean-Hodograph Cubics." Abstract and Applied Analysis 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/560246.
Full textBreaz, Nicoleta, Daniel Breaz, and Shigeyoshi Owa. "Fractional Calculus of Analytic Functions Concerned with Möbius Transformations." Journal of Function Spaces 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6086409.
Full textPiirainen, Reijo. "Möbius transformation and conformal relativity." Foundations of Physics 26, no. 2 (February 1996): 223–42. http://dx.doi.org/10.1007/bf02058086.
Full textMork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.
Full textMcCullagh, Peter. "Möbius transformation and Cauchy parameter estimation." Annals of Statistics 24, no. 2 (April 1996): 787–808. http://dx.doi.org/10.1214/aos/1032894465.
Full textXinhua, JI. "Möbius transformation and degenerate hyperbolic equation." Advances in Applied Clifford Algebras 11, S2 (June 2001): 155–75. http://dx.doi.org/10.1007/bf03219129.
Full textHayashi, Masahito, Kazuyasu Shigemoto, and Takuya Tsukioka. "The construction of the mKdV cyclic symmetric N-soliton solution by the Bäcklund transformation." Modern Physics Letters A 34, no. 18 (June 14, 2019): 1950136. http://dx.doi.org/10.1142/s0217732319501360.
Full textHu, Zejun, and Haizhong Li. "Classification of Möbius Isoparametric Hypersurfaces in 4." Nagoya Mathematical Journal 179 (2005): 147–62. http://dx.doi.org/10.1017/s0027763000025629.
Full textAkbas, M., and D. Singerman. "The normalizer of Γ0(N) in PSL(2, ℝ)." Glasgow Mathematical Journal 32, no. 3 (September 1990): 317–27. http://dx.doi.org/10.1017/s001708950000940x.
Full textDissertations / Theses on the topic "Transformation de Möbius"
Santos, Marcus Vinicio de Jesus. "Transformação de Möbius." Universidade Federal de Sergipe, 2016. https://ri.ufs.br/handle/riufs/6499.
Full textO objetivo deste trabalho é estudar transformações de Möbius arbitrárias por meio de transformações complexas mais simples, a saber: a Translação, a Rotação, a Homotetia (Contração e Dilatação) e a Inversão. Os resultados obtidos foram aplicados em círculos e retas. No final, damos a alternativa de estudar transformações de Möbius via matrizes.
Betah, Mohamed Haye. "Un théorème de Gallagher pour la fonction de Möbius." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0461/document.
Full textThe Möbius function is defined by$$\mu(n)= \begin{cases} 1 & \textit{if $n=1$},\\ (-1)^k& \textit{if n is a product of k distinct prime numbers,}\\ 0 & \textit{if n contains a square factor. } \end{cases}$$We demonstrate that for $x \ge \exp( 10^9) $ and $h=x^{1-\frac{1}{16000}}$, it exists in each interval $[x-h,x]$ integers $n_1$ with $\mu(n_1)=1$ and integers $n_2$ with $\mu(n_2)=-1$.\\This result is a consequence of a more general result. \\For $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, we have \\ $$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x-h \le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$the sum $\sum^*$ relating to primitive characters except for possible exceptional character.\\And in particular for $x \ge \exp( 10^9)$,$$\left | \sum_{x-.x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.$$
Chen, Bolun. "Dimensional Reduction for Identical Kuramoto Oscillators: A Geometric Perspective." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107589.
Full textThesis advisor: Renato E. Mirollo
Many phenomena in nature that involve ordering in time can be understood as collective behavior of coupled oscillators. One paradigm for studying a population of self-sustained oscillators is the Kuramoto model, where each oscillator is described by a phase variable, and interacts with other oscillators through trigonometric functions of phase differences. This dissertation studies $N$ identical Kuramoto oscillators in a general form \[ \dot{\theta}_{j}=A+B\cos\theta_{j}+C\sin\theta_{j}\qquad j=1,\dots,N, \] where coefficients $A$, $B$, and $C$ are symmetric functions of all oscillators $(\theta_{1},\dots,\theta_{N})$. Dynamics of this model live in group orbits of M\"obius transformations, which are low-dimensional manifolds in the full state space. When the system is a phase model (invariant under a global phase shift), trajectories in a group orbit can be identified as flows in the unit disk with an intrinsic hyperbolic metric. A simple criterion for such system to be a gradient flow is found, which leads to new classes of models that can be described by potential or Hamiltonian functions while exhibiting a large number of constants of motions. A generalization to extended phase models with non-identical couplings gives rise to richer structures of fixed points and bifurcations. When the coupling weights sum to zero, the system is simultaneously gradient and Hamiltonian. The flows mimic field lines of a two-dimensional electrostatic system consisting of equal amounts of positive and negative charges. Bifurcations on a partially synchronized subspace are discussed as well
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Silva, Carlos Antonio Guimarães. "Grupos Discretos no Plano Hiperbólico." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7419.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Set a generalization of Möbius transformation and build a theory of inductive that may be an n-dimensional hyperbolic space. This theory allows for the inductive starting with n = 1, together with the extension notion of the Poincaré build a chain groups GM(n) transformation Möbius and spaces hyperbolic H2 members. We will see explicit formulas for the Poincaré bisectors in size 2. And may on models of hiperbolic space ball these bisectors coincide with the isometric spheres of isometries. We will be using explicit formulas of bissectors, to ge youself an algorithm, the DAFC, to obtain generators for Fuchsianos groups, which will be our study group.
Definir uma generalização do conceito de transformação de Möbius e construir uma teoria indutiva do que venha a ser um espaço hiperbólico de dimensão n. Essa teoria indutiva nos permite que se iniciando com n = 1, juntamente com a noção de extensão de Poincaré, construir uma cadeia de grupos GM(n) de transformação de Möbius e os espaços hiperbólicos H2 associados. Veremos fórmulas explícitas para os bissetores de Poincaré em dimensão 2. E que nos modelos de bola do espaço hiperbólico, esses bissetores coincidem com as esferas isométricas das isometrias. Iremos usar fórmulas explícitas dos bissetores, para obter-se um algoritmo, o DAFC, para obtenção de geradores para grupos Fuchsianos, que será nosso grupo em estudo.
Jacques, Matthew. "Composition sequences and semigroups of Möbius transformations." Thesis, Open University, 2016. http://oro.open.ac.uk/48415/.
Full textCartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.
Full textIn this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
Calister, Fernando Marques [UNESP]. "Representações dos Números Complexos e Transformações de Möbius." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144305.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-10-05T16:28:55Z (GMT) No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5)
Made available in DSpace on 2016-10-05T16:28:55Z (GMT). No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5) Previous issue date: 2016-08-19
O objetivo deste trabalho é ampliar os conhecimentos sobre números complexos já adquiridos no ensino médio. Diversas formas de representação e propriedades operatórias são abordadas. Para este fim, primeiramente, os números complexos são definidos a partir do conceito de matrizes quadradas de ordem 2, e portanto, serão definidos como pares ordenados de números reais. Na sequência, a partir da apresentação geométrica dos conceitos e operações, é estudado o plano complexo estendido, as Transformações de Möbius e a Projeção Estereográfica.
The objective of this paper is to extend the concepts of complex numbers already acquired in high school. Many forms of representation and operative properties are used. For that, first, the complex numbers are defined from the concept of square matrices of order 2, and will therefore be defined as ordered pairs of real numbers. Following, from the geometric presentation of concepts and operations, it is studied the extended complex plane, the Möbius Transformations and the Stereographic Projection.
Atkinson, James. "Integrable lattice equations : connection to the Möbius group, Bäcklund transformations and solutions." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/9081/.
Full textPersson, Anna. "Grundläggande hyperbolisk geometri." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-211.
Full textI denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.
Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.
In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.
The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.
Marfai, Frank S. "Hyperbolic transformations on cubics in H²." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/142.
Full textBooks on the topic "Transformation de Möbius"
Beardon, Alan F. The geometry of discrete groups. 2nd ed. New York: Springer, 1995.
Find full textMöbius functions, incidence algebras, and power series representations. Berlin: Springer-Verlag, 1986.
Find full textGeometry Of Mbius Transformations Elliptic Parabolic And Hyperbolic Actions Of Slreal Number. Imperial College Press, 2012.
Find full textTsai, Kellee S. Adaptive Informal Institutions. Edited by Orfeo Fioretos, Tulia G. Falleti, and Adam Sheingate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199662814.013.16.
Full textTretkoff, Paula. Riemann Surfaces, Coverings, and Hypergeometric Functions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0003.
Full textBook chapters on the topic "Transformation de Möbius"
Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij, et al. "Möbius Transformation." In Concise Encyclopedia of Supersymmetry, 249. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_330.
Full textZhang, He, Hanlin Mo, You Hao, Qi Li, and Hua Li. "Differential and Integral Invariants Under Möbius Transformation." In Pattern Recognition and Computer Vision, 280–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03338-5_24.
Full textKobayashi, Toshiyuki, Toshihisa Kubo, and Michael Pevzner. "Vector-Valued Covariant Differential Operators for the Möbius Transformation." In Springer Proceedings in Mathematics & Statistics, 67–85. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55285-7_6.
Full textJi, Xinhua. "The Möbius Transformation, Green Function and the Degenerate Elliptic Equation." In Clifford Algebras and their Applications in Mathematical Physics, 17–35. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1374-1_2.
Full textRovenski, Vladimir. "Möbius Transformations." In Modeling of Curves and Surfaces with MATLAB®, 159–97. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-71278-9_4.
Full textReshetnyak, Yu G. "Möbius Transformations." In Stability Theorems in Geometry and Analysis, 63–105. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8360-2_2.
Full textHariri, Parisa, Riku Klén, and Matti Vuorinen. "Möbius Transformations." In Springer Monographs in Mathematics, 25–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32068-3_3.
Full textBalakrishnan, V. "Möbius Transformations." In Mathematical Physics, 623–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39680-0_27.
Full textUngar, Abraham Albert. "Möbius Transformation and Einstein Velocity Addition in the Hyperbolic Geometry of Bolyai and Lobachevsky." In Springer Optimization and Its Applications, 721–70. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_41.
Full textHenrici, P., and R. Jeltsch. "Die Möbius-Transformationen." In Komplexe Analysis für Ingenieure, 57–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-9295-7_2.
Full textConference papers on the topic "Transformation de Möbius"
"ROBUST ILC DESIGN USING MÖBIUS TRANSFORMATIONS." In 2nd International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0001172601410146.
Full textAebischer, B. "Stable Convergence of Sequences of Möbius Transformations." In Conference. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814533232_0001.
Full textHuang, Chengcheng, Wei Peng, Housen Li, Lizhi Cheng, and Hao Jiang. "Computing Diagonals of Toeplitz Pentadiagonal Matrix Inverses via Matrix Möbius Transformations." In the 2017 VI International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3171592.3171627.
Full textCHEN, JIANHUA, and WEIHUAN CHEN. "THE MÖBIUS EQUIVALENT ISOTHERMIC SURFACES IN S3(1) AND BÄCKLUND TRANSFORMATIONS." In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0001.
Full text