Academic literature on the topic 'Transformation de Möbius'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transformation de Möbius.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transformation de Möbius"

1

Wang, Changping. "Surfaces in Möbius geometry." Nagoya Mathematical Journal 125 (March 1992): 53–72. http://dx.doi.org/10.1017/s0027763000003895.

Full text
Abstract:
Our purpose in this paper is to give a basic theory of Möbius differential geometay. In such geometry we study the properties of hypersurfaces in unit sphere Sn which are invariant under the Möbius transformation group on Sn.Since any Möbius transformation takes oriented spheres in Sn to oriented spheres, we can regard the Möbius transformation group Gn as a subgroup MGn of the Lie transformation group on the unit tangent bundle USn of Sn. Furthermore, we can represent the immersed hypersurfaces in Sn by a class of Lie geometry hypersurfaces (cf. [9]) called Möbius hypersurfaces. Thus we can use the concepts and the techniques in Lie sphere geometry developed by U. Pinkall ([8], [9]), T. Cecil and S. S. Chern [2] to study the Möbius differential geometry.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Sunhong, Hyun Chol Lee, Mi Ran Lee, Seungpil Jeong, and Gwang-Il Kim. "Hermite Interpolation Using Möbius Transformations of Planar Pythagorean-Hodograph Cubics." Abstract and Applied Analysis 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/560246.

Full text
Abstract:
We present an algorithm forC1Hermite interpolation using Möbius transformations of planar polynomial Pythagoreanhodograph (PH) cubics. In general, with PH cubics, we cannot solveC1Hermite interpolation problems, since their lack of parameters makes the problems overdetermined. In this paper, we show that, for each Möbius transformation, we can introduce anextra parameterdetermined by the transformation, with which we can reduce them to the problems determining PH cubics in the complex planeℂ. Möbius transformations preserve the PH property of PH curves and are biholomorphic. Thus the interpolants obtained by this algorithm are also PH and preserve the topology of PH cubics. We present a condition to be met by a Hermite dataset, in order for the corresponding interpolant to be simple or to be a loop. We demonstrate the improved stability of these new interpolants compared with PH quintics.
APA, Harvard, Vancouver, ISO, and other styles
3

Breaz, Nicoleta, Daniel Breaz, and Shigeyoshi Owa. "Fractional Calculus of Analytic Functions Concerned with Möbius Transformations." Journal of Function Spaces 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/6086409.

Full text
Abstract:
LetAbe the class of functionsf(z)in the open unit diskUwithf(0)=0andf′(0)=1. Also, letw(ζ)be a Möbius transformation inUfor somez∈U. Applying the Möbius transformations, we consider some properties of fractional calculus (fractional derivatives and fractional integrals) off(z)∈A. Also, some interesting examples for fractional calculus are given.
APA, Harvard, Vancouver, ISO, and other styles
4

Piirainen, Reijo. "Möbius transformation and conformal relativity." Foundations of Physics 26, no. 2 (February 1996): 223–42. http://dx.doi.org/10.1007/bf02058086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.

Full text
Abstract:
This work reports on a study of the Mandelbrot set and Julia set for a generalization of the well-explored function η(z)=z2+λ. The generalization consists of composing with a fixed Möbius transformation at each iteration step. In particular, affine and inverse Möbius transformations are explored. This work offers a new way of visualizing the Mandelbrot and filled-in Julia sets. An interesting and unexpected appearance of hyperbolic triangles occurs in the structure of the Mandelbrot sets for the case of inverse Möbius transforms. Several lemmas and theorems associated with these types of fractal sets are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

McCullagh, Peter. "Möbius transformation and Cauchy parameter estimation." Annals of Statistics 24, no. 2 (April 1996): 787–808. http://dx.doi.org/10.1214/aos/1032894465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xinhua, JI. "Möbius transformation and degenerate hyperbolic equation." Advances in Applied Clifford Algebras 11, S2 (June 2001): 155–75. http://dx.doi.org/10.1007/bf03219129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hayashi, Masahito, Kazuyasu Shigemoto, and Takuya Tsukioka. "The construction of the mKdV cyclic symmetric N-soliton solution by the Bäcklund transformation." Modern Physics Letters A 34, no. 18 (June 14, 2019): 1950136. http://dx.doi.org/10.1142/s0217732319501360.

Full text
Abstract:
We study group theoretical structures of the mKdV equation. The Schwarzian-type mKdV equation has the global Möbius group symmetry. The Miura transformation makes a connection between the mKdV equation and the KdV equation. We find the special local Möbius transformation on the mKdV one-soliton solution which can be regarded as the commutative KdV Bäcklund transformation and can generate the mKdV cyclic symmetric N-soliton solution. In this algebraic construction to obtain multi-soliton solutions, we could observe the addition formula.
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Zejun, and Haizhong Li. "Classification of Möbius Isoparametric Hypersurfaces in 4." Nagoya Mathematical Journal 179 (2005): 147–62. http://dx.doi.org/10.1017/s0027763000025629.

Full text
Abstract:
AbstractLet Mn be an immersed umbilic-free hypersurface in the (n + 1)-dimensional unit sphere n+1, then Mn is associated with a so-called Möbius metric g, a Möbius second fundamental form B and a Möbius form Φ which are invariants of Mn under the Möbius transformation group of n+1. A classical theorem of Möbius geometry states that Mn (n ≥ 3) is in fact characterized by g and B up to Möbius equivalence. A Möbius isoparametric hypersurface is defined by satisfying two conditions: (1) Φ ≡ 0; (2) All the eigenvalues of B with respect to g are constants. Note that Euclidean isoparametric hyper-surfaces are automatically Möbius isoparametric, whereas the latter are Dupin hypersurfaces.In this paper, we prove that a Möbius isoparametric hypersurface in 4 is either of parallel Möbius second fundamental form or Möbius equivalent to a tube of constant radius over a standard Veronese embedding of ℝP2 into 4. The classification of hypersurfaces in n+1 (n ≥ 2) with parallel Möbius second fundamental form has been accomplished in our previous paper [6]. The present result is a counterpart of Pinkall’s classification for Dupin hypersurfaces in 4 up to Lie equivalence.
APA, Harvard, Vancouver, ISO, and other styles
10

Akbas, M., and D. Singerman. "The normalizer of Γ0(N) in PSL(2, ℝ)." Glasgow Mathematical Journal 32, no. 3 (September 1990): 317–27. http://dx.doi.org/10.1017/s001708950000940x.

Full text
Abstract:
Let Γ denote the modular group, consisting of the Möbius transformationsAs usual we denote the above transformation by the matrix remembering that V and – V represent the same transformation. If N is a positive integer we let Γ0(N) denote the transformations for which c ≡ 0 mod N. Then Γ0(N) is a subgroup of indexthe product being taken over all prime divisors of N.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transformation de Möbius"

1

Santos, Marcus Vinicio de Jesus. "Transformação de Möbius." Universidade Federal de Sergipe, 2016. https://ri.ufs.br/handle/riufs/6499.

Full text
Abstract:
The aim of this work is the study of arbitrary mobius transformations by means of simple complex transformations, namely: the Translation, the Rotation, the Homotetia (Contraction and Dilatation) and Inversion. The results obtained were applied in circles and straight line. At the end, we give the the alternative of studying mobius transformations via matrices.
O objetivo deste trabalho é estudar transformações de Möbius arbitrárias por meio de transformações complexas mais simples, a saber: a Translação, a Rotação, a Homotetia (Contração e Dilatação) e a Inversão. Os resultados obtidos foram aplicados em círculos e retas. No final, damos a alternativa de estudar transformações de Möbius via matrizes.
APA, Harvard, Vancouver, ISO, and other styles
2

Betah, Mohamed Haye. "Un théorème de Gallagher pour la fonction de Möbius." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0461/document.

Full text
Abstract:
La fonction de Möbius est définie par$$\mu(n)= \begin{cases} 1 & \textit{si $n=1$},\\ (-1)^k& \textit{si n est le produit de k nombres premiers distincts,}\\ 0 & \textit{si n contient un facteur carré. } \end{cases}$$Nous avons démontré que pour $x \ge \exp( 10^9) $ et $h=x^{1-\frac{1}{16000}}$, il existe dans chaque intervalle $[x-h,x]$ des entiers $n_1$ avec $\mu(n_1)=1$ et des entiers $n_2$ avec $\mu(n_2)=-1$.\\Ce résultat est une conséquence d'un résultat plus général.\\Pour $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, nous avons \\$$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x.-h\le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$la somme $\sum^*$ portant sur les caractères primitifs sauf l'éventuel caractère exceptionnel.\\Et en particulier pour $x \ge \exp( 10^9)$,$$ \left | \sum_{x.-x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.\\$$
The Möbius function is defined by$$\mu(n)= \begin{cases} 1 & \textit{if $n=1$},\\ (-1)^k& \textit{if n is a product of k distinct prime numbers,}\\ 0 & \textit{if n contains a square factor. } \end{cases}$$We demonstrate that for $x \ge \exp( 10^9) $ and $h=x^{1-\frac{1}{16000}}$, it exists in each interval $[x-h,x]$ integers $n_1$ with $\mu(n_1)=1$ and integers $n_2$ with $\mu(n_2)=-1$.\\This result is a consequence of a more general result. \\For $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, we have \\ $$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x-h \le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$the sum $\sum^*$ relating to primitive characters except for possible exceptional character.\\And in particular for $x \ge \exp( 10^9)$,$$\left | \sum_{x-.x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.$$
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Bolun. "Dimensional Reduction for Identical Kuramoto Oscillators: A Geometric Perspective." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107589.

Full text
Abstract:
Thesis advisor: Jan R. Engelbrecht
Thesis advisor: Renato E. Mirollo
Many phenomena in nature that involve ordering in time can be understood as collective behavior of coupled oscillators. One paradigm for studying a population of self-sustained oscillators is the Kuramoto model, where each oscillator is described by a phase variable, and interacts with other oscillators through trigonometric functions of phase differences. This dissertation studies $N$ identical Kuramoto oscillators in a general form \[ \dot{\theta}_{j}=A+B\cos\theta_{j}+C\sin\theta_{j}\qquad j=1,\dots,N, \] where coefficients $A$, $B$, and $C$ are symmetric functions of all oscillators $(\theta_{1},\dots,\theta_{N})$. Dynamics of this model live in group orbits of M\"obius transformations, which are low-dimensional manifolds in the full state space. When the system is a phase model (invariant under a global phase shift), trajectories in a group orbit can be identified as flows in the unit disk with an intrinsic hyperbolic metric. A simple criterion for such system to be a gradient flow is found, which leads to new classes of models that can be described by potential or Hamiltonian functions while exhibiting a large number of constants of motions. A generalization to extended phase models with non-identical couplings gives rise to richer structures of fixed points and bifurcations. When the coupling weights sum to zero, the system is simultaneously gradient and Hamiltonian. The flows mimic field lines of a two-dimensional electrostatic system consisting of equal amounts of positive and negative charges. Bifurcations on a partially synchronized subspace are discussed as well
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Carlos Antonio Guimarães. "Grupos Discretos no Plano Hiperbólico." Universidade Federal da Paraí­ba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7419.

Full text
Abstract:
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1316113 bytes, checksum: fa392778ab5ea3463805913d86fe571f (MD5) Previous issue date: 2013-08-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Set a generalization of Möbius transformation and build a theory of inductive that may be an n-dimensional hyperbolic space. This theory allows for the inductive starting with n = 1, together with the extension notion of the Poincaré build a chain groups GM(n) transformation Möbius and spaces hyperbolic H2 members. We will see explicit formulas for the Poincaré bisectors in size 2. And may on models of hiperbolic space ball these bisectors coincide with the isometric spheres of isometries. We will be using explicit formulas of bissectors, to ge youself an algorithm, the DAFC, to obtain generators for Fuchsianos groups, which will be our study group.
Definir uma generalização do conceito de transformação de Möbius e construir uma teoria indutiva do que venha a ser um espaço hiperbólico de dimensão n. Essa teoria indutiva nos permite que se iniciando com n = 1, juntamente com a noção de extensão de Poincaré, construir uma cadeia de grupos GM(n) de transformação de Möbius e os espaços hiperbólicos H2 associados. Veremos fórmulas explícitas para os bissetores de Poincaré em dimensão 2. E que nos modelos de bola do espaço hiperbólico, esses bissetores coincidem com as esferas isométricas das isometrias. Iremos usar fórmulas explícitas dos bissetores, para obter-se um algoritmo, o DAFC, para obtenção de geradores para grupos Fuchsianos, que será nosso grupo em estudo.
APA, Harvard, Vancouver, ISO, and other styles
5

Jacques, Matthew. "Composition sequences and semigroups of Möbius transformations." Thesis, Open University, 2016. http://oro.open.ac.uk/48415/.

Full text
Abstract:
Motivated by the theory of Kleinian groups and by the theory of continued fractions, we study semigroups of Möbius transformations. Like Kleinian groups, semigroups have limit sets, and indeed each semigroup is equipped with two limit sets. We find that limit sets have an internal structure with features similar to the limit sets of Kleinian groups and the Julia sets of iterates of analytic functions. We introduce the notion of a semidiscrete semigroup, and find that this property is akin to the discreteness property for groups. We study semigroups of Möbius transformations that fix the unit disc, and lay the foundations of a theory for such semigroups. We consider the composition sequences generated by such semigroups, and show that every such composition sequence converges pointwise in the open unit disc to a constant function whenever the identity element does not lie in the closure of the semigroup. We establish various results that have counterparts in the theory of Fuchsian groups. For example we show that aside from a certain exceptional family, any finitely-generated semigroup S is semidiscrete precisely when every two-generator semigroup contained in S is semidiscrete. We show that the limit sets of a nonelementary finitely-generated semidiscrete semigroup are equal (and non-trivial) precisely when the semigroup is a group. We classify two-generator semidiscrete semigroups, and give the basis for an algorithm that decides whether any two-generator semigroup is semidiscrete. We go on to study finitely-generated semigroups of Möbius transformations that map the unit disc strictly within itself. Every composition sequence generated by such a semigroup converges pointwise in the open unit disc to a constant function. We give conditions that determine whether this convergence is uniform on the closed unit disc, and show that the cases where convergence is not uniform are very special indeed.
APA, Harvard, Vancouver, ISO, and other styles
6

Cartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.

Full text
Abstract:
Dans cette thèse j’étudie l’impact de la géométrie de micro et nano-domaines biologiques sur les propriétés d'électrodiffusion, ceci à l'aide des équations aux dérivées partielles de Poisson-Nernst-Planck. Je considère des domaines non-triviaux ayant une forme cuspide ou elliptique. Mon objectif est de développer des modèles ainsi que des méthodes mathématiques afin d'étudier les caractéristiques électriques de ces nano/micro-domaines, et ainsi mieux comprendre comment les signaux électriques sont modulés à ces échelles. Dans la première partie j’étudie le voltage à l'équilibre pour un électrolyte dans un domaine borné, et ayant un fort excès de charges positives. Je montre que le premier temps de sortie dans une boule chargée dépend de la surface et non du volume. J’étudie ensuite la géométrie composées d'une boule à laquelle est attachée un domaine cuspide. Je construis ensuite une solution asymptotique pour le voltage dans les cas 2D et 3D et je montre qu’ils sont donnés au premier ordre par la même expression. Enfin, j’obtiens la même conclusion en considérant une géométrie formée d'une ellipse, dont je construis une solution asymptotique du voltage en 2D et 3D. La seconde partie porte sur la modélisation de la compartimentalisation électrique des épines dendritiques. A partir de simulations numériques, je mets en évidence le lien entre la polarisation de concentration dans l'épine et sa géométrie. Je compare ensuite mon modèle à des données de microscopie. Je développe une méthode de déconvolution pour extraire la dynamique rapide du voltage à partir des données de microscopie. Enfin j’estime la résistance du cou et montre que celle-ci ne suit pas la loi d'Ohm
In this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
APA, Harvard, Vancouver, ISO, and other styles
7

Calister, Fernando Marques [UNESP]. "Representações dos Números Complexos e Transformações de Möbius." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144305.

Full text
Abstract:
Submitted by FERNANDO MARQUES CALISTER null (fcalister@gmail.com) on 2016-10-02T01:33:35Z No. of bitstreams: 1 Representações dos Números Complexos e Transformações de Mobius.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5)
Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-10-05T16:28:55Z (GMT) No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5)
Made available in DSpace on 2016-10-05T16:28:55Z (GMT). No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5) Previous issue date: 2016-08-19
O objetivo deste trabalho é ampliar os conhecimentos sobre números complexos já adquiridos no ensino médio. Diversas formas de representação e propriedades operatórias são abordadas. Para este fim, primeiramente, os números complexos são definidos a partir do conceito de matrizes quadradas de ordem 2, e portanto, serão definidos como pares ordenados de números reais. Na sequência, a partir da apresentação geométrica dos conceitos e operações, é estudado o plano complexo estendido, as Transformações de Möbius e a Projeção Estereográfica.
The objective of this paper is to extend the concepts of complex numbers already acquired in high school. Many forms of representation and operative properties are used. For that, first, the complex numbers are defined from the concept of square matrices of order 2, and will therefore be defined as ordered pairs of real numbers. Following, from the geometric presentation of concepts and operations, it is studied the extended complex plane, the Möbius Transformations and the Stereographic Projection.
APA, Harvard, Vancouver, ISO, and other styles
8

Atkinson, James. "Integrable lattice equations : connection to the Möbius group, Bäcklund transformations and solutions." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/9081/.

Full text
Abstract:
We consider scalar integrable lattice equations which arise as the natural discrete counterparts to KdV-type PDEs. Several results are reported. We identify a new and natural connection between the ‘Schwarzian’ (Möbius invariant) integrable lattice systems and the Möbius group itself. The lattice equation in some sense describes dynamics of fixed-points as they change under composition between transformations. A classification result is given for lattice equations which are linear but also consistent on the cube. Such systems lie outside previous classification schemes. New Bäcklund transformations (BTs) for some known integrable lattice equations are given. As opposed to the natural auto-BT inherent in every such equation, these BTs are of two other kinds. Specifically, it is found that some equations admit additional auto-BTs (with Bäcklund parameter), whilst some pairs of apparently distinct equations admit a BT which connects them. Adler’s equation has come to hold the status of ‘master equation’ among the integrable lattice equations. Solutions of this equation are derived which are associated with 1-cycles and 2-cycles of the BT. They were the first explicit solutions written for Adler’s equation. We also apply the BT to the 1-cycle solution in order to construct a soliton-type solution.
APA, Harvard, Vancouver, ISO, and other styles
9

Persson, Anna. "Grundläggande hyperbolisk geometri." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-211.

Full text
Abstract:

I denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.

Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.


In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.

The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.

APA, Harvard, Vancouver, ISO, and other styles
10

Marfai, Frank S. "Hyperbolic transformations on cubics in H²." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/142.

Full text
Abstract:
The purpose of this thesis is to study the effects of hyperbolic transformations on the cubic that is determined by locus of centroids of the equilateral triangles in H² whose base coincides with the line y=0, and whose common vertex is at the origin. The derivation of the formulas within this work are based on the Poincaré disk model of H², where H² is understood to mean the hyperbolic plane. The thesis explores the properties of both the untransformed cubic (the original locus of centroids) and the transformed cubic (the original cubic taken under a linear fractional transformation).
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transformation de Möbius"

1

Beardon, Alan F. The geometry of discrete groups. 2nd ed. New York: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Nanxian. Möbius inversion in physics. Singapore: World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Möbius functions, incidence algebras, and power series representations. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geometry Of Mbius Transformations Elliptic Parabolic And Hyperbolic Actions Of Slreal Number. Imperial College Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsai, Kellee S. Adaptive Informal Institutions. Edited by Orfeo Fioretos, Tulia G. Falleti, and Adam Sheingate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199662814.013.16.

Full text
Abstract:
Historical institutionalism (HI) has traditionally focused on formal institutions designed and enforced by official entities in advanced industrial democracies. Yet the modalities of endogenous institutional change delineated by HI reveal that the causal mechanisms of institutional transformation are typically informal. This chapter proposes a more inclusive ontology of institutions that views institutions as a single two-dimensional Möbius strip with both formal and informal components—regardless of regime type or level of economic development. Focusing on “adaptive informal institutions” that arise in a multi-tiered institutional context can show how informal institutions compromise, subvert, and even facilitate reforms of formal institutions.
APA, Harvard, Vancouver, ISO, and other styles
6

Tretkoff, Paula. Riemann Surfaces, Coverings, and Hypergeometric Functions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0003.

Full text
Abstract:
This chapter deals with Riemann surfaces, coverings, and hypergeometric functions. It first considers the genus and Euler number of a Riemann surface before discussing Möbius transformations and notes that an automorphism of a Riemann surface is a biholomorphic map of the Riemann surface onto itself. It then describes a Riemannian metric and the Gauss-Bonnet theorem, which can be interpreted as a relation between the Gaussian curvature of a compact Riemann surface X and its Euler characteristic. It also examines the behavior of the Euler number under finite covering, along with finite subgroups of the group of fractional linear transformations PSL(2, C). Finally, it presents some basic facts about the classical Gauss hypergeometric functions of one complex variable, triangle groups acting discontinuously on one of the simply connected Riemann surfaces, and the hypergeometric monodromy group.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transformation de Möbius"

1

Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij, et al. "Möbius Transformation." In Concise Encyclopedia of Supersymmetry, 249. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, He, Hanlin Mo, You Hao, Qi Li, and Hua Li. "Differential and Integral Invariants Under Möbius Transformation." In Pattern Recognition and Computer Vision, 280–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03338-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kobayashi, Toshiyuki, Toshihisa Kubo, and Michael Pevzner. "Vector-Valued Covariant Differential Operators for the Möbius Transformation." In Springer Proceedings in Mathematics & Statistics, 67–85. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55285-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ji, Xinhua. "The Möbius Transformation, Green Function and the Degenerate Elliptic Equation." In Clifford Algebras and their Applications in Mathematical Physics, 17–35. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1374-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rovenski, Vladimir. "Möbius Transformations." In Modeling of Curves and Surfaces with MATLAB®, 159–97. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-71278-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reshetnyak, Yu G. "Möbius Transformations." In Stability Theorems in Geometry and Analysis, 63–105. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8360-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hariri, Parisa, Riku Klén, and Matti Vuorinen. "Möbius Transformations." In Springer Monographs in Mathematics, 25–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32068-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Balakrishnan, V. "Möbius Transformations." In Mathematical Physics, 623–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39680-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ungar, Abraham Albert. "Möbius Transformation and Einstein Velocity Addition in the Hyperbolic Geometry of Bolyai and Lobachevsky." In Springer Optimization and Its Applications, 721–70. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henrici, P., and R. Jeltsch. "Die Möbius-Transformationen." In Komplexe Analysis für Ingenieure, 57–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-9295-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transformation de Möbius"

1

"ROBUST ILC DESIGN USING MÖBIUS TRANSFORMATIONS." In 2nd International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0001172601410146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aebischer, B. "Stable Convergence of Sequences of Möbius Transformations." In Conference. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814533232_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Chengcheng, Wei Peng, Housen Li, Lizhi Cheng, and Hao Jiang. "Computing Diagonals of Toeplitz Pentadiagonal Matrix Inverses via Matrix Möbius Transformations." In the 2017 VI International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3171592.3171627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

CHEN, JIANHUA, and WEIHUAN CHEN. "THE MÖBIUS EQUIVALENT ISOTHERMIC SURFACES IN S3(1) AND BÄCKLUND TRANSFORMATIONS." In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography