Dissertations / Theses on the topic 'Transformation de Möbius'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Transformation de Möbius.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Santos, Marcus Vinicio de Jesus. "Transformação de Möbius." Universidade Federal de Sergipe, 2016. https://ri.ufs.br/handle/riufs/6499.
Full textO objetivo deste trabalho é estudar transformações de Möbius arbitrárias por meio de transformações complexas mais simples, a saber: a Translação, a Rotação, a Homotetia (Contração e Dilatação) e a Inversão. Os resultados obtidos foram aplicados em círculos e retas. No final, damos a alternativa de estudar transformações de Möbius via matrizes.
Betah, Mohamed Haye. "Un théorème de Gallagher pour la fonction de Möbius." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0461/document.
Full textThe Möbius function is defined by$$\mu(n)= \begin{cases} 1 & \textit{if $n=1$},\\ (-1)^k& \textit{if n is a product of k distinct prime numbers,}\\ 0 & \textit{if n contains a square factor. } \end{cases}$$We demonstrate that for $x \ge \exp( 10^9) $ and $h=x^{1-\frac{1}{16000}}$, it exists in each interval $[x-h,x]$ integers $n_1$ with $\mu(n_1)=1$ and integers $n_2$ with $\mu(n_2)=-1$.\\This result is a consequence of a more general result. \\For $x \ge \exp(4\times 10^6)$, $\frac{1}{\sqrt{\log x}} \le \theta \le \frac{1}{2000}$, $h=x^{1-\theta}$ et $Q=(x/h)^{\frac{1}{20}}$, we have \\ $$\sum_{q \leq Q} \log(Q/q)\sum_{\chi mod q}^*\left| \sum_{x-h \le n \le x} \mu(n) \chi(n) \right| \leq 10^{20} h \theta \log(x) \exp( \frac{-1}{300 \theta}); $$the sum $\sum^*$ relating to primitive characters except for possible exceptional character.\\And in particular for $x \ge \exp( 10^9)$,$$\left | \sum_{x-.x^{1-\frac{1}{16000}}\le n \le x} \mu(n) \right | \le \frac{1}{100} x^{1-\frac{1}{16000}}.$$
Chen, Bolun. "Dimensional Reduction for Identical Kuramoto Oscillators: A Geometric Perspective." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107589.
Full textThesis advisor: Renato E. Mirollo
Many phenomena in nature that involve ordering in time can be understood as collective behavior of coupled oscillators. One paradigm for studying a population of self-sustained oscillators is the Kuramoto model, where each oscillator is described by a phase variable, and interacts with other oscillators through trigonometric functions of phase differences. This dissertation studies $N$ identical Kuramoto oscillators in a general form \[ \dot{\theta}_{j}=A+B\cos\theta_{j}+C\sin\theta_{j}\qquad j=1,\dots,N, \] where coefficients $A$, $B$, and $C$ are symmetric functions of all oscillators $(\theta_{1},\dots,\theta_{N})$. Dynamics of this model live in group orbits of M\"obius transformations, which are low-dimensional manifolds in the full state space. When the system is a phase model (invariant under a global phase shift), trajectories in a group orbit can be identified as flows in the unit disk with an intrinsic hyperbolic metric. A simple criterion for such system to be a gradient flow is found, which leads to new classes of models that can be described by potential or Hamiltonian functions while exhibiting a large number of constants of motions. A generalization to extended phase models with non-identical couplings gives rise to richer structures of fixed points and bifurcations. When the coupling weights sum to zero, the system is simultaneously gradient and Hamiltonian. The flows mimic field lines of a two-dimensional electrostatic system consisting of equal amounts of positive and negative charges. Bifurcations on a partially synchronized subspace are discussed as well
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Silva, Carlos Antonio Guimarães. "Grupos Discretos no Plano Hiperbólico." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7419.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Set a generalization of Möbius transformation and build a theory of inductive that may be an n-dimensional hyperbolic space. This theory allows for the inductive starting with n = 1, together with the extension notion of the Poincaré build a chain groups GM(n) transformation Möbius and spaces hyperbolic H2 members. We will see explicit formulas for the Poincaré bisectors in size 2. And may on models of hiperbolic space ball these bisectors coincide with the isometric spheres of isometries. We will be using explicit formulas of bissectors, to ge youself an algorithm, the DAFC, to obtain generators for Fuchsianos groups, which will be our study group.
Definir uma generalização do conceito de transformação de Möbius e construir uma teoria indutiva do que venha a ser um espaço hiperbólico de dimensão n. Essa teoria indutiva nos permite que se iniciando com n = 1, juntamente com a noção de extensão de Poincaré, construir uma cadeia de grupos GM(n) de transformação de Möbius e os espaços hiperbólicos H2 associados. Veremos fórmulas explícitas para os bissetores de Poincaré em dimensão 2. E que nos modelos de bola do espaço hiperbólico, esses bissetores coincidem com as esferas isométricas das isometrias. Iremos usar fórmulas explícitas dos bissetores, para obter-se um algoritmo, o DAFC, para obtenção de geradores para grupos Fuchsianos, que será nosso grupo em estudo.
Jacques, Matthew. "Composition sequences and semigroups of Möbius transformations." Thesis, Open University, 2016. http://oro.open.ac.uk/48415/.
Full textCartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.
Full textIn this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
Calister, Fernando Marques [UNESP]. "Representações dos Números Complexos e Transformações de Möbius." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144305.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-10-05T16:28:55Z (GMT) No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5)
Made available in DSpace on 2016-10-05T16:28:55Z (GMT). No. of bitstreams: 1 calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5) Previous issue date: 2016-08-19
O objetivo deste trabalho é ampliar os conhecimentos sobre números complexos já adquiridos no ensino médio. Diversas formas de representação e propriedades operatórias são abordadas. Para este fim, primeiramente, os números complexos são definidos a partir do conceito de matrizes quadradas de ordem 2, e portanto, serão definidos como pares ordenados de números reais. Na sequência, a partir da apresentação geométrica dos conceitos e operações, é estudado o plano complexo estendido, as Transformações de Möbius e a Projeção Estereográfica.
The objective of this paper is to extend the concepts of complex numbers already acquired in high school. Many forms of representation and operative properties are used. For that, first, the complex numbers are defined from the concept of square matrices of order 2, and will therefore be defined as ordered pairs of real numbers. Following, from the geometric presentation of concepts and operations, it is studied the extended complex plane, the Möbius Transformations and the Stereographic Projection.
Atkinson, James. "Integrable lattice equations : connection to the Möbius group, Bäcklund transformations and solutions." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/9081/.
Full textPersson, Anna. "Grundläggande hyperbolisk geometri." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-211.
Full textI denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.
Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.
In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.
The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.
Marfai, Frank S. "Hyperbolic transformations on cubics in H²." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/142.
Full textTabera, Alonso Luis Felipe. "Two tools in algebraic geometry : construction of configurations in tropical geometry and hypercircles for the simplification of parametric curves." Rennes 1, 2007. http://www.theses.fr/2007REN1S045.
Full textThis thesis deals with two problems in algebraic geometry. The first one is the comparison of tropical and algebraic geometry. In particular, we study the relationship between incidence configurations, Cramer's rule and the notion of resultant. We introduce the notion of geometric construction and we transfer, under some assumptions, classical incidence theorems to the tropical framework, such as Pappus, Fano of Cayley-Bacharach theorems. The second part relates to hypercircles. These curves where introducedby Andradas, Recio and Sendra, that are used in the problem of computing reparametrizations of rational curves with optimal algebraic coefficients from a given non optimal parametrization. We study the Weil variety in the parametric case (hyperquadric), the geometry of hypercircles and we provide an algorithm to compute an optimal reparametrization using only affine reparametrization of the curve
Lange, Fabien. "Exploration de la valeur de Shapley et des indices d'interaction pour les jeux définis sur des ensembles ordonnés." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2007. http://tel.archives-ouvertes.fr/tel-00274302.
Full textGuetsop, Nangue Aurélien. "Tests de permutation d’indépendance en analyse multivariée." Thèse, 2016. http://hdl.handle.net/1866/18476.
Full textLe travail établit une équivalence en termes de puissance entre les tests basés sur la alpha-distance de covariance et sur le critère d'indépendance de Hilbert-Schmidt (HSIC) avec fonction caractéristique de distribution de probabilité stable d'indice alpha avec paramètre d'échelle suffisamment petit. Des simulations en grandes dimensions montrent la supériorité des tests de distance de covariance et des tests HSIC par rapport à certains tests utilisant les copules. Des simulations montrent également que la distribution de Pearson de type III, très utile et moins connue, approche la distribution exacte de permutation des tests et donne des erreurs de type I précises. Une nouvelle méthode de sélection adaptative des paramètres d'échelle pour les tests HSIC est proposée. Trois simulations, dont deux sont empruntées de l'apprentissage automatique, montrent que la nouvelle méthode de sélection améliore la puissance des tests HSIC. Le problème de tests d'indépendance entre deux vecteurs est généralisé au problème de tests d'indépendance mutuelle entre plusieurs vecteurs. Le travail traite aussi d'un problème très proche à savoir, le test d'indépendance sérielle d'une suite multidimensionnelle stationnaire. La décomposition de Möbius des fonctions caractéristiques est utilisée pour caractériser l'indépendance. Des tests généralisés basés sur le critère d'indépendance de Hilbert-Schmidt et sur la distance de covariance en sont obtenus. Une équivalence est également établie entre le test basé sur la distance de covariance et le test HSIC de noyau caractéristique d'une distribution stable avec des paramètres d'échelle suffisamment petits. La convergence faible du test HSIC est obtenue. Un calcul rapide et précis des valeurs-p des tests développés utilise une distribution de Pearson de type III comme approximation de la distribution exacte des tests. Un résultat fascinant est l'obtention des trois premiers moments exacts de la distribution de permutation des statistiques de dépendance. Une méthodologie similaire a été développée pour le test d'indépendance sérielle d'une suite. Des applications à des données réelles environnementales et financières sont effectuées.
The main result establishes the equivalence in terms of power between the alpha-distance covariance test and the Hilbert-Schmidt independence criterion (HSIC) test with the characteristic kernel of a stable probability distribution of index alpha with sufficiently small scale parameters. Large-scale simulations reveal the superiority of these two tests over other tests based on the empirical independence copula process. They also establish the usefulness of the lesser known Pearson type III approximation to the exact permutation distribution. This approximation yields tests with more accurate type I error rates than the gamma approximation usually used for HSIC, especially when dimensions of the two vectors are large. A new method for scale parameter selection in HSIC tests is proposed which improves power performance in three simulations, two of which are from machine learning. The problem of testing mutual independence between many random vectors is addressed. The closely related problem of testing serial independence of a multivariate stationary sequence is also considered. The Möbius transformation of characteristic functions is used to characterize independence. A generalization to p vectors of the alpha -distance covariance test and the Hilbert-Schmidt independence criterion (HSIC) test with the characteristic kernel of a stable probability distributionof index alpha is obtained. It is shown that an HSIC test with sufficiently small scale parameters is equivalent to an alpha -distance covariance test. Weak convergence of the HSIC test is established. A very fast and accurate computation of p-values uses the Pearson type III approximation which successfully approaches the exact permutation distribution of the tests. This approximation relies on the exact first three moments of the permutation distribution of any test which can be expressed as the sum of all elements of a componentwise product of p doubly-centered matrices. The alpha -distance covariance test and the HSIC test are both of this form. A new selection method is proposed for the scale parameter of the characteristic kernel of the HSIC test. It is shown in a simulation that this adaptive HSIC test has higher power than the alpha-distance covariance test when data are generated from a Student copula. Applications are given to environmental and financial data.
van, Rensburg Richard. "The geometry of continued fractions as analysed by considering Möbius transformations acting on the hyperbolic plane." Thesis, 2012. http://hdl.handle.net/10539/11345.
Full textContinued fractions have been extensively studied in number-theoretic ways. In this text, we will illuminate some of the geometric properties of contin- ued fractions by considering them as compositions of MÄobius transformations which act as isometries of the hyperbolic plane H2. In particular, we examine the geometry of simple continued fractions by considering the action of the extended modular group on H2. Using these geometric techniques, we prove very important and well-known results about the convergence of simple con- tinued fractions. Further, we use the Farey tessellation F and the method of cutting sequences to illustrate the geometry of simple continued fractions as the action of the extended modular group on H2. We also show that F can be interpreted as a graph, and that the simple continued fraction expansion of any real number can be can be found by tracing a unique path on this graph. We also illustrate the relationship between Ford circles and the action of the extended modular group on H2. Finally, our work will culminate in the use of these geometric techniques to prove well-known results about the relationship between periodic simple continued fractions and quadratic irrationals.
Hermanns, Wencke [Verfasser]. "Der methodische Einsatz von Möbius-Transformationen über den Quaternionen in der Geometrie des Raumes / vorgelegt von Wencke Hermanns." 2007. http://d-nb.info/98557626X/34.
Full text