Academic literature on the topic 'Transformations (Mathematics) Conformal mapping'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transformations (Mathematics) Conformal mapping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transformations (Mathematics) Conformal mapping"

1

Hammad, Fayçal. "Conformal mapping of the Misner–Sharp mass from gravitational collapse." International Journal of Modern Physics D 25, no. 07 (June 2016): 1650081. http://dx.doi.org/10.1142/s0218271816500814.

Full text
Abstract:
The conformal transformation of the Misner–Sharp mass is reexamined. It has recently been found that this mass does not transform like usual masses do under conformal mappings of spacetime. We show that when it comes to conformal transformations, the widely used geometric definition of the Misner–Sharp mass is fundamentally different from the original conception of the latter. Indeed, when working within the full hydrodynamic setup that gave rise to that mass, i.e. the physics of gravitational collapse, the familiar conformal transformation of a usual mass is recovered. The case of scalar–tensor theories of gravity is also examined.
APA, Harvard, Vancouver, ISO, and other styles
2

Mughal, Adil, and Denis Weaire. "Curvature in conformal mappings of two-dimensional lattices and foam structure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2101 (October 7, 2008): 219–38. http://dx.doi.org/10.1098/rspa.2008.0260.

Full text
Abstract:
The elegant properties of conformal mappings, when applied to two-dimensional lattices, find interesting applications in two-dimensional foams and other cellular or close-packed structures. In particular, the two-dimensional honeycomb (whose dual is the triangular lattice) may be transformed into various conformal patterns, which compare approximately to experimentally realizable two-dimensional foams. We review and extend the mathematical analysis of such transformations, with several illustrative examples. New results are adduced for the local curvature generated by the transformation.
APA, Harvard, Vancouver, ISO, and other styles
3

Haruki, H., and T. M. Rassias. "A New Invariant Characteristic Property of Möbius Transformations from the Standpoint of Conformal Mapping." Journal of Mathematical Analysis and Applications 181, no. 2 (January 1994): 320–27. http://dx.doi.org/10.1006/jmaa.1994.1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lo, Wei-Lin, Nan-Jing Wu, Chuin-Shan Chen, and Ting-Kuei Tsay. "Exact Boundary Derivative Formulation for Numerical Conformal Mapping Method." Mathematical Problems in Engineering 2016 (2016): 1–18. http://dx.doi.org/10.1155/2016/5072309.

Full text
Abstract:
Conformal mapping is a useful technique for handling irregular geometries when applying the finite difference method to solve partial differential equations. When the mapping is from a hyperrectangular region onto a rectangular region, a specific length-to-width ratio of the rectangular region that fitted the Cauchy-Riemann equations must be satisfied. In this research, a numerical integral method is proposed to find the specific length-to-width ratio. It is conventional to employ the boundary integral method (BIEM) to perform the conformal mapping. However, due to the singularity produced by the BIEM in seeking the derivatives on the boundaries, the transformation Jacobian determinants on the boundaries have to be evaluated at inner points instead of directly on the boundaries. This approximation is a source of numerical error. In this study, the transformed rectangular property and the Cauchy-Riemann equations are successfully applied to derive reduced formulations of the derivatives on the boundaries for the BIEM. With these boundary derivative formulations, the Jacobian determinants can be evaluated directly on the boundaries. Furthermore, the results obtained are more accurate than those of the earlier mapping method.
APA, Harvard, Vancouver, ISO, and other styles
5

Cazacu, Cabiria Andreian, and Dorin Ghisa. "Fundamental Domains of Gamma and Zeta Functions." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/985323.

Full text
Abstract:
Branched covering Riemann surfaces(ℂ,f)are studied, wherefis the Euler Gamma function and the Riemann Zeta function. For both of them fundamental domains are found and the group of cover transformations is revealed. In order to find fundamental domains, preimages of the real axis are taken and a thorough study of their geometry is performed. The technique of simultaneous continuation, introduced by the authors in previous papers, is used for this purpose. Color visualization of the conformal mapping of the complex plane by these functions is used for a better understanding of the theory. A version of this paper containing colored images can be found in arXiv at Andrian Cazacu and Ghisa.
APA, Harvard, Vancouver, ISO, and other styles
6

Najarbashi, G., S. Ahadpour, M. A. Fasihi, and Y. Tavakoli. "Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations." Journal of Physics A: Mathematical and Theoretical 40, no. 24 (May 30, 2007): 6481–89. http://dx.doi.org/10.1088/1751-8113/40/24/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prokert, G. "On the existence of solutions in plane quasistationary Stokes flow driven by surface tension." European Journal of Applied Mathematics 6, no. 5 (October 1995): 539–58. http://dx.doi.org/10.1017/s0956792500002035.

Full text
Abstract:
Recently, the free boundary problem of quasistationary Stokes flow of a mass of viscous liquid under the action of surface tension forces has been considered by R. W. Hopper, L. K. Antanovskii, and others. The solution of the Stokes equations is represented by analytic functions, and a time dependent conformal mapping onto the flow domain is applied for the transformation of the problem to the unit disk. Two coupled Hilbert problems have to be solved there, which leads to a Fredholm boundary integral equation. The solution of this equation determines the time evolution of the conformal mapping. The question of the existence of a solution to this evolution problem for arbitrary (smooth) initial data has not yet been answered completely. In this paper, local existence in time is proved using a theorem of Ovsiannikov on Cauchy problems in an appropriate scale of Banach spaces. The necessary estimates are obtained in a way that is oriented at the a priori estimates for the solution given by Antanovskii. In the case of small deviations from the stationary solution represented by a circle, these a priori estimates, together with the local results, are used to prove even global existence of the solution in time.
APA, Harvard, Vancouver, ISO, and other styles
8

Renedo Anglada, Jaime, Suleiman Sharkh, and Arfakhshand Qazalbash. "Influence of curvature on air-gap magnetic field distribution and rotor losses in PM electric machines." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, no. 4 (July 3, 2017): 871–91. http://dx.doi.org/10.1108/compel-05-2016-0200.

Full text
Abstract:
Purpose The purpose of this paper is to study the effect of curvature on the magnetic field distribution and no-load rotor eddy current losses in electric machines, particularly in high-speed permanent magnet (PM) machines. Design/methodology/approach The magnetic field distribution is obtained using conformal mapping, and the eddy current losses are obtained using a cylindrical multilayer model. The analytical results are validated using a two-dimensional finite element analysis. The analytical method is based on a proportional-logarithmic conformal transformation that maps the cylindrical geometry of a rotating electric machine into a rectangular configuration without modifying the length scale. In addition, the appropriate transformation of PM cylindrical domains into the rectangular domain is deduced. Based on this conformal transformation, a coefficient to quantify the effect of curvature is proposed. Findings Neglecting the effect of curvature can produce significant errors in the calculation of no-load rotor losses when the ratio between the air-gap length and the rotor diameter is large. Originality/value The appropriate transformation of PM cylindrical domains into the rectangular domain is deduced. The proportional-logarithmic transformation proposed provides an insight into the effect of curvature on the magnetic field distribution in the air-gap and no-load rotor losses. Furthermore, the proposed curvature coefficient gives a notion of the effect of curvature for any particular geometry without the necessity of any complicated calculation. The case study shows that neglecting the effect of curvature underestimates the rotor eddy-current losses significantly in machines with large gap-to-rotor diameter ratios.
APA, Harvard, Vancouver, ISO, and other styles
9

CHAUDHRY, Maqsood A., and Roland SCHINZINGER. "NUMERICAL COMPUTATION OF THE SCHWARZ‐CHRISTOFFEL TRANSFORMATION PARAMETERS FOR CONFORMAL MAPPING OF ARBITRARILY SHAPED POLYGONS WITH FINITE VERTICES." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, no. 2 (February 1992): 263–75. http://dx.doi.org/10.1108/eb010091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crowdy, Darren, and Jonathan Marshall. "Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2060 (June 23, 2005): 2477–501. http://dx.doi.org/10.1098/rspa.2005.1492.

Full text
Abstract:
Explicit formulae for the Kirchhoff–Routh path functions (or Hamiltonians) governing the motion of N -point vortices in multiply connected domains are derived when all circulations around the holes in the domain are zero. The method uses the Schottky–Klein prime function to find representations of the hydrodynamic Green's function in multiply connected circular domains. The Green's function is then used to construct the associated Kirchhoff–Routh path function. The path function in more general multiply connected domains then follows from a transformation property of the path function under conformal mapping of the canonical circular domains. Illustrative examples are presented for the case of single vortex motion in multiply connected domains.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transformations (Mathematics) Conformal mapping"

1

Wetzel, Christine V. "A study of the class of Bilinear transformations." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1996. http://www.kutztown.edu/library/services/remote_access.asp.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ligo, Richard G. "Conformal transformations, curvature, and energy." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5550.

Full text
Abstract:
Space curves have a variety of uses within mathematics, and much attention has been paid to calculating quantities related to such objects. The quantities of curvature and energy are of particular interest to us. While the notion of curvature is well-known, the Mobius energy is a much newer concept, having been first defined by Jun O'Hara in the early 1990s. Foundational work on this energy was completed by Freedman, He, and Wang in 1994, with their most important result being the proof of the energy's conformal invariance. While a variety of results have built those of Freedman, He, and Wang, two topics remain largely unexplored: the interaction of curvature and Mobius energy and the generalization of the Mobius energy to curves with a varying thickness. In this thesis, we investigate both of these subjects. We show two fundamental results related to curvature and energy. First, we show that any simple, closed, twice-differentiable curve can be transformed in an energy-preserving and length-preserving way that allows us to make the pointwise curvature arbitrarily large at a point. Next, we prove that the total absolute curvature of a twice-differentiable curve is uniformly bounded with respect to conformal transformations. This is accomplished mainly via an analytic investigation of the effect of inversions on total absolute curvature. In the second half of the thesis, we define a generalization of the Mobius energy for simple curves of varying thickness that we call the "nonuniform energy." We call such curves "weighted knots," and they are defined as the pairing of a curve parametrization and positive, continuous weight function on the same domain. We then calculate the first variation formulas for several different variations of the nonuniform energy. Variations preserving the curve shape and total weight are shown to have no minimizers. Variations that "slide" the weight along the curve are shown to preserve energy is special cases.
APA, Harvard, Vancouver, ISO, and other styles
3

Veraguth, Olivier J. "Conformal loop quantum gravity : avoiding the Barbero-Immirzi ambiguity with a scalar-tensor theory." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236513.

Full text
Abstract:
In the construction of Canonical Loop Quantum Gravity, General Relativity is rewritten in terms of the Ashtekar variables to simplify its quantisation. They consist of a densitised triad and a connection terms. The latter depends by definition and by construction on a free parameter β, called the Barbero–Immirzi parameter. This freedom is passed on to the quantum theory as it appears in the expressions of certain operators. Their discreet spectra depend on the arbitrary value of this parameter β, meaning that the scale of those spectra is not uniquely defined. To get around this ambiguity, we propose to consider a theory of Conformal Loop Quantum Gravity, by imposing a local conformal symmetry through the addition of a scalar field. We construct our theory starting from the usual Einstein–Hilbert action for General Relativity to which we add the action for the massless scalar field and rewrite it in terms of a new set of Ashtekar-like variables. They are constructed through a set of canonical transformations, which allow to move the Barbero–Immirzi parameter from the connection to the scalar variable. We then show that the theory can be quantised by fulfilling the conditions for a Dirac quantisation. Finally, we present some first elements of the quantum formalism. It is expected that with such a scalar-tensor theory, the quantum operators should not depend on the free parameter directly but rather on the dynamical scalar field, solving therefore the ambiguity.
APA, Harvard, Vancouver, ISO, and other styles
4

Levesley, Jeremy. "A study of Chebyshev weighted approximations to the solution of Symm's integral equation for numerical conformal mapping." Thesis, Coventry University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Potter, Harrison D. P. "On Conformal Mappings and Vector Fields." Marietta College Honors Theses / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=marhonors1210888378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruth, Harry Leonard Jr. "Conformal densities and deformations of uniform loewner metric spaces." Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?ucin1210203872.

Full text
Abstract:
Thesis (Ph.D.)--University of Cincinnati, 2008.
Committee/Advisors: David Herron PhD (Committee Chair), David Minda PhD (Committee Member), Nageswari Shanmugalingam PhD (Committee Member). Title from electronic thesis title page (viewed Sep.3, 2008). Keywords: conformal density; uniform spaces; Loewner; quasisymmetry; quasiconofrmal. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Ström, David. "The Open Mapping Theorem for Analytic Functions and some applications." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-210.

Full text
Abstract:

This thesis deals with the Open Mapping Theorem for analytic functions on domains in the complex plane: A non-constant analytic function on an open subset of the complex plane is an open map.

As applications of this fundamental theorem we study Schwarz’s Lemma and its consequences concerning the groups of conformal automorphisms of the unit disk and of the upper halfplane.

In the last part of the thesis we indicate the first steps in hyperbolic geometry.


Denna uppsats behandlar satsen om öppna avbildningar för analytiska funktioner på domäner i det komplexa talplanet: En icke-konstant analytisk funktion på en öppen delmängd av det komplexa talplanet är en öppen avbildning.

Som tillämpningar på denna fundamentala sats studeras Schwarz’s lemma och dess konsekvenser för grupperna av konforma automorfismer på enhetsdisken och på det övre halvplanet.

I uppsatsens sista del antyds de första stegen inom hyperbolisk geometri.

APA, Harvard, Vancouver, ISO, and other styles
8

Andersson, Anders. "Numerical Conformal mappings for regions Bounded by Smooth Curves." Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1190.

Full text
Abstract:

Inom många tillämpningar används konforma avbildningar för att transformera tvådimensionella områden till områden med enklare utseende. Ett exempel på ett sådant område är en kanal av varierande tjocklek begränsad av en kontinuerligt deriverbar kurva. I de tillämpningar som har motiverat detta arbete, är det viktigt att dessa egenskaper bevaras i det område en approximativ konform avbildning producerar, men det är också viktigt att begränsningskurvans riktning kan kontrolleras, särkilt i kanalens båda ändar.

Denna avhandling behandlar tre olika metoder för att numeriskt konstruera konforma avbildningar mellan ett enkelt standardområde, företrädesvis det övre halvplanet eller enhetscirkeln, och ett område begränsat av en kontinuerligt deriverbar kurva, där begränsningskurvans riktning kan kontrolleras, exakt eller approximativt.

Den första metoden är en utveckling av en idé, först beskriven av Peter Henrici, där en modifierad Schwarz-Christoffel-avbildning avbildar det övre halvplanet konformt på en polygon med rundade hörn.

Med utgångspunkt i denna idé skapas en algoritm för att konstruera avbildningar på godtyckliga områden med släta randkurvor.

Den andra metoden bygger också den på Schwarz-Christoffel-avbildningen, och utnyttjar det faktum att om enhetscirkeln eller halvplanet avbildas på en polygon kommer ett område Q i det inre av dessa, som till exempel en cirkel med centrum i origo och radie mindre än 1, eller ett område i övre halvplanet begränsat av två strålar, att avbildas på ett område R i det inre av polygonen begränsat av en slät kurva. Vi utvecklar en metod för att hitta ett polygonalt område P, utanför det Omega som man önskar att skapa en avbildning för, sådant att den Schwarz-Christoffel-avbildning som avbildar enhetscirkeln eller halvplanet på P, avbildar Q på Omega.

I båda dessa fall används tangentpolygoner för att numeriskt bestämma den önskade avbildningen.

Slutligen beskrivs en metod där en av Don Marshalls så kallade zipper-algoritmer används för att skapa en avbildning mellan det övre

halvplanet och en godtycklig kanal, begränsad av släta kurvor, som i båda ändar går mot oändligheten som räta parallella linjer.


In many applications, conformal mappings are used to transform two-dimensional regions into simpler ones. One such region for which conformal mappings are needed is a channel bounded by continuously differentiable curves. In the applications that have motivated this work, it is important that the region an approximate conformal mapping produces, has this property, but also that the direction of the curve can be controlled, especially in the ends of the channel.

This thesis treats three different methods for numerically constructing conformal mappings between the upper half-plane or unit circle and a region bounded by a continuously differentiable curve, where the direction of the curve in a number of control points is controlled, exact or approximately.

The first method is built on an idea by Peter Henrici, where a modified Schwarz-Christoffel mapping maps the upper half-plane conformally on a polygon with rounded corners. His idea is used in an algorithm by which mappings for arbitrary regions, bounded by smooth curves are constructed.

The second method uses the fact that a Schwarz-Christoffel mapping from the upper half-plane or unit circle to a polygon maps a region Q inside the half-plane or circle, for example a circle with radius less than 1 or a sector in the half--plane, on a region Omega inside the polygon bounded by a smooth curve. Given such a region Omega, we develop methods to find a suitable outer polygon and corresponding Schwarz-Christoffel mapping that gives a mapping from Q to Omega.

Both these methods use the concept of tangent polygons to numerically determine the coefficients in the mappings.

Finally, we use one of Don Marshall's zipper algorithms to construct conformal mappings from the upper half--plane to channels bounded by arbitrary smooth curves, with the additional property that they are parallel straight lines when approaching infinity.

APA, Harvard, Vancouver, ISO, and other styles
9

Doghraji, Salma. "Caractérisation de la géométrie locale et globale de textures directionnelles par reconstruction d'hypersurfaces et transformations d'espace : application à l'analyse stratigraphique des images sismiques." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0814/document.

Full text
Abstract:
Les textures directionnelles forment la classe particulière des images texturées représentant des hypersurfaces (lignes dermiques, fibres de matériaux, horizons sismiques, etc.). Pour ce type de textures, la reconstruction d'hypersurfaces permet ainsi d'en décrire la géométrie et la structure. À partir du calcul préalable du champ d'orientation, des reconstructions peuvent être obtenues au moyen de la minimisation d'une équation aux dérivées partielles sous contraintes, linéarisée et résolue itérativement de manière optimale dans le domaine de Fourier.Dans ce travail, les reconstructions d'hypersurfaces sont considérées comme un moyen de description à la fois amont et aval de la géométrie des textures directionnelles. Dans une démarche amont, la reconstruction de faisceaux locaux et denses d'hypersurfaces conduit à un modèle de transformation d'espace permettant de déplier localement la texture ou son champ de gradient et d'améliorer l'estimation du champ d'orientation par rapport au classique tenseur de structure. Dans une démarche aval, des reconstructions d'hypersurfaces effectuées sur des supports polygonaux quelconques, isolés ou imbriqués, permettent d'obtenir des reconstructions plus pertinentes que par les méthodes existantes. Les démarches proposées mettent en œuvre des chaînes de transformations d'espace conformes (transformation de Schwarz-Christoffel, de Möbius, etc.) afin de respecter les contraintes et d'accéder à des schémas de résolution rapide
Directional textures are the particular class of textured images representing hypersurfaces (dermal lines, material fibers, seismic horizons, etc.). For this type of textures, the reconstruction of hypersurfaces describes their geometry and structure. From the preliminary estimation of the orientation field, reconstructions can be obtained by means of the minimization of a partial differential equation under constraints, linearized and iteratively resolved in the Fourier domain.In this work, the reconstructions of hypersurfaces are considered as means of description both upstream and downstream of the geometry of the directional textures. In an upstream approach, the reconstruction of local and dense streams of hypersurfaces leads to a spatial transformation model to locally unfold the texture or its gradient field and to improve the estimation of the orientation field compared with the classic tensor structure. In a downstream approach, reconstructions of hypersurfaces carried out on any polygonal supports, either isolated or imbricated, lead to more accurate reconstructions than existing methods. The proposed approaches implement chains of conformal space transformations (transformation of Schwarz-Christoffel, Möbius, etc.) in order to respect the constraints and to access fast PDE solution schemes
APA, Harvard, Vancouver, ISO, and other styles
10

Swan, Yvik. "On two unsolved problems in probability." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210695.

Full text
Abstract:

Dans ce travail nous abordons deux problèmes non résolus en Probabilité appliquée. Nous les approchons tous deux sous un angle nouveau, en utilisant des outils aussi variés que les chaînes de Markov, les mouvements Browniens, les transformations de Schwarz-Christoffel, les processus de Poisson et la théorie des temps d'arrêts optimaux.

Problème de la ruine pour N joueurs

Le problème de la ruine pour $N$ joueurs est un problème célèbre dont la solution pour $N=2$ est connue depuis longtemps. Nous l'abordons premièrement en toute généralité, en le modélisant comme un problème d'absorption pour une chaîne de Markov. Nous obtenons les distributions associées à ce problème et nous décrivons un algorithme (appelé {it folding algorithm}) permettant de diminuer considérablement le nombre d'opérations nécessaires à une résolution complète. Cette étude nous permet de mettre en avant un certain nombres de relations de récurrence satisfaites par les probabilités de ruines associées à chaque état de la chaîne de Markov. Nous étudions ensuite une version asymptotique du problème de la ruine pour 3 joueurs. Nous utilisons les propriétés d'invariance des mouvements Browniens par transformations conformes pour décrire une résolution de ce problème via les transformations de Schwarz-Christoffel. Cette méthode dépasse le cadre strict du problème de la ruine pour 3 joueurs et s'applique à d'autres problèmes de temps d'atteinte d'un bord par un mouvement Brownien.

Problème de Robbins

Ce problème s'inscrit dans le cadre de la théorie des temps d'arrêts optimaux. C'est un problème d'analyse séquentielle dans lequel un observateur examine $n$ variables aléatoires indépendantes de manière séquentielle et doit en sélectionner exactement une sans rappel. L'objectif est de déterminer une stratégie qui permette de minimiser le rang moyen de l'observation sélectionnée.

Nous décrivons un modèle alternatif de ce problème, dans lequel le décideur observe un nombre aléatoire d'arrivées distribuées suivant un processus de Poisson homogène sur un horizon fixe $t$. Nous prouvons l'existence d'une stratégie optimale pour chaque horizon, et nous montrons que la fonction de perte associée à cette stratégie est uniformément continue sur $R$. Nous décrivons une fonction de perte restreinte qui permet d'obtenir une estimation de la valeur asymptotique du problème, et nous obtenons la valeur asymptotique associée à des stratégies spécifiques. Nous obtenons ensuite une équation intégro-diffférentielle sur la fonction de perte associée à la stratégie optimale. Finalement nous étudions les valeurs asymptotiques du problème et nous les comparons à celles du problème en temps discret. Nous concluons cette thèse en décrivant des stratégies spécifiques qui permettent d'obtenir des estimations sur le comportement asymptotique de la fonction de perte.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Transformations (Mathematics) Conformal mapping"

1

Kythe, Prem K. Computational Conformal Mapping. Boston, MA: Birkhäuser Boston, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Laura Patricio A., ed. Conformal mapping: Methods and applications. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conformal transformations in electrical engineering. London: Chapman & Hall, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Poder, K. Some conformal mappings and transformations for geodesy and topographic cartography. København: Kort & Matrikelstyrelsen, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bell, Steven Robert. The Cauchy transform, potential theory, and conformal mapping. Boca Raton, Fl: CRC Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carabineanu, Adrian. Metoda transformărilor conforme pentru domenii vecine cu aplicații în mecanica fluidelor. București: Editura Academiei Române, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Conformally invariant processes in the plane. Providence, R.I: American Mathematical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grafarend, Erik W. Map projections: Cartographic information systems. Berlin: Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Advanced engineering mathematics. Englewood Cliffs, N.J: Prentice Hall, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Advanced engineering mathematics. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Transformations (Mathematics) Conformal mapping"

1

Mahan, Gerald Dennis. "Conformal Mapping." In Applied Mathematics, 141–76. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1315-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gamelin, Theodore W. "Conformal Mapping." In Undergraduate Texts in Mathematics, 289–314. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21607-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fuka, Jaroslav. "Conformal Mapping." In Survey of Applicable Mathematics, 1005–34. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8308-4_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walsh, J. L. "Conformal Mapping." In Springer Collected Works in Mathematics, 255–378. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6301-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shima, Hiroyuki, and Tsuneyoshi Nakayama. "Conformal Mapping." In Higher Mathematics for Physics and Engineering, 305–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bak, Joseph, and Donald J. Newman. "Introduction to Conformal Mapping." In Undergraduate Texts in Mathematics, 169–94. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7288-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Isaev, Alexander. "Conformal Maps (Continued). Möbius Transformations." In Springer Undergraduate Mathematics Series, 25–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68170-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonora, Loriano. "Special Conformal Transformations and Contact Terms." In Springer Proceedings in Mathematics & Statistics, 23–34. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2636-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Byung Hak. "Conformal Transformations Between Complete Product Riemannian Manifolds." In Springer Proceedings in Mathematics & Statistics, 465–73. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zeng, W., F. Luo, S. T. Yau, and X. D. Gu. "Surface Quasi-Conformal Mapping by Solving Beltrami Equations." In Mathematics of Surfaces XIII, 391–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03596-8_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transformations (Mathematics) Conformal mapping"

1

Hitzer, Eckhard. "The quest for conformal geometric algebra Fourier transformations." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elkordy, M. "A simplifid analysis of coplanar waveguide coupler by using conformal mapping transformations." In Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2000]. IEEE, 2000. http://dx.doi.org/10.1109/antem.2000.7851666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haoge, Liu, Md Motiur Rahman, and Jing Lu. "Analytical Solution of Stress State Wellbore Instability Due to Collapse Washout and Induced Fractures." In IADC/SPE Asia Pacific Drilling Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/201021-ms.

Full text
Abstract:
Abstract Wellbore suffers from washout, partial collapse and induced fractures, making it more likely to be elliptical rather than circular. The classic stress analysis of a wellbore, which regards the wellbore as circular, is actually not so suitable. Based on the linear elasticity, this paper introduces the 2D analytical solution of stress state for wellbore instability. Analytical results, compared to numerical, show how the wellbore pressure would be maintained to prevent wellbore instability while drilling. Analytical solution of stress analysis is proposed for complicated models where the wellbore is regarded as non-circular. Stress problems of a 2D linear elastic model are simplified with mathematical equations. Muskhelishvili theory is used for complex analyses for stress analysis in elasticity. Then the stress state of the formation is obtained, where finding a suitable conformal transformation to map the formation area into a unit circle is crucial in the process. Finite Element Method (FEM) is also applied for the same case. Finally, the analytical result is compared to the numerical result, considering collapse, washout and induced fractures in wellbore. Typical data set are used for a vertical wellbore. By comparing to the numerical results (FEM), the simplicity for calculation and the correctness of the analytical solution is established whereas it is found that the intrinsic error of numerical solution cannot be eliminated. Results show that with larger boundary sizes, the FEM result become closer to the analytical result. A conformal transformation for the wellbore mapping with fractures was found. Trials have been done to the fractured wellbore, which can be regarded as a stress cage model, while two mathematical problems in solving the stress state analytically on the vertical wellbore with fractures were encountered. Trial and suggestions towards solving these two problems with results are introduced in details. Stress state of the formation has been calculated and plotted by using the analytical solution. Results show the stress contours plotted by analytical solution in Mathematica™, and the ones plotted by FEM with boundary size set as 2000 mm in Solidworks™. The stress states calculated by these two methods match quite well, which means the proposed analytical solution is correct. An insightful sensitivity analysis (with elliptical factor of wellbore and anisotropic factor of the tectonic stresses) will be presented. For decades, numerical method for stress analysis has been applied, ignoring the development of analytical method. It's the complexity of analytical solution that makes it difficult to handle. However, based on the same simplifications for an engineering problem, analytical method is always faster and more accurate compared to the numerical solution in many cases. The analytical solution provides the possibility for process control in real-time technologies and this can be applied to wellbore instability case of collapse, washout and fractures.
APA, Harvard, Vancouver, ISO, and other styles
4

Pokas, S., and A. Krutoholova. "Infinitesimal conformal transformations in the Riemannian space of the second approximation for a space of non-zero constant curvature." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography