Academic literature on the topic 'Transformations (Mathematics) Conformal mapping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transformations (Mathematics) Conformal mapping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Transformations (Mathematics) Conformal mapping"
Hammad, Fayçal. "Conformal mapping of the Misner–Sharp mass from gravitational collapse." International Journal of Modern Physics D 25, no. 07 (June 2016): 1650081. http://dx.doi.org/10.1142/s0218271816500814.
Full textMughal, Adil, and Denis Weaire. "Curvature in conformal mappings of two-dimensional lattices and foam structure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2101 (October 7, 2008): 219–38. http://dx.doi.org/10.1098/rspa.2008.0260.
Full textHaruki, H., and T. M. Rassias. "A New Invariant Characteristic Property of Möbius Transformations from the Standpoint of Conformal Mapping." Journal of Mathematical Analysis and Applications 181, no. 2 (January 1994): 320–27. http://dx.doi.org/10.1006/jmaa.1994.1024.
Full textLo, Wei-Lin, Nan-Jing Wu, Chuin-Shan Chen, and Ting-Kuei Tsay. "Exact Boundary Derivative Formulation for Numerical Conformal Mapping Method." Mathematical Problems in Engineering 2016 (2016): 1–18. http://dx.doi.org/10.1155/2016/5072309.
Full textCazacu, Cabiria Andreian, and Dorin Ghisa. "Fundamental Domains of Gamma and Zeta Functions." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/985323.
Full textNajarbashi, G., S. Ahadpour, M. A. Fasihi, and Y. Tavakoli. "Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations." Journal of Physics A: Mathematical and Theoretical 40, no. 24 (May 30, 2007): 6481–89. http://dx.doi.org/10.1088/1751-8113/40/24/014.
Full textProkert, G. "On the existence of solutions in plane quasistationary Stokes flow driven by surface tension." European Journal of Applied Mathematics 6, no. 5 (October 1995): 539–58. http://dx.doi.org/10.1017/s0956792500002035.
Full textRenedo Anglada, Jaime, Suleiman Sharkh, and Arfakhshand Qazalbash. "Influence of curvature on air-gap magnetic field distribution and rotor losses in PM electric machines." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, no. 4 (July 3, 2017): 871–91. http://dx.doi.org/10.1108/compel-05-2016-0200.
Full textCHAUDHRY, Maqsood A., and Roland SCHINZINGER. "NUMERICAL COMPUTATION OF THE SCHWARZ‐CHRISTOFFEL TRANSFORMATION PARAMETERS FOR CONFORMAL MAPPING OF ARBITRARILY SHAPED POLYGONS WITH FINITE VERTICES." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, no. 2 (February 1992): 263–75. http://dx.doi.org/10.1108/eb010091.
Full textCrowdy, Darren, and Jonathan Marshall. "Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2060 (June 23, 2005): 2477–501. http://dx.doi.org/10.1098/rspa.2005.1492.
Full textDissertations / Theses on the topic "Transformations (Mathematics) Conformal mapping"
Wetzel, Christine V. "A study of the class of Bilinear transformations." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1996. http://www.kutztown.edu/library/services/remote_access.asp.
Full textLigo, Richard G. "Conformal transformations, curvature, and energy." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5550.
Full textVeraguth, Olivier J. "Conformal loop quantum gravity : avoiding the Barbero-Immirzi ambiguity with a scalar-tensor theory." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=236513.
Full textLevesley, Jeremy. "A study of Chebyshev weighted approximations to the solution of Symm's integral equation for numerical conformal mapping." Thesis, Coventry University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304879.
Full textPotter, Harrison D. P. "On Conformal Mappings and Vector Fields." Marietta College Honors Theses / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=marhonors1210888378.
Full textRuth, Harry Leonard Jr. "Conformal densities and deformations of uniform loewner metric spaces." Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?ucin1210203872.
Full textCommittee/Advisors: David Herron PhD (Committee Chair), David Minda PhD (Committee Member), Nageswari Shanmugalingam PhD (Committee Member). Title from electronic thesis title page (viewed Sep.3, 2008). Keywords: conformal density; uniform spaces; Loewner; quasisymmetry; quasiconofrmal. Includes abstract. Includes bibliographical references.
Ström, David. "The Open Mapping Theorem for Analytic Functions and some applications." Thesis, Karlstad University, Faculty of Technology and Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-210.
Full textThis thesis deals with the Open Mapping Theorem for analytic functions on domains in the complex plane: A non-constant analytic function on an open subset of the complex plane is an open map.
As applications of this fundamental theorem we study Schwarz’s Lemma and its consequences concerning the groups of conformal automorphisms of the unit disk and of the upper halfplane.
In the last part of the thesis we indicate the first steps in hyperbolic geometry.
Denna uppsats behandlar satsen om öppna avbildningar för analytiska funktioner på domäner i det komplexa talplanet: En icke-konstant analytisk funktion på en öppen delmängd av det komplexa talplanet är en öppen avbildning.
Som tillämpningar på denna fundamentala sats studeras Schwarz’s lemma och dess konsekvenser för grupperna av konforma automorfismer på enhetsdisken och på det övre halvplanet.
I uppsatsens sista del antyds de första stegen inom hyperbolisk geometri.
Andersson, Anders. "Numerical Conformal mappings for regions Bounded by Smooth Curves." Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1190.
Full textInom många tillämpningar används konforma avbildningar för att transformera tvådimensionella områden till områden med enklare utseende. Ett exempel på ett sådant område är en kanal av varierande tjocklek begränsad av en kontinuerligt deriverbar kurva. I de tillämpningar som har motiverat detta arbete, är det viktigt att dessa egenskaper bevaras i det område en approximativ konform avbildning producerar, men det är också viktigt att begränsningskurvans riktning kan kontrolleras, särkilt i kanalens båda ändar.
Denna avhandling behandlar tre olika metoder för att numeriskt konstruera konforma avbildningar mellan ett enkelt standardområde, företrädesvis det övre halvplanet eller enhetscirkeln, och ett område begränsat av en kontinuerligt deriverbar kurva, där begränsningskurvans riktning kan kontrolleras, exakt eller approximativt.
Den första metoden är en utveckling av en idé, först beskriven av Peter Henrici, där en modifierad Schwarz-Christoffel-avbildning avbildar det övre halvplanet konformt på en polygon med rundade hörn.
Med utgångspunkt i denna idé skapas en algoritm för att konstruera avbildningar på godtyckliga områden med släta randkurvor.
Den andra metoden bygger också den på Schwarz-Christoffel-avbildningen, och utnyttjar det faktum att om enhetscirkeln eller halvplanet avbildas på en polygon kommer ett område Q i det inre av dessa, som till exempel en cirkel med centrum i origo och radie mindre än 1, eller ett område i övre halvplanet begränsat av två strålar, att avbildas på ett område R i det inre av polygonen begränsat av en slät kurva. Vi utvecklar en metod för att hitta ett polygonalt område P, utanför det Omega som man önskar att skapa en avbildning för, sådant att den Schwarz-Christoffel-avbildning som avbildar enhetscirkeln eller halvplanet på P, avbildar Q på Omega.
I båda dessa fall används tangentpolygoner för att numeriskt bestämma den önskade avbildningen.
Slutligen beskrivs en metod där en av Don Marshalls så kallade zipper-algoritmer används för att skapa en avbildning mellan det övre
halvplanet och en godtycklig kanal, begränsad av släta kurvor, som i båda ändar går mot oändligheten som räta parallella linjer.
In many applications, conformal mappings are used to transform two-dimensional regions into simpler ones. One such region for which conformal mappings are needed is a channel bounded by continuously differentiable curves. In the applications that have motivated this work, it is important that the region an approximate conformal mapping produces, has this property, but also that the direction of the curve can be controlled, especially in the ends of the channel.
This thesis treats three different methods for numerically constructing conformal mappings between the upper half-plane or unit circle and a region bounded by a continuously differentiable curve, where the direction of the curve in a number of control points is controlled, exact or approximately.
The first method is built on an idea by Peter Henrici, where a modified Schwarz-Christoffel mapping maps the upper half-plane conformally on a polygon with rounded corners. His idea is used in an algorithm by which mappings for arbitrary regions, bounded by smooth curves are constructed.
The second method uses the fact that a Schwarz-Christoffel mapping from the upper half-plane or unit circle to a polygon maps a region Q inside the half-plane or circle, for example a circle with radius less than 1 or a sector in the half--plane, on a region Omega inside the polygon bounded by a smooth curve. Given such a region Omega, we develop methods to find a suitable outer polygon and corresponding Schwarz-Christoffel mapping that gives a mapping from Q to Omega.
Both these methods use the concept of tangent polygons to numerically determine the coefficients in the mappings.
Finally, we use one of Don Marshall's zipper algorithms to construct conformal mappings from the upper half--plane to channels bounded by arbitrary smooth curves, with the additional property that they are parallel straight lines when approaching infinity.
Doghraji, Salma. "Caractérisation de la géométrie locale et globale de textures directionnelles par reconstruction d'hypersurfaces et transformations d'espace : application à l'analyse stratigraphique des images sismiques." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0814/document.
Full textDirectional textures are the particular class of textured images representing hypersurfaces (dermal lines, material fibers, seismic horizons, etc.). For this type of textures, the reconstruction of hypersurfaces describes their geometry and structure. From the preliminary estimation of the orientation field, reconstructions can be obtained by means of the minimization of a partial differential equation under constraints, linearized and iteratively resolved in the Fourier domain.In this work, the reconstructions of hypersurfaces are considered as means of description both upstream and downstream of the geometry of the directional textures. In an upstream approach, the reconstruction of local and dense streams of hypersurfaces leads to a spatial transformation model to locally unfold the texture or its gradient field and to improve the estimation of the orientation field compared with the classic tensor structure. In a downstream approach, reconstructions of hypersurfaces carried out on any polygonal supports, either isolated or imbricated, lead to more accurate reconstructions than existing methods. The proposed approaches implement chains of conformal space transformations (transformation of Schwarz-Christoffel, Möbius, etc.) in order to respect the constraints and to access fast PDE solution schemes
Swan, Yvik. "On two unsolved problems in probability." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210695.
Full textDans ce travail nous abordons deux problèmes non résolus en Probabilité appliquée. Nous les approchons tous deux sous un angle nouveau, en utilisant des outils aussi variés que les chaînes de Markov, les mouvements Browniens, les transformations de Schwarz-Christoffel, les processus de Poisson et la théorie des temps d'arrêts optimaux.
Problème de la ruine pour N joueurs
Le problème de la ruine pour $N$ joueurs est un problème célèbre dont la solution pour $N=2$ est connue depuis longtemps. Nous l'abordons premièrement en toute généralité, en le modélisant comme un problème d'absorption pour une chaîne de Markov. Nous obtenons les distributions associées à ce problème et nous décrivons un algorithme (appelé {it folding algorithm}) permettant de diminuer considérablement le nombre d'opérations nécessaires à une résolution complète. Cette étude nous permet de mettre en avant un certain nombres de relations de récurrence satisfaites par les probabilités de ruines associées à chaque état de la chaîne de Markov. Nous étudions ensuite une version asymptotique du problème de la ruine pour 3 joueurs. Nous utilisons les propriétés d'invariance des mouvements Browniens par transformations conformes pour décrire une résolution de ce problème via les transformations de Schwarz-Christoffel. Cette méthode dépasse le cadre strict du problème de la ruine pour 3 joueurs et s'applique à d'autres problèmes de temps d'atteinte d'un bord par un mouvement Brownien.
Problème de Robbins
Ce problème s'inscrit dans le cadre de la théorie des temps d'arrêts optimaux. C'est un problème d'analyse séquentielle dans lequel un observateur examine $n$ variables aléatoires indépendantes de manière séquentielle et doit en sélectionner exactement une sans rappel. L'objectif est de déterminer une stratégie qui permette de minimiser le rang moyen de l'observation sélectionnée.
Nous décrivons un modèle alternatif de ce problème, dans lequel le décideur observe un nombre aléatoire d'arrivées distribuées suivant un processus de Poisson homogène sur un horizon fixe $t$. Nous prouvons l'existence d'une stratégie optimale pour chaque horizon, et nous montrons que la fonction de perte associée à cette stratégie est uniformément continue sur $R$. Nous décrivons une fonction de perte restreinte qui permet d'obtenir une estimation de la valeur asymptotique du problème, et nous obtenons la valeur asymptotique associée à des stratégies spécifiques. Nous obtenons ensuite une équation intégro-diffférentielle sur la fonction de perte associée à la stratégie optimale. Finalement nous étudions les valeurs asymptotiques du problème et nous les comparons à celles du problème en temps discret. Nous concluons cette thèse en décrivant des stratégies spécifiques qui permettent d'obtenir des estimations sur le comportement asymptotique de la fonction de perte.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Books on the topic "Transformations (Mathematics) Conformal mapping"
Kythe, Prem K. Computational Conformal Mapping. Boston, MA: Birkhäuser Boston, 1998.
Find full textA, Laura Patricio A., ed. Conformal mapping: Methods and applications. Amsterdam: Elsevier, 1991.
Find full textPoder, K. Some conformal mappings and transformations for geodesy and topographic cartography. København: Kort & Matrikelstyrelsen, 1998.
Find full textBell, Steven Robert. The Cauchy transform, potential theory, and conformal mapping. Boca Raton, Fl: CRC Press, 1992.
Find full textCarabineanu, Adrian. Metoda transformărilor conforme pentru domenii vecine cu aplicații în mecanica fluidelor. București: Editura Academiei Române, 1993.
Find full textConformally invariant processes in the plane. Providence, R.I: American Mathematical Society, 2005.
Find full textGrafarend, Erik W. Map projections: Cartographic information systems. Berlin: Springer, 2006.
Find full textAdvanced engineering mathematics. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 1998.
Find full textBook chapters on the topic "Transformations (Mathematics) Conformal mapping"
Mahan, Gerald Dennis. "Conformal Mapping." In Applied Mathematics, 141–76. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1315-5_6.
Full textGamelin, Theodore W. "Conformal Mapping." In Undergraduate Texts in Mathematics, 289–314. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21607-2_11.
Full textFuka, Jaroslav. "Conformal Mapping." In Survey of Applicable Mathematics, 1005–34. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8308-4_21.
Full textWalsh, J. L. "Conformal Mapping." In Springer Collected Works in Mathematics, 255–378. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6301-6_4.
Full textShima, Hiroyuki, and Tsuneyoshi Nakayama. "Conformal Mapping." In Higher Mathematics for Physics and Engineering, 305–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_10.
Full textBak, Joseph, and Donald J. Newman. "Introduction to Conformal Mapping." In Undergraduate Texts in Mathematics, 169–94. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7288-0_13.
Full textIsaev, Alexander. "Conformal Maps (Continued). Möbius Transformations." In Springer Undergraduate Mathematics Series, 25–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68170-2_4.
Full textBonora, Loriano. "Special Conformal Transformations and Contact Terms." In Springer Proceedings in Mathematics & Statistics, 23–34. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2636-2_2.
Full textKim, Byung Hak. "Conformal Transformations Between Complete Product Riemannian Manifolds." In Springer Proceedings in Mathematics & Statistics, 465–73. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_41.
Full textZeng, W., F. Luo, S. T. Yau, and X. D. Gu. "Surface Quasi-Conformal Mapping by Solving Beltrami Equations." In Mathematics of Surfaces XIII, 391–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03596-8_23.
Full textConference papers on the topic "Transformations (Mathematics) Conformal mapping"
Hitzer, Eckhard. "The quest for conformal geometric algebra Fourier transformations." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825544.
Full textElkordy, M. "A simplifid analysis of coplanar waveguide coupler by using conformal mapping transformations." In Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2000]. IEEE, 2000. http://dx.doi.org/10.1109/antem.2000.7851666.
Full textHaoge, Liu, Md Motiur Rahman, and Jing Lu. "Analytical Solution of Stress State Wellbore Instability Due to Collapse Washout and Induced Fractures." In IADC/SPE Asia Pacific Drilling Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/201021-ms.
Full textPokas, S., and A. Krutoholova. "Infinitesimal conformal transformations in the Riemannian space of the second approximation for a space of non-zero constant curvature." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130796.
Full text