Academic literature on the topic 'Transgenic plants – Roots (Botany) – Physiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transgenic plants – Roots (Botany) – Physiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transgenic plants – Roots (Botany) – Physiology"

1

Kim, So-Eun, Chan-Ju Lee, Sul-U. Park, et al. "Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants." Antioxidants 10, no. 1 (2021): 51. http://dx.doi.org/10.3390/antiox10010051.

Full text
Abstract:
Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4–19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The β-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.
APA, Harvard, Vancouver, ISO, and other styles
2

Andika, Ida Bagus, Hideki Kondo, and Tetsuo Tamada. "Evidence That RNA Silencing-Mediated Resistance to Beet necrotic yellow vein virus Is Less Effective in Roots Than in Leaves." Molecular Plant-Microbe Interactions® 18, no. 3 (2005): 194–204. http://dx.doi.org/10.1094/mpmi-18-0194.

Full text
Abstract:
In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.
APA, Harvard, Vancouver, ISO, and other styles
3

Sobczak, Miroslaw, Anna Avrova, Justyna Jupowicz, Mark S. Phillips, Karin Ernst, and Amar Kumar. "Characterization of Susceptibility and Resistance Responses to Potato Cyst Nematode (Globodera spp.) Infection of Tomato Lines in the Absence and Presence of the Broad-Spectrum Nematode Resistance Hero Gene." Molecular Plant-Microbe Interactions® 18, no. 2 (2005): 158–68. http://dx.doi.org/10.1094/mpmi-18-0158.

Full text
Abstract:
The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.
APA, Harvard, Vancouver, ISO, and other styles
4

Fukudome, Mitsutaka, Eri Watanabe, Ken-ichi Osuki, Nahoko Uchi, and Toshiki Uchiumi. "Ectopic or Over-Expression of Class 1 Phytoglobin Genes Confers Flooding Tolerance to the Root Nodules of Lotus japonicus by Scavenging Nitric Oxide." Antioxidants 8, no. 7 (2019): 206. http://dx.doi.org/10.3390/antiox8070206.

Full text
Abstract:
Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS.
APA, Harvard, Vancouver, ISO, and other styles
5

Díaz, Clara L., Herman P. Spaink, and Jan W. Kijne. "Heterologous Rhizobial Lipochitin Oligosaccharides and Chitin Oligomers Induce Cortical Cell Divisions in Red Clover Roots, Transformed with the Pea Lectin Gene." Molecular Plant-Microbe Interactions® 13, no. 3 (2000): 268–76. http://dx.doi.org/10.1094/mpmi.2000.13.3.268.

Full text
Abstract:
Division of cortical cells in roots of leguminous plants is triggered by lipochitin oligosaccharides (LCOs) secreted by the rhizobial microsymbiont. Previously, we have shown that presence of pea lectin in transgenic white clover hairy roots renders these roots susceptible to induction of root nodule formation by pea-specific rhizobia (C. L. Díaz, L. S. Melchers, P. J. J. Hooykaas, B. J. J. Lugtenberg, and J. W. Kijne, Nature 338:579–581, 1989). Here, we report that pea lectin-transformed red clover hairy roots form nodule primordium-like structures after inoculation with pea-, alfalfa-, and Lotus-specific rhizobia, which normally do not nodulate red clover. External application of a broad range of purified LCOs showed all of them to be active in induction of cortical cell divisions and cell expansion in a radial direction, resulting in formation of structures that resemble nodule primordia induced by clover-specific rhizobia. This activity was obvious in about 50% of the red clover plants carrying hairy roots transformed with the pea lectin gene. Also, chitopentaose, chitotetraose, chitotriose, and chitobiose were able to induce cortical cell divisions and cell expansion in a radial direction in transgenic roots, but not in control roots. Sugarbinding activity of pea lectin was essential for its effect. These results show that transformation of red clover roots with pea lectin results in a broadened response of legume root cortical cells to externally applied potentially mitogenic oligochitin signals.
APA, Harvard, Vancouver, ISO, and other styles
6

Bandaranayake, Pradeepa C. G., and John I. Yoder. "Trans-Specific Gene Silencing of Acetyl-CoA Carboxylase in a Root-Parasitic Plant." Molecular Plant-Microbe Interactions® 26, no. 5 (2013): 575–84. http://dx.doi.org/10.1094/mpmi-12-12-0297-r.

Full text
Abstract:
Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene silencing.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Youning, Wei Yang, Yanyan Zuo, et al. "GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean." Journal of Experimental Botany 70, no. 12 (2019): 3165–76. http://dx.doi.org/10.1093/jxb/erz144.

Full text
Abstract:
Abstract Auxin plays central roles in rhizobial infection and nodule development in legumes. However, the sources of auxin during nodulation are unknown. In this study, we analyzed the YUCCA (YUC) gene family of soybean and identified GmYUC2a as an important regulator of auxin biosynthesis that modulates nodulation. Following rhizobial infection, GmYUC2a exhibited increased expression in various nodule tissues. Overexpression of GmYUC2a (35S::GmYUC2a) increased auxin production in soybean, resulting in severe growth defects in root hairs and root development. Upon rhizobial infection, 35S::GmYUC2a hairy roots displayed altered patterns of root hair deformation and nodule formation. Root hair deformation occurred mainly on primary roots, and nodules formed exclusively on primary roots of 35S::GmYUC2a plants. Moreover, transgenic 35S::GmYUC2a composite plants showed delayed nodule development and a reduced number of nodules. Our results suggest that GmYUC2a plays an important role in regulating both root growth and nodulation by modulating auxin balance in soybean.
APA, Harvard, Vancouver, ISO, and other styles
8

Andika, Ida Bagus, Liying Sun, Rong Xiang, Junmin Li, and Jianping Chen. "Root-Specific Role for Nicotiana benthamiana RDR6 in the Inhibition of Chinese wheat mosaic virus Accumulation at Higher Temperatures." Molecular Plant-Microbe Interactions® 26, no. 10 (2013): 1165–75. http://dx.doi.org/10.1094/mpmi-05-13-0137-r.

Full text
Abstract:
Some viruses only infect plants at cool temperatures but the molecular mechanism underlying this low-temperature dependence remains unclear. Chinese wheat mosaic virus (CWMV, genus Furovirus) was able to infect wheat and Nicotiana benthamiana plants at 16 but not at 24°C. When CWMV-infected plants were transferred to 24°C for 2 weeks, the newly emerged leaves and roots became virus free. Co-infection with Potato virus Y rescued CWMV accumulation in N. benthamiana plants after a temperature shift to 24°C. In transgenic N. benthamiana plants silenced for the N. benthamiana RNA-dependent RNA polymerase 6 (NbRDR6), CWMV was able to accumulate in roots but not in leaves after a temperature shift to 24°C. Deep sequencing of small RNAs showed that, at 16°C, abundant CWMV small interfering (si)RNAs accumulated in infected N. benthamiana plants. Silencing of NbRDR6 increased the abundance of CWMV siRNAs and the generation of siRNAs from hotspots in the CWMV genome. In contrast, when shifted to 24°C for 1 week, CWMV siRNAs were markedly fewer in roots of NbRDR6-silenced than in roots of wild-type plants but were similar in the leaves of those plants. Our results demonstrate the root-specific role of NbRDR6 in the inhibition of CWMV accumulation and biogenesis of CWMV siRNAs at higher temperatures.
APA, Harvard, Vancouver, ISO, and other styles
9

Thu, Sandi Win, Ming-Zhu Lu, Amanda M. Carter, et al. "Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean." Journal of Experimental Botany 71, no. 15 (2020): 4495–511. http://dx.doi.org/10.1093/jxb/eraa146.

Full text
Abstract:
Abstract Nitrogen (N)-fixing soybean plants use the ureides allantoin and allantoic acid as major long-distance transport forms of N, but in non-fixing, non-nodulated plants amino acids mainly serve in source-to-sink N allocation. However, some ureides are still synthesized in roots of non-fixing soybean, and our study addresses the role of ureide transport processes in those plants. In previous work, legume ureide permeases (UPSs) were identified that are involved in cellular import of allantoin and allantoic acid. Here, UPS1 from common bean was expressed in the soybean phloem, which resulted in enhanced source-to-sink transport of ureides in the transgenic plants. This was accompanied by increased ureide synthesis and elevated allantoin and allantoic acid root-to-sink transport. Interestingly, amino acid assimilation, xylem transport, and phloem partitioning to sinks were also strongly up-regulated. In addition, photosynthesis and sucrose phloem transport were improved in the transgenic plants. These combined changes in source physiology and assimilate partitioning resulted in increased vegetative growth and improved seed numbers. Overall, the results support that ureide transport processes in non-fixing plants affect source N and carbon acquisition and assimilation as well as source-to-sink translocation of N and carbon assimilates with consequences for plant growth and seed development.
APA, Harvard, Vancouver, ISO, and other styles
10

Mazarei, Mitra, Axel A. Elling, Tom R. Maier, David P. Puthoff, and Thomas J. Baum. "GmEREBP1 Is a Transcription Factor Activating Defense Genes in Soybean and Arabidopsis." Molecular Plant-Microbe Interactions® 20, no. 2 (2007): 107–19. http://dx.doi.org/10.1094/mpmi-20-2-0107.

Full text
Abstract:
Ethylene-responsive element-binding proteins (EREBPs) are plant-specific transcription factors, many of which have been linked to plant defense responses. Conserved EREBP domains bind to the GCC box, a promoter element found in pathogenesis-related (PR) genes. We previously identified an EREBP gene from soybean (GmEREBP1) whose transcript abundance decreased in soybean cyst-nematode-infected roots of a susceptible cultivar, whereas it increased in abundance in infected roots of a resistant cultivar. Here, we report further characterization of this gene. Transient expression analyses showed that GmEREBP1 is localized to the plant nucleus and functions as a transcriptional activator in soybean leaves. Transgenic soybean plants expressing GmEREBP1 activated the expression of the ethylene (ET)-responsive gene PR2 and the ET- and jasmonic acid (JA)-responsive gene PR3, and the salicylic acid (SA)-responsive gene PR1 but not the SA-responsive PR5. Similarly, transgenic Arabidopsis plants expressing GmEREBP1 showed elevated mRNA abundance of the ET-regulated gene PR3 and the ET- and JA-regulated defense-related gene PDF1.2 but not the ET-regulated GST2, and the SA-regulated gene PR1 but not the SA-regulated PR2 and PR5. Transgenic soybean and Arabidopsis plants inoculated with cyst nematodes did not display a significantly altered susceptibility to nematode infection. These results collectively show that GmEREBP1 functions as a transacting inducer of defense gene expression in both soybean and Arabidopsis and mediates the expression of both ET- and JA- and SA-regulated defense-related genes in these plant species.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transgenic plants – Roots (Botany) – Physiology"

1

Chow, Elaine Kiaw Fui 1972. "An investigation into the use of ROL genes to alter root formation and growth in transgenic plants." Monash University, Dept. of Biological Sciences, 2001. http://arrow.monash.edu.au/hdl/1959.1/9092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Misra, Rabindra Kumar. "Root growth and phosphorus uptake in relation to soil structure and strength /." Title page, table of contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm6781.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LAIBI, SAMI RESHAK. "EFFECT OF ENVIRONMENTAL FACTORS AND APPLIED GROWTH REGULATORS ON GROWTH, CYTOKININ PRODUCTION AND PHYSIOLOGICAL CHANGES OF PEPPERS (CAPSICUM ANNUUM L.) (ARIZONA)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/188004.

Full text
Abstract:
Pepper plants (Capsicum annuum L.) were grown in field and a greenhouse in Arizona to determine the effects of water stress, root temperature, and exogenously applied growth regulators on cytokinin production and the resulting growth. Research showed that vegetative plants were significantly higher in cytokinin activity and growth parameters than fruiting plants. Also, in root-pruned fruiting plants, cytokinin activity was less than that of intact fruiting plants. In vegetative plants, the competition between removed sinks and the rest of the shoot was reduced and, hence, more cytokinin came from the roots to the shoots. Besides, additional carbohydrates were available and recycled to the roots. In respect to temperature effect, elevating temperature from 15 to 30°C had a pronounced effect of increasing the growth rate and cytokinin activity. The measured parameters declined when temperature exceeded 30°C. Temperatures between 25 and 30°C were found to be optimum. Under experimental conditions, growth regulators (Cytex® and Burst®) applied to the soil or foliage had no significant effect on growth rates or cytokinin activity in roots. Also, applying Burst® or kinetin to the nutrient medium had inconsistent and statistically nonsignificant effects on photosynthesis and transpiration.
APA, Harvard, Vancouver, ISO, and other styles
4

Frigeri, Renita Betero Correa. "Relação entre raiz e parte aerea de plantulas de especies arboreas tropicais sob diferentes niveis de radiação solar." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/315143.

Full text
Abstract:
Orientador: Ivany Ferraz Marques Valio<br>Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia<br>Made available in DSpace on 2018-08-10T07:14:10Z (GMT). No. of bitstreams: 1 Frigeri_RenitaBeteroCorrea_D.pdf: 1952747 bytes, checksum: 56334acb7a1f414b02ad8d99c78ee37c (MD5) Previous issue date: 2007<br>Resumo: O crescimento de plântulas de espécies arbóreas tropicais, em ambientes com disponibilidade luminosa contrastante, depende de interações entre características morfológicas e fisiológicas. Dentre as várias alterações morfológicas que ocorrem em condições de baixa irradiância, uma é a razão de crescimento entre a raiz e a parte aérea. A razão raiz:parte aérea de plântulas pode ser indicativa de especialização a diferentes ambientes. No geral, quanto mais sombreado o ambiente, maior a alocação de biomassa para as folhas. O aumento da biomassa da parte aérea (folhas e caules) se faz em detrimento da biomassa das raízes. Com o objetivo de verificar os efeitos de diferentes níveis de irradiância na alocação diferencial de fotossintatos, entre a parte aérea e subterrânea de plântulas de algumas espécies arbóreas tropicais, foram analisados o papel dos cotilédones e da região apical do caule e raiz na alocação, o teor de amido e a translocação de compostos de carbono. Plântulas de Copaifera langsdorfii, Dalbergia nigra, Hymenaea courbaril, Myroxylon peruiferum, Peltophorum dubium e Poecilanthe parviflora, consideradas tolerantes ao sombreamento e Bauhinia longifolia, Enterolobium contortisiliquum, Erythrina speciosa, Piptadenia gonoacantha, Senna macranthera e Schizolobium parahyba, consideradas pioneiras, foram crescidas por aproximadamente 2 meses sob 4, 18, 50 e 100 % da irradiância total. O acúmulo de biomassa de todas as espécies estudadas aumentou em resposta ao aumento da disponibilidade luminosa, bem como as taxas de crescimento relativo e a assimilação líquida. Verificou-se, em geral, redução na razão raiz: parte aérea das plântulas sob baixa irradiância. Apesar deste padrão geral, as espécies estudadas variaram quanto à razão raiz:parte aérea. Plântulas de espécies consideradas tolerantes ao sombreamento como Myroxylon peruiferum, Poecilanthe parviflora e Hymenaea courbaril apresentaram pouca alteração na razão raiz:parte aérea entre os diferentes tratamentos. Bauhinia longifolia, Copaifera langsdorfii, Erythrina speciosa, Enterolobium contortisiliquum e Piptadenia gonoacantha destacaram-se pelas altas razões raiz:parte aérea sob altas irradiâncias. A remoção dos cotilédones das plântulas, da maioria das espécies estudadas, resultou em redução da biomassa total. No geral, não houve diferença significativa na fração de biomassa alocada ao caule, às raízes e às folhas e na razão raiz:parte aérea, com a remoção dos cotilédones. O acúmulo relativo de amido nas folhas não pareceu associado ao decréscimo na partição de biomassa para as raízes, nas plântulas das espécies analisadas. Plântulas de Erythrina speciosa, que pouco diferiram neste aspecto quando mantidas a 2 e 50 % da irradiância, apresentaram a maior alteração na razão raiz:parte aérea. Plântulas de Poecilanthe parviflora, que não alteraram significativamente a distribuição de massa seca entre raiz e parte aérea, diferiram significativamente quanto ao acúmulo relativo de amido nas duas irradiâncias. Aparentemente, a remoção parcial dos diferentes órgãos contribuiu pouco para a redução da biomassa total. No geral, as plântulas das espécies analisadas revelaram um crescimento compensatório em resposta à remoção, tanto sob baixa quanto alta irradiância. A razão raiz:parte aérea não foi alterada em relação às plântulas intactas. A avaliação da distribuição de compostos com carbono radioativamente marcados demonstrou que a direção do movimento dos assimilados nas plântulas de Erythrina speciosa, Poecilanthe parviflora e Enterolobium contortisiliquum, após 48 horas de aplicação, deu-se no sentido da folha aplicada para o caule e em menor proporção para a raiz, exceto em plântulas de Hymenaea courbaril que retiveram quase a totalidade de assimilados na folha aplicada. No geral, não se observou uma diferença marcante em termos de movimento de assimilados, em plântulas mantidas a 2 e 50 % da irradiância. Em resumo, as espécies consideradas pioneiras apresentaram mudanças morfológicas e fisiológicas mais amplas, revelando grande plasticidade e habilidade em adaptar-se às variadas intensidades luminosas a que foram submetidas, em relação às espécies secundárias que revelaram baixa plasticidade fenotípica, a qual geralmente está associada à tolerância ao sombreamento. Entretanto, verificou-se a existência de espécies com respostas intermediárias e variáveis em relação aos parâmetros analisados<br>Abstract: The growth of seedlings of rain-forest tree species, in environments with contrasting light availability depends on the interaction between morphological and physiological characteristics. Among the various morphological alterations which occur in low-irradiance conditions, one of them is the ratio of growth between the root and shoot. The root: shoot ratio of seedlings can be suggestive to specialization to different environments. In general, the more shadowed the environment is, bigger is the biomass allocation on the leaves. The increase of biomass on the leaf area (leaves and stalk) occurs due to biomass detriment on the roots. Aiming to verify the different radiation level effects in the differential allocation of photosynthates between the root and the shoot of seedlings from some rain-forest tree species, the role of cotyledons and the apical region in the stalk and root in the allocation, the starch tenor and the translocation of carbon compounds radiolabelled. Seedlings of Copaifera langsdorfii, Dalbergia nigra, Hymenaea courbaril, Myroxylon peruiferum, Peltophorum dubium e Poecilanthe parviflora, considered shade tolerant and Bauhinia longifolia, Enterolobium contortisiliquum, Erythrina speciosa, Piptadenia gonoacantha,, Senna macranthera e Schizolobium parahyba, considered pioneers, were grown for approximately two months under 4, 18, 50 and 100 % of total irradiance. The biomass accumulation increased in all the studied species in response to light availability increase as well as the relative growth rate and net assimilation rate. In general, it was observed a reduction in the root:shoot ratio of seedlings under low irradiance. Despite this general pattern, the studied species varied regarding the root:shoot ratio. Seedlings of species considered shading tolerant as Myroxylon peruiferum, Poecilanthe parviflora e Hymenaea courbaril did not present a significant change in the root: shoot ratio. Bauhinia longifolia, Copaifera langsdorfii, Erythrina speciosa, Enterolobium contortisiliquum e Piptadenia gonoacantha contrasted due to high root: shoot ratio under high irradiance. The removal of cotyledons from the seedlings, in most of the studied species, resulted in reduction of the total biomass. Generally, there was not significant difference in the biomass portion allocated in the stalk, in the root and in the leaves and in the root:shoot ratio, with the removal of cotyledons. The accumulation of starch in the leaves did not seem associated to the decrease of biomass partitioning to the seedlings roots in the analyzed species. Seedlings of Erythrina speciosa which little differed in this aspect when put under 2 and 50% of irradiance, presented a higher alteration in the root: shoot ratio. Seedlings of Poecilanthe parviflora, which did not alter significantly the distribution of dry mass between root and shoot, differed significantly in the relative accumulate of starch in both irradiance. Apparently, the partial removal of these different organs little contributed for the total biomass reduction. In general, the analyzed seedling species, revealed compensatory growth in response to removal, either under low or high irradiance. The root:shoot ratio was not altered compared to the intact seedlings. The analyses of distribution of carbon compounds radioactively marked, showed that the moving direction of the assimilate in the seedlings of Erythrina speciosa, Poecilanthe parviflora e Enterolobium contortisiliquum, after 48 hours of application, occurred in the application leaf to stalk way also in lower portion to the root except in seedlings of Hymenaea courbaril which retained almost all the assimilate in the applied leaf. In an overall, a distinct difference was not observed in assimilates flow in seedlings put under 2 to 50 % of irradiance. Altogether, the species considered pioneers presented more ample morphological and physiological changes, revealing great plasticity and ability in adapting to various light intensities which they were submitted. In relation to the secondary species which revealed low phenotypical plasticity to which is generally associated with shadow tolerating therefore, there was found the existence of species with intermediate variable according to the analyzed parameters<br>Doutorado<br>Doutor em Biologia Vegetal
APA, Harvard, Vancouver, ISO, and other styles
5

Smit, Julie. "Effects of root growth and physiology on drought resistance in Douglas-fir, lodgepole pine, and white spruce seedlings." Thesis, 1993. https://dspace.library.uvic.ca//handle/1828/9656.

Full text
Abstract:
Two aspects of drought resistance were investigated on wet and dry ecotypes of three conifer species: 1) the relative importance of drought avoidance and drought tolerance mechanisms in resisting drought stress was assessed on Douglas-fir (Pseudotsuga menzieseii) and lodgepole pine (Pinus contorta) seedlings, and 2) the effects of drought on root hydraulic conductance and low temperature, on root water flow rates Were assessed on first-year seedlings of Douglas-fir, lodgepole pine and white spruce (Picea glauca). To study drought avoidance, Douglas-fir and lodgepole pine seedlings were grown in sealed containers in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial treatment design. Dry weights, water use, and root length were determined for seedlings at each of five harvests and stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings. To study drought tolerance, Douglas-fir and lodgepole pine seedlings were grown under drought and well-watered conditions. At each of three harvests a pressure-volume curve was produced for each seedling. Douglas-fir maintained a lower osmotic potential at full saturation [special characters omitted] and lower turgor loss point [special characters omitted] than lodgepole pine under both watering regimes,. Both species had lower [special characters omitted] when drought-stressed. Douglas-fir appears to be a more conservative species, maintaining low stomatal conductance and tolerating drought conditions, whereas lodgepole pine avoids drought by producing large amounts of roots to exploit the soil resource. To study root hydraulic conductance (Lproot) and water flow rates through roots (WFRR), water flow was measured through de-topped roots of Douglas-fir, lodgepole pine, and white spruce seedlings in a pressure chamber. In a drought experiment, seedlings were grown in sandy soil in a greenhouse under drought and well-watered conditions during their first growing season and, in a low temperature experiment, seedlings were grown in sandy soil in growth chambers at 25/20°C (day/night) and 15/10°C, In the drought experiment, water flow through roots was measured at three pressures. No differences in Lproot were found for Douglas-fir and white spruce seedlings grown under the two watering regimes, however, lodgepole pine seedlings had reduced Lproot when grown under drought conditions. Welk watered seedlings of lodgepole pine and white spruce had higher Lpr00t in 1989 than in 1990 whereas Douglas-fir seedlings had the same Lproot in both years. In the low temperature experiment, WFRR was measured at 1.0 MPa and temperatures of 20°C for 24 hours or 20°, 12°, and 4°C for 18, 15, and 15 hours respectively. At 20°C, white spruce seedlings had higher WFRR than the other two species. Lodgepole pine and white spruce seedlings grown in the 1S°/10°C growth chamber had higher WFRR than seedlings grown in the 25°/20°C growth chamber. Water flow rate decreased with temperature in all three species. After correcting for viscosity, all seedlings had lower WFRR with reduced temperature, except for Douglas-fir and white spruce seedlings grown at 15°/10°C which had the same WFRR at 20°C and 12°C. Therefore, Douglas-fir and white spruce seedlings were found to become less sensitive to low temperature (chilling) stress when pre-conditioned at low temperatures. In the drought and low temperature studies, dry weight biomass of white spruce was lowest but white spruce had a greater specific root length than lodgepole pine and Douglas-fir. In the drought study, biomass production in seedlings from wet ecotypes of each species was more reduced when drought-stressed than seedlings from dry ecotypes.<br>Graduate
APA, Harvard, Vancouver, ISO, and other styles
6

Rowland, Steven D. "A Lateral Root Defect in the wag1-1/wag2-1 Double Mutant of Arabidopsis." 2012. http://hdl.handle.net/1805/2888.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)<br>The root system architecture of higher plants plays an essential role in the uptake of water and nutrients as well as the production of hormones. These root systems are highly branched with the formation of post-embryonic organs such as lateral roots. The initiation and development of lateral roots has been well defined. WAG1 and WAG2 are protein-serine/threonine kinases from Arabidopsis that are closely related to PINOID and suppress root waving. The wag1;wag2 double mutants exhibit a strong root waving phenotype on vertical hard agar plates only seen in wild-type roots when the seedlings are grown on inclined plates. Here an additional root phenotype in the wag1;wag2 mutant is reported. The wag1;wag2 double mutant displays both an increased total number and density of emerged lateral roots (approximately 1.5-fold). An increased LRP density of 1.5-fold over wild-type is observed. To ascertain the role of WAG1 and WAG2 in lateral root development we examined promoter activity in the WAG1::GUS and WAG2::GUS lines. The WAG1 promoter showed no detectable activity at any stage of development. The WAG2 promoter was active in stage IV onward, however there was no detectable activity in the cell types associated with initiation events. The lateral root density and spatial patterning in wild-type, when grown on inclined hard agar plates, was similar to wag1;wag2 on vertical plates. Seedlings of both genotypes were treated with hormones such as auxin and MeJA, and inhibitors. Auxin response in wag1;wag2 was normal with a similar number of LR as the wild-type after treatment. Treatment with MeJA resulted in a similar induction of LRP in both genotypes, however the percent lateral root emergence in wag1;wag2 was reduced while Col-0 was increased compared to controls. Treatment with the calcium blocker tetracaine resulted in wag1;wag2 displaying a wild-type level of LR but had no significant effect on wild-type. Genetic analysis of the wag1;wag2 LR pathway revealed that WAG1 and WAG2 are acting in the same pathway as AUX1, AXR1and PGM1. pgm1-1 was not previously reported to have a LR defect but showed decreased LR formation here, while pgm1;wag1;wag2 had a similar LR density to wag1;wag2. TIR7 and ARG1 were both deduced to operate in separate pathways from WAG1 and WAG2. The data presented here shows that the wag1;wag2 double mutant has an increased number of LR compared to Col-0. This defect appears to be caused by increased pre-initiation events and seems to be tied to the root waving phenotype. However, the treatment with MeJA revealed a possible role for WAG1 or WAG2 in LRP development, potentially under stress conditions. Calcium also seems to play a significant role in the wag1;wag2 LR phenotype, possibly independent of the root waving phenotype.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Transgenic plants – Roots (Botany) – Physiology"

1

1946-, Abe Jun, and International Society of Root Research., eds. Roots: The dynamic interface between plants and the earth : the 6th symposium of the International Society of Root Research, 11-15 November 2001, Nagoya, Japan. Kluwer Academic, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Maricheva Ė, Akimova G. P, and Sali͡a︡ev Ri͡u︡rik Konstantinovich, eds. Adaptat͡s︡ii͡a︡ rastushchikh kletok korni͡a︡ k ponizhennym temperaturam. Izd-vo "Nauka," Sibirskoe otd-nie, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schjørring, Jan K. Planters proton-balance: Indflydelsen af ionoptagelse, kvælstofassimilation og fosformangel på netto-fluxen af protoner mellem rødder og rodmedium, pH i rhizosfæren og udnyttelsen af jord som fosforkilde = Proton balance of plants : influence of ion uptake, nitrogen assimilation, and phosphorus deficiency on the net flux of protons between roots and root medium, rhizosphere pH, and acquisition of phosphorus from soil. Afdelingen for planternes ernæring, den Kgl. Veterinær- og landbohøjskole, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tinker, P. B. Solute movement in the rhizosphere. Oxford University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doran, Pauline M. Hairy Roots. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doran, Pauline M. Hairy Roots. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doran, Pauline M. Hairy Roots. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doran, Pauline M. Hairy Roots. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abe, Jun. Roots: The Dynamic Interface between Plants and the Earth. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

M, Doran Pauline, ed. Hairy roots: Culture and application. Harwood Academic, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transgenic plants – Roots (Botany) – Physiology"

1

Herbers, Karin, and Uwe Sonnewald. "Transgenic Plants in Biochemistry and Plant Physiology." In Progress in Botany. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80446-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography