To see the other types of publications on this topic, follow the link: Transgenic plants – Roots (Botany) – Physiology.

Journal articles on the topic 'Transgenic plants – Roots (Botany) – Physiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Transgenic plants – Roots (Botany) – Physiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, So-Eun, Chan-Ju Lee, Sul-U. Park, et al. "Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants." Antioxidants 10, no. 1 (2021): 51. http://dx.doi.org/10.3390/antiox10010051.

Full text
Abstract:
Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4–19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The β-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.
APA, Harvard, Vancouver, ISO, and other styles
2

Andika, Ida Bagus, Hideki Kondo, and Tetsuo Tamada. "Evidence That RNA Silencing-Mediated Resistance to Beet necrotic yellow vein virus Is Less Effective in Roots Than in Leaves." Molecular Plant-Microbe Interactions® 18, no. 3 (2005): 194–204. http://dx.doi.org/10.1094/mpmi-18-0194.

Full text
Abstract:
In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.
APA, Harvard, Vancouver, ISO, and other styles
3

Sobczak, Miroslaw, Anna Avrova, Justyna Jupowicz, Mark S. Phillips, Karin Ernst, and Amar Kumar. "Characterization of Susceptibility and Resistance Responses to Potato Cyst Nematode (Globodera spp.) Infection of Tomato Lines in the Absence and Presence of the Broad-Spectrum Nematode Resistance Hero Gene." Molecular Plant-Microbe Interactions® 18, no. 2 (2005): 158–68. http://dx.doi.org/10.1094/mpmi-18-0158.

Full text
Abstract:
The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.
APA, Harvard, Vancouver, ISO, and other styles
4

Fukudome, Mitsutaka, Eri Watanabe, Ken-ichi Osuki, Nahoko Uchi, and Toshiki Uchiumi. "Ectopic or Over-Expression of Class 1 Phytoglobin Genes Confers Flooding Tolerance to the Root Nodules of Lotus japonicus by Scavenging Nitric Oxide." Antioxidants 8, no. 7 (2019): 206. http://dx.doi.org/10.3390/antiox8070206.

Full text
Abstract:
Flooding limits biomass production in agriculture. Leguminous plants, important agricultural crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia, but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study, we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule symbiosis under flooding by scavenging NO and controlling ROS.
APA, Harvard, Vancouver, ISO, and other styles
5

Díaz, Clara L., Herman P. Spaink, and Jan W. Kijne. "Heterologous Rhizobial Lipochitin Oligosaccharides and Chitin Oligomers Induce Cortical Cell Divisions in Red Clover Roots, Transformed with the Pea Lectin Gene." Molecular Plant-Microbe Interactions® 13, no. 3 (2000): 268–76. http://dx.doi.org/10.1094/mpmi.2000.13.3.268.

Full text
Abstract:
Division of cortical cells in roots of leguminous plants is triggered by lipochitin oligosaccharides (LCOs) secreted by the rhizobial microsymbiont. Previously, we have shown that presence of pea lectin in transgenic white clover hairy roots renders these roots susceptible to induction of root nodule formation by pea-specific rhizobia (C. L. Díaz, L. S. Melchers, P. J. J. Hooykaas, B. J. J. Lugtenberg, and J. W. Kijne, Nature 338:579–581, 1989). Here, we report that pea lectin-transformed red clover hairy roots form nodule primordium-like structures after inoculation with pea-, alfalfa-, and Lotus-specific rhizobia, which normally do not nodulate red clover. External application of a broad range of purified LCOs showed all of them to be active in induction of cortical cell divisions and cell expansion in a radial direction, resulting in formation of structures that resemble nodule primordia induced by clover-specific rhizobia. This activity was obvious in about 50% of the red clover plants carrying hairy roots transformed with the pea lectin gene. Also, chitopentaose, chitotetraose, chitotriose, and chitobiose were able to induce cortical cell divisions and cell expansion in a radial direction in transgenic roots, but not in control roots. Sugarbinding activity of pea lectin was essential for its effect. These results show that transformation of red clover roots with pea lectin results in a broadened response of legume root cortical cells to externally applied potentially mitogenic oligochitin signals.
APA, Harvard, Vancouver, ISO, and other styles
6

Bandaranayake, Pradeepa C. G., and John I. Yoder. "Trans-Specific Gene Silencing of Acetyl-CoA Carboxylase in a Root-Parasitic Plant." Molecular Plant-Microbe Interactions® 26, no. 5 (2013): 575–84. http://dx.doi.org/10.1094/mpmi-12-12-0297-r.

Full text
Abstract:
Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene silencing.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Youning, Wei Yang, Yanyan Zuo, et al. "GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean." Journal of Experimental Botany 70, no. 12 (2019): 3165–76. http://dx.doi.org/10.1093/jxb/erz144.

Full text
Abstract:
Abstract Auxin plays central roles in rhizobial infection and nodule development in legumes. However, the sources of auxin during nodulation are unknown. In this study, we analyzed the YUCCA (YUC) gene family of soybean and identified GmYUC2a as an important regulator of auxin biosynthesis that modulates nodulation. Following rhizobial infection, GmYUC2a exhibited increased expression in various nodule tissues. Overexpression of GmYUC2a (35S::GmYUC2a) increased auxin production in soybean, resulting in severe growth defects in root hairs and root development. Upon rhizobial infection, 35S::GmYUC2a hairy roots displayed altered patterns of root hair deformation and nodule formation. Root hair deformation occurred mainly on primary roots, and nodules formed exclusively on primary roots of 35S::GmYUC2a plants. Moreover, transgenic 35S::GmYUC2a composite plants showed delayed nodule development and a reduced number of nodules. Our results suggest that GmYUC2a plays an important role in regulating both root growth and nodulation by modulating auxin balance in soybean.
APA, Harvard, Vancouver, ISO, and other styles
8

Andika, Ida Bagus, Liying Sun, Rong Xiang, Junmin Li, and Jianping Chen. "Root-Specific Role for Nicotiana benthamiana RDR6 in the Inhibition of Chinese wheat mosaic virus Accumulation at Higher Temperatures." Molecular Plant-Microbe Interactions® 26, no. 10 (2013): 1165–75. http://dx.doi.org/10.1094/mpmi-05-13-0137-r.

Full text
Abstract:
Some viruses only infect plants at cool temperatures but the molecular mechanism underlying this low-temperature dependence remains unclear. Chinese wheat mosaic virus (CWMV, genus Furovirus) was able to infect wheat and Nicotiana benthamiana plants at 16 but not at 24°C. When CWMV-infected plants were transferred to 24°C for 2 weeks, the newly emerged leaves and roots became virus free. Co-infection with Potato virus Y rescued CWMV accumulation in N. benthamiana plants after a temperature shift to 24°C. In transgenic N. benthamiana plants silenced for the N. benthamiana RNA-dependent RNA polymerase 6 (NbRDR6), CWMV was able to accumulate in roots but not in leaves after a temperature shift to 24°C. Deep sequencing of small RNAs showed that, at 16°C, abundant CWMV small interfering (si)RNAs accumulated in infected N. benthamiana plants. Silencing of NbRDR6 increased the abundance of CWMV siRNAs and the generation of siRNAs from hotspots in the CWMV genome. In contrast, when shifted to 24°C for 1 week, CWMV siRNAs were markedly fewer in roots of NbRDR6-silenced than in roots of wild-type plants but were similar in the leaves of those plants. Our results demonstrate the root-specific role of NbRDR6 in the inhibition of CWMV accumulation and biogenesis of CWMV siRNAs at higher temperatures.
APA, Harvard, Vancouver, ISO, and other styles
9

Thu, Sandi Win, Ming-Zhu Lu, Amanda M. Carter, et al. "Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean." Journal of Experimental Botany 71, no. 15 (2020): 4495–511. http://dx.doi.org/10.1093/jxb/eraa146.

Full text
Abstract:
Abstract Nitrogen (N)-fixing soybean plants use the ureides allantoin and allantoic acid as major long-distance transport forms of N, but in non-fixing, non-nodulated plants amino acids mainly serve in source-to-sink N allocation. However, some ureides are still synthesized in roots of non-fixing soybean, and our study addresses the role of ureide transport processes in those plants. In previous work, legume ureide permeases (UPSs) were identified that are involved in cellular import of allantoin and allantoic acid. Here, UPS1 from common bean was expressed in the soybean phloem, which resulted in enhanced source-to-sink transport of ureides in the transgenic plants. This was accompanied by increased ureide synthesis and elevated allantoin and allantoic acid root-to-sink transport. Interestingly, amino acid assimilation, xylem transport, and phloem partitioning to sinks were also strongly up-regulated. In addition, photosynthesis and sucrose phloem transport were improved in the transgenic plants. These combined changes in source physiology and assimilate partitioning resulted in increased vegetative growth and improved seed numbers. Overall, the results support that ureide transport processes in non-fixing plants affect source N and carbon acquisition and assimilation as well as source-to-sink translocation of N and carbon assimilates with consequences for plant growth and seed development.
APA, Harvard, Vancouver, ISO, and other styles
10

Mazarei, Mitra, Axel A. Elling, Tom R. Maier, David P. Puthoff, and Thomas J. Baum. "GmEREBP1 Is a Transcription Factor Activating Defense Genes in Soybean and Arabidopsis." Molecular Plant-Microbe Interactions® 20, no. 2 (2007): 107–19. http://dx.doi.org/10.1094/mpmi-20-2-0107.

Full text
Abstract:
Ethylene-responsive element-binding proteins (EREBPs) are plant-specific transcription factors, many of which have been linked to plant defense responses. Conserved EREBP domains bind to the GCC box, a promoter element found in pathogenesis-related (PR) genes. We previously identified an EREBP gene from soybean (GmEREBP1) whose transcript abundance decreased in soybean cyst-nematode-infected roots of a susceptible cultivar, whereas it increased in abundance in infected roots of a resistant cultivar. Here, we report further characterization of this gene. Transient expression analyses showed that GmEREBP1 is localized to the plant nucleus and functions as a transcriptional activator in soybean leaves. Transgenic soybean plants expressing GmEREBP1 activated the expression of the ethylene (ET)-responsive gene PR2 and the ET- and jasmonic acid (JA)-responsive gene PR3, and the salicylic acid (SA)-responsive gene PR1 but not the SA-responsive PR5. Similarly, transgenic Arabidopsis plants expressing GmEREBP1 showed elevated mRNA abundance of the ET-regulated gene PR3 and the ET- and JA-regulated defense-related gene PDF1.2 but not the ET-regulated GST2, and the SA-regulated gene PR1 but not the SA-regulated PR2 and PR5. Transgenic soybean and Arabidopsis plants inoculated with cyst nematodes did not display a significantly altered susceptibility to nematode infection. These results collectively show that GmEREBP1 functions as a transacting inducer of defense gene expression in both soybean and Arabidopsis and mediates the expression of both ET- and JA- and SA-regulated defense-related genes in these plant species.
APA, Harvard, Vancouver, ISO, and other styles
11

Nontachaiyapoom, Sureeporn, Paul T. Scott, Artem E. Men, Mark Kinkema, Peer M. Schenk, and Peter M. Gresshoff. "Promoters of Orthologous Glycine max and Lotus japonicus Nodulation Autoregulation Genes Interchangeably Drive Phloem-Specific Expression in Transgenic Plants." Molecular Plant-Microbe Interactions® 20, no. 7 (2007): 769–80. http://dx.doi.org/10.1094/mpmi-20-7-0769.

Full text
Abstract:
The nodule autoregulation receptor kinase (GmNARK) of soybean (Glycine max) is essential for the systemic auto-regulation of nodulation. Based on quantitative reverse-transcriptase polymerase chain reaction, GmNARK is expressed to varying levels throughout the plant; the transcript was detected at high levels in mature leaves and roots but to a lesser extent in young leaves, shoot tips, and nodules. The transcript level was not significantly affected by Bradyrhizobium japonicum during the first week following inoculation. In addition, the activities of the promoters of GmNARK and Lotus japonicus HAR1, driving a β-glucuronidase (GUSPlus) reporter gene, were examined in stably transformed L. japonicus and transgenic hairy roots of soybean. Histochemical GUS activity in L. japonicus plants carrying either a 1.7-kb GmNARKpr∷GUS or 2.0-kb LjHAR1pr∷GUS construct was clearly localized to living cells within vascular bundles, especially phloem cells in leaves, stems, roots, and nodules. Phloem-specific expression also was detected in soybean hairy roots carrying these constructs. Our study suggests that regulatory elements required for the transcription of these orthologous genes are conserved. Moreover, rapid amplification of 5′ cDNA ends (5′ rapid amplification of cDNA ends) revealed two major transcripts of GmNARK potentially originating from two TATA boxes. Further analysis of the GmNARK promoter has confirmed that these two TATA boxes are functional. Deletion analysis also located a region controlling phloem-specific expression to a DNA sequence between 908 bp and 1.7 kb upstream of the translation start site of GmNARK.
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Yaping, Fengjiao Li, Lu Tian, et al. "The Phenylalanine Ammonia Lyase Gene LjPAL1 Is Involved in Plant Defense Responses to Pathogens and Plays Diverse Roles in Lotus japonicus-Rhizobium Symbioses." Molecular Plant-Microbe Interactions® 30, no. 9 (2017): 739–53. http://dx.doi.org/10.1094/mpmi-04-17-0080-r.

Full text
Abstract:
Phenylalanine ammonia lyase (PAL) is important in the biosynthesis of plant secondary metabolites that regulate growth responses. Although its function is well-established in various plants, the functional significance of PAL genes in nodulation is poorly understood. Here, we demonstrate that the Lotus japonicus PAL (LjPAL1) gene is induced by Mesorhizobium loti infection and methyl-jasmonate (Me-JA) treatment in roots. LjPAL1 altered PAL activity, leading to changes in lignin contents and thicknesses of cell walls in roots and nodules of transgenic plants and, hence, to structural changes in roots and nodules. LjPAL1-knockdown plants (LjPAL1i) exhibited increased infection thread and nodule numbers and the induced upregulation of nodulin gene expression after M. loti infection. Conversely, LjPAL1 overexpression delayed the infection process and reduced infection thread and nodule numbers after M. loti inoculation. LjPAL1i plants also exhibited reduced endogenous salicylic acid (SA) accumulation and expression of the SA-dependent marker gene. Their infection phenotype could be partially restored by exogenous SA or Me-JA application. Our data demonstrate that LjPAL1 plays diverse roles in L. japonicus–rhizobium symbiosis, affecting rhizobial infection progress and nodule structure, likely by inducing lignin modification, regulating endogenous SA biosynthesis, and modulating SA signaling.
APA, Harvard, Vancouver, ISO, and other styles
13

Obertello, Mariana, Luis Wall, Laurent Laplaze, et al. "Functional Analysis of the Metallothionein Gene cgMT1 Isolated from the Actinorhizal Tree Casuarina glauca." Molecular Plant-Microbe Interactions® 20, no. 10 (2007): 1231–40. http://dx.doi.org/10.1094/mpmi-20-10-1231.

Full text
Abstract:
cgMT1 is a metallothionein (MT)-like gene that was isolated from a cDNA library of young nitrogen-fixing nodules resulting from the symbiotic interaction between Frankia spp. and the actinorhizal tree Casuarina glauca. cgMT1 is highly transcribed in the lateral roots and nitrogen-fixing cells of actinorhizal nodules; it encodes a class I type 1 MT. To obtain insight into the function of cgMT1, we studied factors regulating the expression of the MT promoter region (PcgMT1) using a β-glucuronidase (gus) fusion approach in transgenic plants of Arabidopsis thaliana. We found that copper, zinc, and cadmium ions had no significant effect on the regulation of PcgMT1-gus expression whereas wounding and H2O2 treatments led to an increase in reporter gene activity in transgenic leaves. Strong PcgMT1-gus expression also was observed when transgenic plants were inoculated with a virulent strain of the bacterial pathogen Xanthomonas campestris pv. campestris. Transgenic Arabidopsis plants expressing cgMT1 under the control of the constitutive 35S promoter were characterized by reduced accumulation of H2O2 when leaves were wounded and by increased susceptibility to the bacterial pathogen X. campestris. These results suggest that cgMT1 could play a role during the oxidative response linked to biotic and abiotic stresses.
APA, Harvard, Vancouver, ISO, and other styles
14

Qin, De-Bin, Meng-Yuan Liu, Lixing Yuan, et al. "CALCIUM-DEPENDENT PROTEIN KINASE 32-mediated phosphorylation is essential for the ammonium transport activity of AMT1;1 in Arabidopsis roots." Journal of Experimental Botany 71, no. 16 (2020): 5087–97. http://dx.doi.org/10.1093/jxb/eraa249.

Full text
Abstract:
Abstract Protein kinase-mediated phosphorylation modulates the absorption of many nutrients in plants. CALCIUM-DEPENDENT PROTEIN KINASES (CPKs) are key players in plant signaling to translate calcium signals into diverse physiological responses. However, the regulatory role of CPKs in ammonium uptake remains largely unknown. Here, using methylammonium (MeA) toxicity screening, CPK32 was identified as a positive regulator of ammonium uptake in roots. CPK32 specifically interacted with AMMONIUM TRANSPORTER 1;1 (AMT1;1) and phosphorylated AMT1;1 at the non-conserved serine residue Ser450 in the C-terminal domain. Functional analysis in Xenopus oocytes showed that co-expression of CPK32 and AMT1;1 significantly enhanced the AMT1;1-mediated inward ammonium currents. In transgenic plants, the phosphomimic variant AMT1;1S450E, but not the non-phosphorylatable variant AMT1;1S450A, fully complemented the MeA insensitivity and restored high-affinity 15NH4+ uptake in both amt1;1 and cpk32 mutants. Moreover, in the CPK32 knockout background, AMT1;1 lost its ammonium transport activity entirely. These results indicate that CPK32 is a crucial positive regulator of ammonium uptake in roots and the ammonium transport activity of AMT1;1 is dependent on CPK32-mediated phosphorylation.
APA, Harvard, Vancouver, ISO, and other styles
15

David, Rakefet, Hanan Itzhaki, Idit Ginzberg, Yedidya Gafni, Gad Galili, and Yoram Kapulnik. "Suppression of Tobacco Basic Chitinase Gene Expression in Response to Colonization by the Arbuscular Mycorrhizal Fungus Glomus intraradices." Molecular Plant-Microbe Interactions® 11, no. 6 (1998): 489–97. http://dx.doi.org/10.1094/mpmi.1998.11.6.489.

Full text
Abstract:
A differentially displayed cDNA clone (MD17) was isolated from tobacco roots (Nicotiana tabacum cv. Xanthi-nc) infected with the arbuscular mycorrhizal (AM) fungus Glomus intraradices. The isolated DNA fragment exhibited a reduced level of expression in response to AM establishment and 90% identity with the 3′ noncoding sequence of two basic chitinases (EC 3.2.1.14) from N. tabacum. Northern (RNA) blots and Western blots (immunoblots), probed with tobacco basic chitinase gene-specific probe and polyclonal antibodies raised against the chitinase enzyme, yielded hybridization patterns similar to those of MD17. Moreover, the up-regulation of the 32-kDa basic chitinase gene expression in tobacco roots by (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) was less effective in mycorrhizal roots than in nonmycorrhizal controls. Suppression of endogenous basic chitinase (32-kDa) expression was also observed in transgenic mycorrhizal plants that constitutively express the 34-kDa basic chitinase A isoform. When plants were grown with an increased phosphate supply, no suppression of the 32-kDa basic chitinase was obtained. These findings indicate that during the colonization and establishment of G. intraradices in tobacco roots, expression of the basic chitinase gene is down-regulated at the mRNA level.
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Zheng, Han Mao, Caihua Dong, et al. "Overexpression of Brassica napus MPK4 Enhances Resistance to Sclerotinia sclerotiorum in Oilseed Rape." Molecular Plant-Microbe Interactions® 22, no. 3 (2009): 235–44. http://dx.doi.org/10.1094/mpmi-22-3-0235.

Full text
Abstract:
Sclerotinia sclerotiorum causes a highly destructive disease in oilseed rape (Brassica napus) resulting in significant economic losses. Studies on the Arabidopsis thaliana MPK4 loss-of-function mutant have implicated that AtMPK4 is involved in plant defense regulation, and its effect on disease resistance varies in different plant–pathogen interactions. In this study, we isolated a B. napus mitogen-activated protein kinase, BnMPK4, and found that BnMPK4 along with PDF1.2 are inducible in resistant line Zhongshuang9 but both are consistently suppressed in susceptible line 84039 after inoculation with S. sclerotiorum. Transgenic oilseed rape overexpressing BnMPK4 markedly enhances resistance to S. sclerotiorum and Botrytis cinerea. Further experiments showed that transgenic plants inhibited growth of S. sclerotiorum and constitutively activated PDF1.2 but decreased H2O2 production and constitutively suppressed PR-1 expression. Treatment of roots of the transgenic plants with H2O2 solution resulted in enhanced susceptibility to the two pathogens. Our results support the idea that MPK4 positively regulates jasmonic acid-mediated defense response, which might play an important role in resistance to S. sclerotiorum in oilseed rape.
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Huatao, Xin Chen, Heping Gu, et al. "GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants." Plant Growth Regulation 73, no. 3 (2014): 299–308. http://dx.doi.org/10.1007/s10725-014-9890-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Vieweg, Martin F., Martin Frühling, Hans-Joachim Quandt, et al. "The Promoter of the Vicia faba L. Leghemoglobin Gene VfLb29 Is Specifically Activated in the Infected Cells of Root Nodules and in the Arbuscule-Containing Cells of Mycorrhizal Roots from Different Legume and Nonlegume Plants." Molecular Plant-Microbe Interactions® 17, no. 1 (2004): 62–69. http://dx.doi.org/10.1094/mpmi.2004.17.1.62.

Full text
Abstract:
The VfLb29 leghemoglobin gene promoter was polymerase chain reaction-amplified from a Vicia faba genomic library and was fused to the gusAint coding region. Expression of the chimeric gene was analyzed in transgenic hairy roots of the legumes V. faba, V. hirsuta, and Medicago truncatula as well as in transgenic Nicotiana tabacum plants. The VfLb29 promoter was found to be specifically active not only in the infected cells of the nitrogen-fixing zone of root nodules but also in arbuscule-containing cells of transgenic V. faba and M. truncatula roots colonized by the endomycorrhizal fungus Glomus intraradices. In addition to these two legumes, specific expression in arbuscule-containing cells was also observed in the nonlegume N. tabacum. All studies were done in comparison to the V. faba leghemoglobin gene promoter VfLb3 that as VfLb29 was expressed in the infected cells of root nodules but showed no activity in endomycorrhiza. An activation of the VfLb29 promoter due to hypoxia in metabolically active tissues was excluded. The conserved activation in arbuscule-containing cells of legumes and the nonlegume N. tabacum suggests a conserved trigger for this promoter in legume and nonlegume endomycorrhiza symbioses.
APA, Harvard, Vancouver, ISO, and other styles
19

Brar, Hargeet K., and Madan K. Bhattacharyya. "Expression of a Single-Chain Variable-Fragment Antibody Against a Fusarium virguliforme Toxin Peptide Enhances Tolerance to Sudden Death Syndrome in Transgenic Soybean Plants." Molecular Plant-Microbe Interactions® 25, no. 6 (2012): 817–24. http://dx.doi.org/10.1094/mpmi-12-11-0317.

Full text
Abstract:
Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Shasha, Rui Yang, Miao Liu, et al. "PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes." Journal of Experimental Botany 71, no. 18 (2020): 5589–602. http://dx.doi.org/10.1093/jxb/eraa259.

Full text
Abstract:
Abstract Although the salt overly sensitive (SOS) pathway plays essential roles in conferring salt tolerance in Arabidopsis thaliana, the regulatory mechanism underlying SOS gene expression remains largely unclear. In this study, AtPLATZ2 was found to function as a direct transcriptional suppressor of CBL4/SOS3 and CBL10/SCaBP8 in the Arabidopsis salt stress response. Compared with wild-type plants, transgenic plants constitutively overexpressing AtPLATZ2 exhibited increased sensitivity to salt stress. Loss of function of PLATZ2 had no observed salt stress phenotype in Arabidopsis, while the double mutant of PLATZ2 and PLATZ7 led to weaker salt stress tolerance than wild-type plants. Overexpression of AtPLATZ2 in transgenic plants decreased the expression of CBL4/SOS3 and CBL10/SCaBP8 under both normal and saline conditions. AtPLATZ2 directly bound to A/T-rich sequences in the CBL4/SOS3 and CBL10/SCaBP8 promoters in vitro and in vivo, and inhibited CBL4/SOS3 promoter activity in the plant leaves. The salt sensitivity of #11 plants constitutively overexpressing AtPLATZ2 was restored by the overexpression of CBL4/SOS3 and CBL10/SCaBP8. Salt stress-induced Na+ accumulation in both the shoots and roots was more exaggerated in AtPLATZ2-overexpressing plants than in the wild type. The salt stress-induced Na+ accumulation in #11 seedlings was also rescued by the overexpression of CBL4/SOS3 and CBL10/SCaBP8. Furthermore, the transcription of AtPLATZ2 was induced in response to salt stress. Collectively, these results suggest that AtPLATZ2 suppresses plant salt tolerance by directly inhibiting CBL4/SOS3 and CBL10/SCaBP8, and functions redundantly with PLATZ7.
APA, Harvard, Vancouver, ISO, and other styles
21

Duan, Liujian, Junqing Pei, Yaping Ren, et al. "A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in Lotus japonicus." Molecular Plant-Microbe Interactions® 32, no. 4 (2019): 401–12. http://dx.doi.org/10.1094/mpmi-04-18-0104-r.

Full text
Abstract:
In almost all symbiotic interactions between rhizobia and leguminous plants, host flavonoid–induced synthesis of Nod factors in rhizobia is required to initiate symbiotic response in plants. In this study, we found that Lotus japonicus Nod factor receptor 5 (LjNFR5) might directly regulate flavonoid biosynthesis during symbiotic interaction with rhizobia. A yeast two-hybrid analysis revealed that a dihydroflavonol-4-reductase-like protein (LjDFL1) interacts with LjNFR5. The interaction between MtDFL1 and MtNFP, two Medicago truncatula proteins with homology to LjDFL1 and LjNFR5, respectively, was also shown, suggesting that interaction between these two proteins might be conserved in different legumes. LjDFL1 was highly expressed in root hairs and epidermal cells of root tips. Lotus ljdfl1 mutants and Medicago mtdfl1 mutants produced significantly fewer infection threads (ITs) than the wild-type control plants following rhizobial treatment. Furthermore, the roots of stable transgenic L. japonicus plants overexpressing LjDFL1 formed more ITs than control roots after exposure to rhizobia. These data indicated that LjDFL1 is a positive regulator of symbiotic signaling. However, the expression of LjDFL1 was suppressed by rhizobial treatment, suggesting that a negative feedback loop might be involved in regulation of the symbiotic response in L. japonicus.
APA, Harvard, Vancouver, ISO, and other styles
22

Yoon, Jinmi, Lae-Hyeon Cho, Wenzhu Yang, et al. "Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis." Journal of Experimental Botany 71, no. 18 (2020): 5348–64. http://dx.doi.org/10.1093/jxb/eraa209.

Full text
Abstract:
Abstract Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.
APA, Harvard, Vancouver, ISO, and other styles
23

Wu, Qindong, and Hans D. VanEtten. "Introduction of Plant and Fungal Genes into Pea (Pisum sativum L.) Hairy Roots Reduces Their Ability to Produce Pisatin and Affects Their Response to a Fungal Pathogen." Molecular Plant-Microbe Interactions® 17, no. 7 (2004): 798–804. http://dx.doi.org/10.1094/mpmi.2004.17.7.798.

Full text
Abstract:
Pisatin is an isoflavonoid phytoalexin synthesized by pea (Pisum sativum L.). Previous studies have identified two enzymes apparently involved in the synthesis of this phytoalexin, isoflavone reductase (IFR), which catalyzes an intermediate step in pisatin biosynthesis, and (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM), an enzyme catalyzing the terminal step. To further evaluate the involvement of these enzymes in pisatin biosynthesis, sense- and antisense-oriented cDNAs of Ifr and Hmm fused to the 35s CaMV promoter, and Agrobacterium rhizogenes, were used to produce transgenic pea hairy root cultures. PDA, a gene encoding pisatin demethylating activity (pda) in the pea-pathogenic fungus Nectria haematococca, also was used in an attempt to reduce pisatin levels. Although hairy root tissue with either sense or antisense Ifr cDNA produced less pisatin, the greatest reduction occurred with sense or antisense Hmm cDNA. The reduced pisatin production in these lines was associated with reduced amounts of Hmm transcripts, HMM protein, and HMM enzyme activity. Hairy roots containing the PDA gene also produced less pisatin. To evaluate the role of pisatin in disease resistance, the virulence of N. haematococca on the transgenic roots that produced the lowest levels of pisatin was tested. Hairy roots expressing antisense Hmm were more susceptible than the control hairy roots to isolates of N. haematococca that are either virulent or nonvirulent on wild-type pea plants. This appears to be the first case of producing transgenic plant tissue with a reduced ability to produce a phytoalexin and demonstrating that such tissue is less resistant to fungal infection: these results support the hypothesis that phytoalexin production is a disease resistance mechanism.
APA, Harvard, Vancouver, ISO, and other styles
24

Nikovics, Krisztina, Julietta Simidjieva, Adrian Peres, et al. "Cell-Cycle, Phase-Specific Activation of Maize streak virus Promoters." Molecular Plant-Microbe Interactions® 14, no. 5 (2001): 609–17. http://dx.doi.org/10.1094/mpmi.2001.14.5.609.

Full text
Abstract:
It is believed that geminiviral DNA replication is coupled to the cell-cycle regulatory complex of the plant cell and that the virus-early (complementary or C sense) gene products REP and REPA may be able to manipulate the regulation of the cycle. In this study, we examined expression from the promoters of Maize streak virus (MSV) in transgenic maize plants and cells to determine whether they showed cell-cycle specificity. Histochemical staining of plant roots containing “long and short” C-sense promoter sequences upstream of the GUS (β-glucuronidase) reporter gene showed that promoter activity was restricted to the meristematic region of the roots and was enhanced by 2,4-dichlorophenoxy acetic acid (2,4-D) treatment. Analysis of reporter gene and cell-cycle-specific gene transcript levels coupled with flow cytometric data in synchronized transgenic maize cells revealed that all of the MSV promoters showed cell-cycle specificity. The coat protein gene promoter showed highest activity in early G2, whereas the C-sense promoter sequences produced two peaks of activity in the S and G2 cell-cycle phases.
APA, Harvard, Vancouver, ISO, and other styles
25

Westwood, James H., Xueshu Yu, Chester L. Foy, and Carole L. Cramer. "Expression of a Defense-Related 3-Hydroxy-3-Methylglutaryl CoA Reductase Gene in Response to Parasitization by Orobanche spp." Molecular Plant-Microbe Interactions® 11, no. 6 (1998): 530–36. http://dx.doi.org/10.1094/mpmi.1998.11.6.530.

Full text
Abstract:
Orobanche spp. are angiosperms that live parasitically on the roots of other plants, and are capable of significantly reducing the yield and quality of their crop hosts. We have demonstrated that parasitization by Orobanche induces expression of hmg2, a defense-related isogene of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) in tobacco. Transgenic tobacco plants expressing a construct containing 2.3 kb of the tomato hmg2 gene promoter fused to the β-glucuronidase (GUS) reporter gene were parasitized by O. aegyptiaca. Expression of the hmg2:GUS construct was detected within 1 day following penetration of the host root by the O. aegyptiaca radicle and was localized to the region immediately around the site of parasite invasion. This expression continued and intensified over the course of O. aegyptiaca development. In addition, the hmg2:GUS expression was induced by secondary parasitization, where secondary roots of O. aegyptiaca contacted the host root at a distance from the primary attachment site. This GUS expression was specific to plants containing the hmg2:GUS construct, and was not observed in control plants transformed with a construct of the cauliflower mosaic virus 35S promoter fused to the GUS gene. These results indicate that Orobanche parasitization initiates rapid and sustained induction of a defense-related gene in the host root.
APA, Harvard, Vancouver, ISO, and other styles
26

Maekawa, Takaki, Mitsumasa Kusakabe, Yoshikazu Shimoda, et al. "Polyubiquitin Promoter-Based Binary Vectors for Overexpression and Gene Silencing in Lotus japonicus." Molecular Plant-Microbe Interactions® 21, no. 4 (2008): 375–82. http://dx.doi.org/10.1094/mpmi-21-4-0375.

Full text
Abstract:
In this study, we compared the transcriptional activities between Cauliflower mosaic virus (CaMV)35S promoter and polyubiquitin (Ljubq1) promoter from Lotus japonicus using β-glucuronidase (gus) reporter gene in transgenic plants of L. japonicus. The promoter analysis demonstrated that the Ljubq1 promoter possessed higher activity than the CaMV35S promoter in leaves, stems, roots, nodules, and pollen. Finally, we created GATEWAY conversion technology-compatible binary vectors for over-expression and RNA interference under the Ljubq1 promoter. These materials could provide alternative choice for studies in L. japonicus.
APA, Harvard, Vancouver, ISO, and other styles
27

Poxson, David J., Michal Karady, Roger Gabrielsson, et al. "Regulating plant physiology with organic electronics." Proceedings of the National Academy of Sciences 114, no. 18 (2017): 4597–602. http://dx.doi.org/10.1073/pnas.1617758114.

Full text
Abstract:
The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.
APA, Harvard, Vancouver, ISO, and other styles
28

Scott, Russell A., Jason Weil, Phuong T. Le, et al. "Long- and Short-Chain Plant-Produced Bacterial N-Acyl-Homoserine Lactones Become Components of Phyllosphere, Rhizosphere, and Soil." Molecular Plant-Microbe Interactions® 19, no. 3 (2006): 227–39. http://dx.doi.org/10.1094/mpmi-19-0227.

Full text
Abstract:
Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.
APA, Harvard, Vancouver, ISO, and other styles
29

Sinharoy, Senjuti, Sudip Saha, Susanta Roy Chaudhury, and Maitrayee DasGupta. "Transformed Hairy Roots of Arachis hypogea: A Tool for Studying Root Nodule Symbiosis in a Non–Infection Thread Legume of the Aeschynomeneae Tribe." Molecular Plant-Microbe Interactions® 22, no. 2 (2009): 132–42. http://dx.doi.org/10.1094/mpmi-22-2-0132.

Full text
Abstract:
Arachis hypogea is a non–“infection thread” (IT) legume where rhizobial entry or dissemination in the nodules never involves IT. Rhizobia invade through epidermal “cracks” and directly access the cortical cells to develop the characteristic aeschynomenoid nodules. For investigating these nonclassical nodulation features in Arachis spp., we developed an efficient procedure for Agrobacterium rhizogenes R1000-mediated transformation of this plant. In this study, we optimized the induction of hairy roots and nodulation of composite Arachis hypogea plants in the presence of Bradyrhizobium sp. (Arachis) strain NC92. 35S promoter-driven green fluorescent protein and β-glucuronidase expression indicated transformation frequency to be above 80%. The transformed roots had the characteristic rosette-type root hairs and had normal level of expression of symbiosis-related genes SymRK and CCaMK. The transgenic nodules resembled the wild-type nodules with an exception of 2 to 3%, where they structurally deviated from the wild-type nodules to form nodular roots. A 16S rRNA profile of an infected-zone metagenome indicated that identical populations of bradyrhizobia invaded both composite wild-type plants grown in natural soil. Our results demonstrate that Arachis hairy root is an attractive system for undertaking investigations of the nonclassical features associated with its nitrogen-fixing symbiotic interactions.
APA, Harvard, Vancouver, ISO, and other styles
30

Bauer, Petra, Simone Poirier, Pascal Ratet, and Adam Kondorosi. "MsEnod12A Expression Is Linked to Meristematic Activity During Development of Indeterminate and Determinate Nodules and Roots." Molecular Plant-Microbe Interactions® 10, no. 1 (1997): 39–49. http://dx.doi.org/10.1094/mpmi.1997.10.1.39.

Full text
Abstract:
During development of nodules and roots, the alfalfa early nodulin gene MsEnod12A is expressed adjacent to the meristem. Using transgenic alfalfa carrying a MsEnod12A promoter-gusA fusion, we investigated the regulation of MsEnod12A expression in mature nodules and roots by GUS assays and reverse transcription-PCR. We found that in alfalfa indeterminate nodules induced by various Fix- Rhizobium meliloti mutants and in spontaneous nodules devoid of rhizobia, MsEnod12A was expressed at the distal end when a persistent meristem was present. However, this gene was not expressed when the meristem was lacking in nodules arrested in development. The MsEnod12A-gusA fusion was introduced into Lotus corniculatus plants that form determinate nodules devoid of a persistent meristem. Using these plants we found MsEnod12A-gusA expression only in young nodules and a disappearance in mature nodules. Moreover, when alfalfa roots were treated with auxins a lateral band of MsEnod12A expression was observed surrounding the club-shaped root apex and coinciding with induced lateral meristematic activities. Thus, in all cases MsEnod12A expression was associated with meristematic activities, suggesting that MsEnod12A plays a role in the differentiation processes of nodule and root cells and that it may serve as molecular tool for analyzing meristem establishment during nodule development.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Chengcheng, Lihua Zheng, Zhong Tang, et al. "OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice." Journal of Experimental Botany 71, no. 12 (2020): 3678–89. http://dx.doi.org/10.1093/jxb/eraa113.

Full text
Abstract:
Abstract Arsenic (As) contamination in paddy soil can cause phytotoxicity and elevated As accumulation in rice grains. Arsenic detoxification is closely linked to sulfur assimilation, but the genes involved have not been described in rice. In this study, we characterize the function of OASTL-A1, an O-acetylserine(thiol) lyase, in cysteine biosynthesis and detoxification of As in rice. Tissue expression analysis revealed that OsOASTL-A1 is mainly expressed in roots at the vegetative growth stage and in nodes at the reproductive stage. Furthermore, the expression of OsOASTL-A1 in roots was strongly induced by As exposure. Transgenic rice plants expressing pOsOASTL-A1::GUS (β-glucuronidase) indicated that OsOASTL-A1 was strongly expressed in the outer cortex and the vascular cylinder in the root mature zone. Subcellular localization using OsOASTL-A1:eGFP (enhanced green fluorescent protein) fusion protein showed that OsOASTL-A1 was localized to the cytosol. In vivo and in vitro enzyme activity assays showed that OsOASTL-A1 possessed the O-acetylserine(thiol) lyase activity. Knockout of OsOASTL-A1 led to significantly lower levels of cysteine, glutathione, and phytochelatins in roots and increased sensitivity to arsenate stress. Furthermore, the osoastl-a1 knockout mutants reduced As accumulation in the roots, but increased As accumulation in shoots. We conclude that OsOASTL-A1 is the cytosolic O-acetylserine(thiol) lyase that plays an important role in non-protein thiol biosynthesis in roots for As detoxification.
APA, Harvard, Vancouver, ISO, and other styles
32

Qin, Xue, Jun Hua Liu, Wen Sheng Zhao, Xu Jun Chen, Ze Jian Guo, and You Liang Peng. "Gibberellin 20-Oxidase Gene OsGA20ox3 Regulates Plant Stature and Disease Development in Rice." Molecular Plant-Microbe Interactions® 26, no. 2 (2013): 227–39. http://dx.doi.org/10.1094/mpmi-05-12-0138-r.

Full text
Abstract:
Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA1 and GA4 were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA3 and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.
APA, Harvard, Vancouver, ISO, and other styles
33

Bonaldi, Katia, Hassen Gherbi, Claudine Franche, et al. "The Nod Factor–Independent Symbiotic Signaling Pathway: Development of Agrobacterium rhizogenes–Mediated Transformation for the Legume Aeschynomene indica." Molecular Plant-Microbe Interactions® 23, no. 12 (2010): 1537–44. http://dx.doi.org/10.1094/mpmi-06-10-0137.

Full text
Abstract:
The nitrogen-fixing symbiosis between Aeschynomene indica and photosynthetic bradyrhizobia is the only legume-rhizobium association described to date that does not require lipochito-oligosaccharide Nod factors (NF). To assist in deciphering the molecular basis of this NF-independent interaction, we have developed a protocol for Agrobacterium rhizogenes-mediated transformation of A. indica. The cotransformation frequency (79%), the nodulation efficiency of transgenic roots (90%), and the expression pattern of the 35S Cauliflower mosaic virus promoter in transgenic nodules were all comparable to those obtained for model legumes. We have made use of this tool to monitor the heterologous spatio-temporal expression of the pMtENOD11-β-glucuronidase fusion, a widely used molecular reporter for rhizobial infection and nodulation in both legumes and actinorhizal plants. While MtENOD11 promoter activation was not observed in A. indica roots prior to nodulation, strong reporter-gene expression was observed in the invaded cells of young nodules and in the cell layers bordering the central zone of older nodules. We conclude that pMtENOD11 expression can be used as an infection-related marker in A. indica and that Agrobacterium rhizogenes–mediated root transformation of Aeschynomene spp. will be an invaluable tool for determining the molecular basis of the NF-independent symbiosis.
APA, Harvard, Vancouver, ISO, and other styles
34

Hipskind, John D., and Nancy L. Paiva. "Constitutive Accumulation of a Resveratrol-Glucoside in Transgenic Alfalfa Increases Resistance to Phoma medicaginis." Molecular Plant-Microbe Interactions® 13, no. 5 (2000): 551–62. http://dx.doi.org/10.1094/mpmi.2000.13.5.551.

Full text
Abstract:
Alfalfa (Medicago sativa) was transformed with a peanut (Arachis hypogaea) cDNA encoding resveratrol synthase (RS) transcriptionally regulated by an enhanced Cauliflower mosaic virus (CaMV) 35S promoter. Transgenic plants accumulated a new compound, not present in wild-type or vector-transformed alfalfa, that was identified as trans-resveratrol-3-O-β-D-glucopyranoside (RGluc) by high-pressure liquid chromatography (HPLC), UV, 1H- and 13C-nuclear magnetic resonance (NMR) analyses. RGluc concentration was highest in the youngest leaves (>15 μg per g fresh weight) and oldest stem internode segments (>10 μg per g fresh weight) while roots contained only trace amounts (<0.2 μg per g fresh weight). RS transcript levels were highest in leaves and stems, with comparatively little transcript accumulation in the roots, while an inverse pattern was observed for chalcone synthase (CHS) transcript levels. CHS directly competes with RS for the metabolic precursors p-coumaroyl CoA and malo-nyl CoA, and may also contribute to the developmental variations in RGluc levels by limiting the availability of substrates. Agar-plate bioassays indicated that both RGluc and resveratrol greatly inhibit hyphal growth of the alfalfa fungal pathogen Phoma medicaginis. Subsequently, RGluc-containing leaves were wound inoculated and showed a significant reduction (relative to control leaves) in the size of necrotic lesions, intensity of adjacent chlorosis, and number of fungal reproductive structures (pycnidia). Decreasing sporulation of this pathogen may greatly reduce disease spread and severity throughout the field.
APA, Harvard, Vancouver, ISO, and other styles
35

Islas-Flores, Tania, Gabriel Guillén, Xóchitl Alvarado-Affantranger, Miguel Lara-Flores, Federico Sánchez, and Marco A. Villanueva. "PvRACK1 Loss-of-Function Impairs Cell Expansion and Morphogenesis in Phaseolus vulgaris L. Root Nodules." Molecular Plant-Microbe Interactions® 24, no. 7 (2011): 819–26. http://dx.doi.org/10.1094/mpmi-11-10-0261.

Full text
Abstract:
Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.
APA, Harvard, Vancouver, ISO, and other styles
36

Yao, Jun, Zedan Shen, Yanli Zhang, et al. "Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance." Journal of Experimental Botany 71, no. 4 (2019): 1527–39. http://dx.doi.org/10.1093/jxb/erz493.

Full text
Abstract:
Abstract Plasma membrane proton pumps play a crucial role in maintaining ionic homeostasis in salt-resistant Populus euphratica under saline conditions. High levels of NaCl (200 mM) induced PeHA1 expression in P. euphratica roots and leaves. We isolated a 2022 bp promoter fragment upstream of the translational start of PeHA1 from P. euphratica. The promoter–reporter construct PeHA1-pro::GUS was transferred to tobacco plants, demonstrating that β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. DNA affinity purification sequencing revealed that PeWRKY1 protein targeted the PeHA1 gene. We assessed the salt-induced transcriptional response of PeWRKY1 and its interaction with PeHA1 in P. euphratica. PeWRKY1 binding to the PeHA1 W-box in the promoter region was verified by a yeast one-hybrid assay, EMSA, luciferase reporter assay, and virus-induced gene silencing. Transgenic tobacco plants overexpressing PeWRKY1 had improved expression of NtHA4, which has a cis-acting W-box in the regulatory region, and improved H+ pumping activity in both in vivo and in vitro assays. We conclude that salt stress up-regulated PeHA1 transcription due to the binding of PeWRKY1 to the W-box in the promoter region of PeHA1. Thus, we conclude that enhanced H+ pumping activity enabled salt-stressed plants to retain Na+ homeostasis.
APA, Harvard, Vancouver, ISO, and other styles
37

Jin, Sora, and Tae Kyung Hyun. "Ectopic Expression of Production of Anthocyanin Pigment 1 (PAP1) Improves the Antioxidant and Anti-Melanogenic Properties of Ginseng (Panax ginseng C.A. Meyer) Hairy Roots." Antioxidants 9, no. 10 (2020): 922. http://dx.doi.org/10.3390/antiox9100922.

Full text
Abstract:
The development of genetically engineered cell cultures has been suggested as a potential approach for the production of target compounds from medicinal plants. In this study, we generated PAP1 (production of anthocyanin pigment 1)-overexpressing ginseng (Panax ginseng C.A. Meyer) hairy roots to improve the production of anthocyanins, as well as the bioactivity (e.g., antioxidant and whitening activities) of ginseng. Based on differentially expressed gene analysis, we found that ectopic expression of PAP1 induced the expression of genes involved in the ‘phenylpropanoid biosynthesis’ (24 genes), and ‘flavonoid biosynthesis’ (17 genes) pathways, resulting in 191- to 341-fold increases in anthocyanin production compared to transgenic control (TC) hairy roots. Additionally, PAP1-overexpressing ginseng hairy roots exhibited an approximately seven-fold higher DPPH-free radical scavenging activity and 10-fold higher ORAC value compared to the TC. In α-melanocyte-stimulating hormone-stimulated B16F10 cells, PAP1-overexpressing ginseng hairy roots strongly inhibited the accumulation of melanin by 50 to 59% compared to mock-control. Furthermore, results obtained by quantitative real-time PCR, western blot, and tyrosinase inhibition assay suggested that the anti-melanogenic activity of PAP1-overexpressing ginseng hairy roots is mediated by tyrosinase activity inhibition. Taken together, our results suggested that the ectopic expression of PAP1 is an effective strategy for the enhancement of anthocyanin production, which improves the biological activities of ginseng root cultures.
APA, Harvard, Vancouver, ISO, and other styles
38

Clément, Bernadette, Jonathan Perot, Pierrette Geoffroy, Michel Legrand, Jerzy Zon, and Léon Otten. "Abnormal Accumulation of Sugars and Phenolics in Tobacco Roots Expressing the Agrobacterium T-6b Oncogene and the Role of These Compounds in 6b-Induced Growth." Molecular Plant-Microbe Interactions® 20, no. 1 (2007): 53–62. http://dx.doi.org/10.1094/mpmi-20-0053.

Full text
Abstract:
The Agrobacterium T-DNA oncogene 6b induces tumors and modifies the growth of transgenic plants by an unknown mechanism. We have investigated changes in roots of tobacco seedlings that express a dexamethasone-inducible T-6b (dex-T-6b) gene. On induction medium with sucrose, intact or isolated dex-T-6b roots accumulated sucrose, glucose, and fructose and changed their growth, contrary to noninduced roots. Root fragments bridging agar blocks with or without sucrose accumulated sugars at the site of sucrose uptake, resulting in local growth. Induced root fragments showed enhanced uptake of 14C-labeled sucrose, glucose, and fructose. When seedlings were placed on sucrose-free induction medium, sugar levels strongly decreased in roots and increased in cotyledons. Collectively, these results demonstrate that 6b stimulates sugar uptake and retention with drastic effects on growth. Apart from sugars, phenolic compounds also have been found to accumulate in 6b tissues and have been proposed earlier to play a role in 6b-induced growth. Induced dex-T-6b roots accumulated high levels of 5-caffeoylquinic acid (or chlorogenic acid [CGA]), but only under conditions where endogenous sugars increased. Inhibition of phenyla-lanine ammonia-lyase with the competitive inhibitor 2-ami-noindan-2-phosphonic acid (AIP) abolished CGA accumulation without modifying sugar accumulation or affecting the 6b phenotype. We conclude that the absorption, retention, and abnormal accumulation of sugars are essential factors in 6b-induced growth changes, whereas phenylpropanoids only marginally contribute to the 6b seedling phenotype.
APA, Harvard, Vancouver, ISO, and other styles
39

Imanishi, Leandro, Alice Vayssières, Claudine Franche, Didier Bogusz, Luis Wall, and Sergio Svistoonoff. "Transformed Hairy Roots of Discaria trinervis: A Valuable Tool for Studying Actinorhizal Symbiosis in the Context of Intercellular Infection." Molecular Plant-Microbe Interactions® 24, no. 11 (2011): 1317–24. http://dx.doi.org/10.1094/mpmi-03-11-0078.

Full text
Abstract:
Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.
APA, Harvard, Vancouver, ISO, and other styles
40

Dhar, Niha, Sreelatha Sarangapani, Vaishnavi Amarr Reddy, et al. "Characterization of a sweet basil acyltransferase involved in eugenol biosynthesis." Journal of Experimental Botany 71, no. 12 (2020): 3638–52. http://dx.doi.org/10.1093/jxb/eraa142.

Full text
Abstract:
Abstract Sweet basil (Ocimum basilicum) plants produce its characteristic phenylpropene-rich essential oil in specialized structures known as peltate glandular trichomes (PGTs). Eugenol and chavicol are the major phenylpropenes produced by sweet basil varieties whose synthetic pathways are not fully elucidated. Eugenol is derived from coniferyl acetate by a reaction catalysed by eugenol synthase. An acyltransferase is proposed to convert coniferyl alcohol to coniferyl acetate which is the first committed step towards eugenol synthesis. Here, we perform a comparative next-generation transcriptome sequencing of different tissues of sweet basil, namely PGT, leaf, leaf stripped of PGTs (leaf–PGT), and roots, to identify differentially expressed transcripts specific to PGT. From these data, we identified a PGT-enriched BAHD acyltransferase gene ObCAAT1 and functionally characterized it. In vitro coupled reaction of ObCAAT1 with eugenol synthase in the presence of coniferyl alcohol resulted in eugenol production. Analysis of ObCAAT1-RNAi transgenic lines showed decreased levels of eugenol and accumulation of coniferyl alcohol and its derivatives. Coniferyl alcohol acts as a common substrate for phenylpropene and lignin biosynthesis. No differences were found in total lignin content of PGTs and leaves of transgenic lines, indicating that phenylpropene biosynthesis is not coupled to lignification in sweet basil.
APA, Harvard, Vancouver, ISO, and other styles
41

Gao, Ruifang, Taotao Han, Hongwei Xun, et al. "MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean." Journal of Experimental Botany 72, no. 12 (2021): 4401–18. http://dx.doi.org/10.1093/jxb/erab152.

Full text
Abstract:
Abstract Soybean has undergone extensive selection pressures for seed nutrient composition and seed color during domestication, but the major genetic loci controlling seed coat color have not been completely understood, and the transcriptional regulation relationship among the loci remains elusive. Here, two major regulators, GmMYBA2 and GmMYBR, were functionally characterized as an anthocyanin activator and repressor, respectively. Ectopic expression of GmMYBA2 in soybean hairy roots conferred the enhanced accumulation of delphinidin and cyanidin types of anthocyanins in W1t and w1T backgrounds, respectively, through activating anthocyanin biosynthetic genes in the reported loci. The seed coat pigmentation of GmMYBA2-overexpressing transgenic plants in the W1 background mimicked the imperfect black phenotype (W1/w1, i, R, t), suggesting that GmMYBA2 was responsible for the R locus. Molecular and biochemical analysis showed that GmMYBA2 interacted with GmTT8a to directly activate anthocyanin biosynthetic genes. GmMYBA2 and GmMYBR might form a feedback loop to fine-tune seed coat coloration, which was confirmed in transgenic soybeans. Both GmTT8a and GmMYBR that were activated by GmMYBA2 in turn enhanced and obstructed the formation of the GmMYBA2–GmTT8a module, respectively. The results revealed the sophisticated regulatory network underlying the soybean seed coat pigmentation loci and shed light on the understanding of the seed coat coloration and other seed inclusions.
APA, Harvard, Vancouver, ISO, and other styles
42

Chang, Jia-Dong, Sheng Huang, Noriyuki Konishi, et al. "Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain." Journal of Experimental Botany 71, no. 18 (2020): 5705–15. http://dx.doi.org/10.1093/jxb/eraa287.

Full text
Abstract:
Abstract Rice is a major dietary source of the toxic metal cadmium (Cd), and reducing its accumulation in the grain is therefore important for food safety. We selected two cultivars with contrasting Cd accumulation and generated transgenic lines overexpressing OsNRAMP5, which encodes a major influx transporter for manganese (Mn) and Cd. We used two different promoters to control the expression, namely OsActin1 and maize Ubiquitin. Overexpression of OsNRAMP5 increased Cd and Mn uptake into the roots, but markedly decreased Cd accumulation in the shoots, whilst having a relatively small effect on Mn accumulation in the shoots. The overexpressed OsNRAMP5 protein was localized to the plasma membrane of all cell types in the root tips and lateral root primordia without polarity. Synchrotron X-ray fluorescence mapping showed that the overexpression lines accumulated more Cd in the root tips and lateral root primordia compared with the wild-type. When grown in three Cd-contaminated paddy soils, overexpression of OsNRAMP5 decreased concentration of Cd in the grain by 49–94% compared with the wild type. OsNRAMP5-overexpression plants had decreased Cd translocation from roots to shoots as a result of disruption of its radial transport into the stele for xylem loading, demonstrating the effect of transporter localization and polarity on ion homeostasis.
APA, Harvard, Vancouver, ISO, and other styles
43

Knecht, Katrin, Monique Seyffarth, Christine Desel, et al. "Expression of BvGLP-1 Encoding a Germin-Like Protein from Sugar Beet in Arabidopsis thaliana Leads to Resistance Against Phytopathogenic Fungi." Molecular Plant-Microbe Interactions® 23, no. 4 (2010): 446–57. http://dx.doi.org/10.1094/mpmi-23-4-0446.

Full text
Abstract:
Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1pro-1. BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1pro-1 mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant–fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H2O2 content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus.
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Suzhen, Xiaoqing Liu, Xiaojin Zhou, Ye Li, Wenzhu Yang, and Rumei Chen. "Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5." Plant and Cell Physiology 60, no. 9 (2019): 2077–85. http://dx.doi.org/10.1093/pcp/pcz104.

Full text
Abstract:
Abstract Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our β-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.
APA, Harvard, Vancouver, ISO, and other styles
45

Yan, Zhe, Md Shakhawat Hossain, Jun Wang, et al. "miR172 Regulates Soybean Nodulation." Molecular Plant-Microbe Interactions® 26, no. 12 (2013): 1371–77. http://dx.doi.org/10.1094/mpmi-04-13-0111-r.

Full text
Abstract:
Micro-RNAs (miRNAs) play a pivotal role in the control of gene expression and regulate plant developmental processes. miRNA 172 (miR172) is a conserved miRNA in plants reported to control the expression of genes involved in developmental phase transition, floral organ identity, and flowering time. However, the specific role of miR172 in legume nodulation is undefined. Ectopic expression of soybean miR172 resulted in an increase in nodule numbers in transgenic roots and an increase in the expression of both symbiotic leghemoglobin and nonsymbiotic hemoglobin. These nodules showed higher levels of nitrogenase activity. Further analysis revealed a complex regulatory circuit in which miR156 regulates miR172 expression and controls the level of an AP2 transcription factor. The latter, either directly or indirectly, controls the expression of nonsymbiotic hemoglobin, which is essential for regulating the levels of nodulation.
APA, Harvard, Vancouver, ISO, and other styles
46

Zúñiga, Ana, María Josefina Poupin, Raúl Donoso, et al. "Quorum Sensing and Indole-3-Acetic Acid Degradation Play a Role in Colonization and Plant Growth Promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN." Molecular Plant-Microbe Interactions® 26, no. 5 (2013): 546–53. http://dx.doi.org/10.1094/mpmi-10-12-0241-r.

Full text
Abstract:
Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant–bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.
APA, Harvard, Vancouver, ISO, and other styles
47

Iavicoli, Annalisa, Emmanuel Boutet, Antony Buchala, and Jean-Pierre Métraux. "Induced Systemic Resistance in Arabidopsis thaliana in Response to Root Inoculation with Pseudomonas fluorescens CHA0." Molecular Plant-Microbe Interactions® 16, no. 10 (2003): 851–58. http://dx.doi.org/10.1094/mpmi.2003.16.10.851.

Full text
Abstract:
Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), and CHA89 (HCN, DAPG- and pyoluteorin deficient). Only mutations interfering with DAPG production led to a significant decrease in ISR to Peronospora parasitica. Thus, DAPG production in Pseudomonas fluorescens is required for the induction of ISR to Peronospora parasitica. DAPG is known for its antibiotic activity; however, our data indicate that one action of DAPG could be due to an effect on the physiology of the plant. DAPG at 10 to 100 μM applied to roots of Arabidopsis mimicked the ISR effect. CHA0r-mediated ISR was also tested in various Arabidopsis mutants and transgenic plants: NahG (transgenic line degrading salicylic acid [SA]), sid2-1 (nonproducing SA), npr1-1 (non-expressing NPR1 protein), jar1-1 (insensitive to jasmonic acid and methyl jasmonic acid), ein2-1 (insensitive to ethylene), etr1-1 (insensitive to ethylene), eir1-1 (insensitive to ethylene in roots), and pad2-1 (phytoalexin deficient). Only jar1-1, eir1-1, and npr1-1 mutants were unable to undergo ISR. Sensitivity to jasmonic acid and functional NPR1 and EIR1 proteins were required for full expression of CHA0r-mediated ISR. The requirements for ISR observed in this study in Peronospora parasitica induced by Pseudomonas fluorescens CHA0r only partially overlap with those published so far for Peronospora parasitica, indicating a great degree of flexibility in the molecular processes leading to ISR.
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Ying, Zhongtao Jia, Xuelian Li, et al. "Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging." Journal of Experimental Botany 71, no. 15 (2020): 4547–61. http://dx.doi.org/10.1093/jxb/eraa116.

Full text
Abstract:
Abstract Plants can develop root systems with distinct anatomical features and morphological plasticity to forage nutrients distributed heterogeneously in soils. Lateral root proliferation is a typical nutrient-foraging response to a local supply of nitrate, which has been investigated across many plant species. However, the underlying mechanism in maize roots remains largely unknown. Here, we report on identification of a maize truncated MIKC-type MADS-box transcription factor (ZmTMM1) lacking K- and C-domains, expressed preferentially in the lateral root branching zone and induced by the localized supply of nitrate. ZmTMM1 belongs to the AGL17-like MADS-box transcription factor family that contains orthologs of ANR1, a key regulator for root nitrate foraging in Arabidopsis. Ectopic overexpression of ZmTMM1 recovers the defective growth of lateral roots in the Arabidopsis anr1 agl21 double mutant. The local activation of glucocorticoid receptor fusion proteins for ZmTMM1 and an artificially truncated form of AtANR1 without the K- and C-domains stimulates the lateral root growth of the Arabidopsis anr1 agl21 mutant, providing evidence that ZmTMM1 encodes a functional MADS-box that modulates lateral root development. However, no phenotype was observed in ZmTMM1-RNAi transgenic maize lines, suggesting a possible genetic redundancy of ZmTMM1 with other AGL17-like genes in maize. A comparative genome analysis further suggests that a nitrate-inducible transcriptional regulation is probably conserved in both truncated and non-truncated forms of ZmTMM1-like MADS-box transcription factors found in grass species.
APA, Harvard, Vancouver, ISO, and other styles
49

Frenzel, André, Katja Manthey, Andreas M. Perlick, et al. "Combined Transcriptome Profiling Reveals a Novel Family of Arbuscular Mycorrhizal-Specific Medicago truncatula Lectin Genes." Molecular Plant-Microbe Interactions® 18, no. 8 (2005): 771–82. http://dx.doi.org/10.1094/mpmi-18-0771.

Full text
Abstract:
The large majority of plants are capable of undergoing a tight symbiosis with arbuscular mycorrhizal (AM) fungi. During this symbiosis, highly specialized new structures called arbuscules are formed within the host cells, indicating that, during interaction with AM fungi, plants express AM-specific genetic programs. Despite increasing efforts, the number of genes known to be induced in the AM symbiosis is still low. In order to identify novel AM-induced genes which have not been listed before, 5,646 expressed sequence tags (ESTs) were generated from two Medicago truncatula cDNA libraries: a random cDNA library (MtAmp) and a suppression subtractive hybridization (SSH) library (MtGim), the latter being designed to enhance the cloning of mycorrhiza-upregulated genes. In silico expression analysis was applied to identify those tentative consensus sequences (TCs) of The Institute for Genomic Research M. truncatula gene index (MtGI) that are composed exclusively of ESTs deriving from the MtGim or MtAmp library, but not from any other cDNA library of the MtGI. This search revealed 115 MtAmp- or MTGim-specific TCs. For the majority of these TCs with sequence similarities to plant genes, the AM-specific expression was verified by quantitative reverse-transcription polymerase chain reaction. Annotation of the novel genes induced in mycorrhizal roots suggested their involvement in different transport as well as signaling processes and revealed a novel family of AM-specific lectin genes. The expression of reporter gene fusions in transgenic roots revealed an arbuscule-related expression of two members of the lectin gene family, indicating a role for AM-specific lectins during arbuscule formation or functioning.
APA, Harvard, Vancouver, ISO, and other styles
50

Plett, Krista L., Anita E. Raposo, Ian C. Anderson, Sabine C. Piller, and Jonathan M. Plett. "Protein Arginine Methyltransferase Expression Affects Ectomycorrhizal Symbiosis and the Regulation of Hormone Signaling Pathways." Molecular Plant-Microbe Interactions® 32, no. 10 (2019): 1291–302. http://dx.doi.org/10.1094/mpmi-01-19-0007-r.

Full text
Abstract:
The genomes of all eukaryotic organisms, from small unicellular yeasts to humans, include members of the protein arginine methyltransferase (PRMT) family. These enzymes affect gene transcription, cellular signaling, and function through the posttranslational methylation of arginine residues. Mis-regulation of PRMTs results in serious developmental defects, disease, or death, illustrating the importance of these enzymes to cellular processes. Plant genomes encode almost the full complement of PRMTs found in other higher organisms, plus an additional PRMT found uniquely in plants, PRMT10. Here, we investigate the role of these highly conserved PRMTs in a process that is unique to perennial plants—the development of symbiosis with ectomycorrhizal fungi. We show that PRMT expression and arginine methylation is altered in the roots of the model tree Eucalyptus grandis by the presence of its ectomycorrhizal fungal symbiont Pisolithus albus. Further, using transgenic modifications, we demonstrate that E. grandis–encoded PRMT1 and PRMT10 have important but opposing effects in promoting this symbiosis. In particular, the plant-specific EgPRMT10 has a potential role in the expression of plant hormone pathways during the colonization process and its overexpression reduces fungal colonization success.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!