Academic literature on the topic 'Transient wave propagation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transient wave propagation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Transient wave propagation"

1

Kim, Hyun-Sil, and Jerry H. Ginsberg. "Transient Wave Propagation in a Harmonically Heterogeneous Elastic Solid." Journal of Applied Mechanics 59, no. 2S (June 1, 1992): S145—S151. http://dx.doi.org/10.1115/1.2899479.

Full text
Abstract:
Transient propagation of a one-dimensional dilatational wave in a harmonically heterogeneous elastic solid is studied by several techniques. A regular perturbation analysis in terms of the characteristics of the differential equation shows that initiation of a temporally harmonic excitation that generates a signal whose wavelength is twice the periodicity of the heterogeneity leads to secularity in the first approximation. The frequency at which this situation occurs matches the frequency at which Floquet theory predicts that steady-state waves may be unstable. A finite difference algorithm based on integrating along the characteristics is developed and implemented to obtain a numerical solution. In the critical case, backscattering of the wave from the heterogeneity results in a mixture of propagating and standing wave features. However, rather than being unstable, the heterogeneity in this condition is shown to result in maximum interference with forward propagation. A comparable analysis for a step excitation on the boundary provides additional insight into the underlying propagation phenomena.
APA, Harvard, Vancouver, ISO, and other styles
2

Bakhoum, Ezzat G., and Cristian Toma. "Transient Aspects of Wave Propagation Connected with Spatial Coherence." Mathematical Problems in Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/691257.

Full text
Abstract:
This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.
APA, Harvard, Vancouver, ISO, and other styles
3

Kristensson, G. "Transient electromagnetic wave propagation in waveguides." Journal of Electromagnetic Waves and Applications 9, no. 5-6 (January 1, 1995): 645–71. http://dx.doi.org/10.1163/156939395x00866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Won Su, Joon Hyun Lee, and Youn Ho Cho. "Sub-Surface Crack Detection by Using Laser Induced Transient Stress Wave Propagation." Key Engineering Materials 297-300 (November 2005): 1992–97. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.1992.

Full text
Abstract:
In this study we attempt to investigate the possibility of detecting sub-surface crack and the understanding of the propagating phenomena of transient stress waves due to impact in thick aluminum plate by the simultaneous measurement of longitudinal and shear creeping and Rayleigh wave resulted from the mode conversion of laser induced transient stress wave impact. The propagation of the transient stress wave generated by laser irradiation is affected by the sub-surface crack and the result is analyzed. It was observed that the longitudinal and shear creeping wave velocities are varied depending on the depth of sub-surface crack. In addition, the variation of amplitude ratio generated by propagating the stress wave is investigated. The longitudinal creeping wave velocity in the presence of the sub-surface crack is somewhat faster than in case of non-crack. And the shear creeping wave velocities represent large variations which are shown nearly 2nd order quadratic curve shape as the sub-surface crack depth increase under the same experimental condition. The results of this study are very useful for the nondestructive evaluation of the surface layer in thick structures by non-contact method and the opposing and the structures difficult to access.
APA, Harvard, Vancouver, ISO, and other styles
5

Miura, Kotaro, Makoto Sakamoto, and Yuji Tanabe. "Transient SH Wave Propagation of Elastic Plate." EPJ Web of Conferences 250 (2021): 02010. http://dx.doi.org/10.1051/epjconf/202125002010.

Full text
Abstract:
We consider the transient wave propagation problem of linear, isotropic and elastic plate applied SH impact loading on the surface. Analytical solution of half-space obtained by the inverse Fourier-Laplace double transform using Cagniard-De Hoop method. The wave propagation problem of plate was considered by using a half-space exact solution and reflect wave from the boundary of plate are expressed using the image method. Some numerical results of stress and displacement components are presented. The mathematical technique appear in the basic problem can apply to the transient P wave propagation and more advanced problems.
APA, Harvard, Vancouver, ISO, and other styles
6

LIU, PHILIP L. F., and ALEJANDRO ORFILA. "Viscous effects on transient long-wave propagation." Journal of Fluid Mechanics 520 (December 10, 2004): 83–92. http://dx.doi.org/10.1017/s0022112004001806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fa¨llstro¨m, K. E., and O. Lindblom. "Transient Bending Wave Propagation in Anisotropic Plates." Journal of Applied Mechanics 65, no. 4 (December 1, 1998): 930–38. http://dx.doi.org/10.1115/1.2791937.

Full text
Abstract:
In this paper we study transient propagating bending waves. We use the equations of orthotropic plate dynamics, derived by Chow about 25 years ago, where both transverse shear and rotary inertia are included. These equations are extended to include anisotropic plates and an integral representation formula for the bending waves is derived. Chow’s model is compared with the classical Kirchoff’s model. We also investigate the influence of the rotary inertia. Comparisons with experimental data are made as well.
APA, Harvard, Vancouver, ISO, and other styles
8

Moura, André. "Causal analysis of transient viscoelastic wave propagation." Journal of the Acoustical Society of America 119, no. 2 (2006): 751. http://dx.doi.org/10.1121/1.2151769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Isaacson, M., K. F. Cheung, E. Mansard, and M. D. Miles. "Transient wave propagation in a laboratory flume." Journal of Hydraulic Research 31, no. 5 (September 1993): 665–80. http://dx.doi.org/10.1080/00221689309498778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LIU, Kaishin, Xin LI, and Shinji TANIMURA. "Transient Wave Propagation in Layered Orthotropic Plates." JSME International Journal Series A 42, no. 3 (1999): 328–33. http://dx.doi.org/10.1299/jsmea.42.328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Transient wave propagation"

1

Bluck, Michael John. "Integral equation methods for transient wave propagation." Thesis, Imperial College London, 1993. http://hdl.handle.net/10044/1/7973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guddati, Murthy Narasimha. "Efficient methods for modeling transient wave propagation in unbounded domains /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ordovas, Miquel Roland. "Covariant projection finite elements for transient wave propagation." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Podo, Smardie D. "Comparison of layering effects in the propagation of transient planar stress waves." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/18378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boston, Ian Edward. "Transient stress analysis by the transmission line method." Thesis, University of Hull, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gerasik, Vladimir. "Consolidation and wave propagation in a porous medium." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2950.

Full text
Abstract:
Basic diffusion analytical solutions of one-dimensional consolidation are presented for the case of a semi-infinite domain. Typical tractions considered include instantaneous loads of the medium with a free boundary pressure, as well as the case of a permeable membrane located at the forced boundary.

Two-dimensional boundary value problems for a porous half-space, described by the widely recognized Biot's equations of poroelasticity, including inertia effects is discussed. In this poroelastic version of Lamb's problem in the classical theory of linear elastic waves, the surface of a porous half-space is subjected to a prescribed line traction. The following two broadly applicable cases are considered: 1) A steady state harmonic load, 2) An impulsive load (Dirac delta function time dependence). A general analytical solution of the problem in the Fourier -- Laplace space was obtained by the application of the standard Helmholtz potential decomposition, which reduces the problem to a system of wave equations for three unknown potentials, which correspond to three types of motion: P1, slow P2 wave, and the shear wave S. The possibilities of, and procedure for, obtaining analytic solutions in the physical space subsequently are discussed in detail. When viscous dissipation effects are taken into account, a steady-state harmonic line traction solution can be represented in the form of well convergent integrals, while for the case when viscous dissipation is ignored, closed form analytic solutions can be obtained for impulsive forcing with the application of the Cagniard -- de Hoop inversion technique. Numerical studies of the dispersion relation of the Rayleigh, or surface, wave for cases in which the dissipation is not negligible are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Kowalski, Benjamin John. "Transient SH-Wave Interaction with a Cohesive Interface." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417706326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Le, Guennec Yves. "Transient dynamics of beam trusses under impulse loads." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0016/document.

Full text
Abstract:
Ce travail de recherche est dédié à la simulation de la réponse transitoire des assemblages de poutres soumis à des chocs. De tels chargements entraînent la propagation d’ondes haute fréquence dans l’ensemble de la structure. L’énergie qu’elles transportent peut être dommageable pour son fonctionnement ou celui des équipements embarqués. Dans des études précédentes, il a été observé sur des structures expérimentales qu’un régime vibratoire diffusif tend à s’installer pour des temps longs. Le but de cette étude est donc de développer un modèle robuste de la réponse transitoire des assemblages de poutres soumis à des chocs permettant de simuler, entre autres, cet état diffusif. Les champs de déplacement étant très oscillants et la densité modale élevée, la simulation numérique de la réponse transitoire à des chocs peut difficilement être menée par une méthode d’éléments finis classique. Une approche utilisant un estimateur de la densité d’énergie de chaque mode de propagation a donc été mise en œuvre. Elle permet d’accéder à des informations locales sur les états vibratoires, et de contourner certaines limitations intrinsèques aux longueurs d’onde courtes. Après avoir comparé plusieurs modèles de réduction cinématique de poutre à un modèle de Lamb de propagation dans un guide d’ondes circulaire, la cinématique de Timoshenko a été retenue afin de modéliser le comportement mécanique haute fréquence des poutres. En utilisant ce modèle dans le cadre de l’approche énergétique évoquée plus haut, deux groupes de modes de propagation de la densité d’énergie vibratoire dans une poutre ont été isolés : des modes longitudinaux regroupant un mode de compression et des modes de flexion, et des modes transversaux regroupant des modes de cisaillement et un mode de torsion. Il peut être également montré que l’´evolution en temps des densités d’énergie associées obéit à des lois de transport. Pour des assemblages de poutres, les phénomènes de réflexion/transmission aux jonctions ont du être pris en compte. Les opérateurs permettant de les décrire en termes de flux d’´energie ont été obtenus grâce aux équations de continuité des déplacements et des efforts aux jonctions. Quelques caractéristiques typiques d’un régime haute fréquence ont été mises en évidence, tel que le découplage entre les modes de rotation et les modes de translation. En revanche, les champs de densité d’énergie sont quant à eux discontinus aux jonctions. Une méthode d’éléments finis discontinus a donc été développée afin de les simuler numériquement comme solutions d’´equations de transport. Si l’on souhaite atteindre le régime diffusif aux temps longs, le schéma numérique doit être peu dissipatif et peu dispersif. La discrétisation spatiale a été faite avec des fonctions d’approximation de type spectrales, et l’intégration temporelle avec des schémas de Runge-Kutta d’ordre élevé du type ”strong stability preserving”. Les simulations numériques ont donné des résultats concluants car elles permettent d’exhiber le régime de diffusion. Il a été remarqué qu’il existait en fait deux limites diffusives différentes : (i) la diffusion spatiale de l’´energie sur l’ensemble de la structure, et (ii) l’équirépartition des densités d’énergie entre les différents modes de propagation. Enfin, une technique de renversement temporel a été développée. Elle pourra être utile dans de futurs travaux sur le contrôle non destructif des assemblages complexes et de grandes tailles
This research is dedicated to the simulation of the transient response of beam trusses under impulse loads. The latter lead to the propagation of high-frequency waves in such built up structures. In the aerospace industry, that phenomenon may penalize the functioning of the structures or the equipments attached to them on account of the vibrational energy carried by the waves. It is also observed experimentally that high-frequency wave propagation evolves into a diffusive vibrational state at late times. The goal of this study is then to develop a robust model of high-frequency wave propagation within three-dimensional beam trusses in order to be able to recover, for example, this diffusion regime. On account of the small wavelengths and the high modal density, the modelling of high-frequency wave propagation is hardly feasible by classical finite elements or other methods describing the displacement fields directly. Thus, an approach dealing with the evolution of an estimator of the energy density of each propagating mode in a Timoshenko beam has been used. It provides information on the local behavior of the structures while avoiding some limitations related to the small wavelengths of high-frequency waves. After a comparison between some reduced-order beam kinematics and the Lamb model of wave propagation in a circular waveguide, the Timoshenko kinematics has been selected for the mechanical modelling of the beams. It may be shown that the energy densities of the propagating modes in a Timoshenko beam obey transport equations. Two groups of energy modes have been isolated: the longitudinal group that gathers the compressional and the bending energetic modes, and the transverse group that gathers the shear and torsional energetic modes. The reflection/transmission phenomena taking place at the junctions between beams have also been investigated. For this purpose, the power flow reflection/transmission operators have been derived from the continuity of the displacements and efforts at the junctions. Some characteristic features of a high-frequency behavior at beam junctions have been highlighted such as the decoupling between the rotational and translational motions. It is also observed that the energy densities are discontinuous at the junctions on account of the power flow reflection/transmission phenomena. Thus a discontinuous finite element method has been implemented, in order to solve the transport equations they satisfy. The numerical scheme has to be weakly dissipative and dispersive in order to exhibit the aforementioned diffusive regime arising at late times. That is the reason why spectral-like approximation functions for spatial discretization, and strong-stability preserving Runge-Kutta schemes for time integration have been used. Numerical simulations give satisfactory results because they indeed highlight the outbreak of such a diffusion state. The latter is characterized by the following: (i) the spatial spread of the energy over the truss, and (ii) the equipartition of the energy between the different modes. The last part of the thesis has been devoted to the development of a time reversal processing, that could be useful for future works on structural health monitoring of complex, multi-bay trusses
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Hui. "Boundary integral modelling of transient wave propagation with application to acoustic radiation from loudspeakers." Thesis, University of Brighton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lednik, Dusan. "The application of Transient Statistical Energy Analysis and wave propagation approach to coupled structures." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Transient wave propagation"

1

Propagation of transient elastic waves in stratified anisotropic media. Amsterdam: North Holland, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hui, Wang. Boundary integral modelling of transient wave propagation with application to acoustic radiation from loudspeakers. 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Propagation of Transient Elastic Waves in Stratified Anisotropic Media. Elsevier, 1987. http://dx.doi.org/10.1016/c2009-0-09754-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Transient wave propagation"

1

Turhan, Doğan, and Ibrahim A. Alshaikh. "Transient Wave Propagation in Periodically Layered Media." In Photonic Band Gaps and Localization, 479–85. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1606-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sansalone, Mary, Nicholas J. Carino, and Nelson N. Hsu. "Finite Element Studies of Transient Wave Propagation." In Review of Progress in Quantitative Nondestructive Evaluation, 125–33. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1893-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silveira, J. L., S. Benhassine, L. Pichon, and A. Raizer. "Transient Scattering from Metallic Enclosures Using 3D Time Domain Methods." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 286–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arbenz, Peter, Jürg Bryner, and Christine Tobler. "Parallelized Transient Elastic Wave Propagation in Orthotropic Structures." In Parallel Processing and Applied Mathematics, 310–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14403-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mesgouez, Arnaud, Gaëlle Lefeuve-Mesgouez, and André Chambarel. "Simulation of Transient Mechanical Wave Propagation in Heterogeneous Soils." In Lecture Notes in Computer Science, 647–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11428831_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mueller, Sebastian, Johannes Mueller, and Omar Elshaarawy. "Interpretation of Shear Wave Propagation Maps (Elastogram) Using Transient Elastography." In Liver Elastography, 495–508. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40542-7_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jian-She, Nathan Ida, and S. I. Hariharan. "Numerical Modeling of Transient Wave Propagation for High Frequency NDT." In Review of Progress in Quantitative Nondestructive Evaluation, 259–66. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0817-1_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Chongbin. "Theory of Two-Dimensional Dynamic Infinite Elements for Simulating Wave Propagation Problems in Infinite Media." In Dynamic and Transient Infinite Elements, 7–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00846-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Chongbin. "Theory of Three-Dimensional Dynamic Infinite Elements for Simulating Wave Propagation Problems in Infinite Media." In Dynamic and Transient Infinite Elements, 119–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00846-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moser, Friedrich, Laurence J. Jacobs, and Jianmin Qu. "Application of Finite Element Methods to Study Transient Wave Propagation in Elastic Wave Guides." In Review of Progress in Quantitative Nondestructive Evaluation, 161–67. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5339-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Transient wave propagation"

1

Kochetov, B. A., and A. Yu Butrym. "Transient wave propagation in radially inhomogeneous biconical line." In 2010 5th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). IEEE, 2010. http://dx.doi.org/10.1109/uwbusis.2010.5609099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Yu, and Andrew J. Dick. "Transient Wave Propagation in a Materially Nonlinear Beam." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64975.

Full text
Abstract:
In this paper, the transient wave propagation in a materially nonlinear beam is studied. Based on previous research, the geometric nonlinearity can be neglected in an intermediate strain regime. An equation of motion for a cubic material nonlinearity is derived. The alternating frequency-time finite element method (AFT-FEM) is applied to the beam model. Numerical simulations are conducted. Significant nonlinear behavior is observed in the response. Depending on the local nonlinear property of the material in the intermediate strain regime, the amplitude of the wave response can be influenced. The nonlinear properties can also influence the dispersive characteristics of the intrinsically dispersive beam model.
APA, Harvard, Vancouver, ISO, and other styles
3

Dana, J., Y. H. Park, and C. Gonzales. "Damage Detection Using Multiphysics Guided Wave Propagation." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21599.

Full text
Abstract:
Abstract In order to improve the safety, reliability, and life of diverse structures, the development of effective methodologies for structural health monitoring is critical. Among damage detection techniques, guided ultrasonic Lamb waves are particularly suitable for damage detection applications for plate-like and shell-like structures, such as aircraft wing-box structures, heat exchanger tubing, stiffened panels, and nuclear steam generator tubing, due to their sensitivity to damage. Computational models can play a critical role to study wave propagation for monitoring structural health and develop a technique to detect structural damage. Due to complexity of guided wave behavior, efficient and accurate computation tools are essential to study the mechanisms that account for coupling, dispersion, and interaction with damage. In this study, a numerical technique is presented for guided waves propagation in metallic structure by employing co-simulation using ABAQUS Standard module and ABAQUS Explicit module simultaneously to simulate transient wave propagation from an PZT actuator into a metallic plate. The present co-simulation analysis couples multiphysics (piezoelectric) analysis with transient dynamics (wave propagation) analysis. A numerical test is conducted using a PZT actuator for exciting planar Lamb waves and a sensor for acquiring wave signals. The signals achieved from defected and pristine models by FEA are then compared to identify and detect damage in the structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Dumin, O., O. Dumina, and V. Katrich. "Propagation of Spherical Transient Electromagnetic Wave Through Radially Inhomogeneous Medium." In 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2006. http://dx.doi.org/10.1109/uwbus.2006.307228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Wei, Yiao-Tee Hsia, and Julius Hohlfeld. "Modeling of Acoustic Wave Propagation HAMR Media." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63913.

Full text
Abstract:
In multi-layered solids, an acoustic wave is partially reflected and partially transmitted at boundaries, which renders a too complex wave pattern to be predicted with analytical models. A Finite Element Method (FEM) based numerical model is developed to predict the acoustic wave propagation in multi-layered solids, where an ANSYS acoustic fluid element is adopted to solve this problem. The model is applied to study the pump-probe transient reflectivity measurements on Heat Assisted Magnetic Recording (HAMR) media, where the thermo-elastic waves are isolated and then subtracted from the composite reflectivity change measurement. As a result, the reflectivity change caused by the thermal decay is separated from the thermo-elastic waves, allowing a more accurate prediction and measurement of the thermal properties of HAMR media.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zhaoyan, and George Gogos. "Theoretical Study of the Transient Shock Wave Propagation During Laser Ablation." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47407.

Full text
Abstract:
Laser ablation consists of three coupled processes: i) heat conduction within the solid, ii) flow through a discontinuity layer (evaporation wave) attached to the solid surface, and iii) shock wave expansion of the laser induced vapor. In this paper; a one-dimensional solution for all three coupled processes is presented. The heat conduction and the evaporation wave are solved numerically. The shock wave expansion of the laser induced vapor, how ever, is solved analytically for the first time Analytical solutions for the classic Riemann problem have been employed to solve the transient propagation of the strong shock wave. This model provides a sound theoretical basis for the analysis of the laser ablation process. The effects of the laser intensity, back temperature and back pressure are analyzed. The temperature pressure; density and velocity of the laser induced vapor are calculated and the results are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Goto, Keiji, Kojiro Mori, Yuki Horii, and Mizuki Sawada. "Study on arrival times of transient creeping wave and transient whispering-gallery mode." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Jiayong, Zhoumin Xie, Jane W. Z. Lu, Andrew Y. T. Leung, Vai Pan Iu, and Kai Meng Mok. "A Hybrid Method for Transient Wave Propagation in a Multilayered Solid." In PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MECHANICS AND THE 12TH INTERNATIONAL CONFERENCE ON THE ENHANCEMENT AND PROMOTION OF COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3452166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berbiche, A., M. Fellah, Z. E. A. Fellah, M. Sadouki, and C. Depollier. "Transient Acoustic Wave Propagation in Non-Integer-Dimensional Rigid Porous Media." In Fifth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412992.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, T. T. Y., and M. S. Aly. "Transient electromagnetic wave scattering by a dissipative dielectric sphere." In International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's. IEEE, 1990. http://dx.doi.org/10.1109/aps.1990.115043.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Transient wave propagation"

1

Ladouceur, Harold D., and Andrew P. Baronavski. Transient Electromagnetic Wave Propagation in a Plasma Waveguide. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada552539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petropoulos, Peter G. Numerical Modeling and Analysis of Transient Electromagnetic Wave Propagation and Scattering. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada380053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography