Dissertations / Theses on the topic 'Transistor modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Transistor modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Razafindrakoto, Mirijason Richard. "Modèle hydrodynamique de transistor MOSFET et méthodes numériques, pour l'émission et la détection d'onde électromagnétique THz." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS035/document.
Full textDue to its interesting properties, the electromagnetic THz frequency range may lead to numerous technological applications, ranging from imaging to spectroscopy or even communications. However, technological constraints prevented the efficient emission and detection of such waves with conventional electronics, leading to the idea of the terahertz gap. In the last decades, multiple novel solutions to resolve this gap have been proposed. Amongst these, one may find the use of simple field effect transistors as the most promising one. Their production benefits from currently available CMOS technology thus drastically decreasing the fabrication cost of such a device while allowing it to be easily integrated within electronic circuits. The mechanism behind the emission and detection is the interaction between THz electromagnetic radiations and current oscillations, that is plasma waves, in the transistor's channel. This channel forms a cavity for plasma oscillations, hence, the device may act either resonantly or non-resonantly, depending on various parameters. This thesis deals with the numerical simulation of the transistor in different regimes using hydrodynamical models. These models account for multiple phenomena that have been considered in previous theoretical studies. Some theoretical results on both the emission and detection of THz radiation are presented. In the non-resonant case, we study how one can increase the linear regime of detection. In the resonant case, we show the existence of unexpected resonance frequencies, enlarging the detection spectrum of such detectors
Pong, M. H. "Modelling and design of power transistor inverter circuits." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384522.
Full textHayes, R. C. "Temperature dependance of silicon bipolar transistor D.C. parameters." Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381268.
Full textTang, Yue Teng. "Advanced characterisation and modelling of SiGe HBT's." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323798.
Full textJulien, Marquis C. "Bipolar transistor modelling from a power amplifier designer's perspective." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22121.pdf.
Full textJulien, Marquis C. (Marquis Christian) Carleton University Dissertation Engineering Electronics. "Bipolar transistor modelling from a power amplifier designer's perspective." Ottawa, 1997.
Find full textTian, Jing. "Theory, modelling and implementation of graphene field-effect transistor." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31870.
Full textCheng, Xiang. "TFTs circuit simulation models and analogue building block designs." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271853.
Full textMawby, P. A. "Characterisation and fabrication of heterojunction bipolar transistors." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383334.
Full textAdachi, Kazuhiro. "Simulation and modelling of power devices based on 4H silicon carbide." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273406.
Full textShah, Alam Huhmmad. "RF modelling of deep-submicron CMOS and heterojunction bipolar transistor for wireless communication systems." Thesis, Queen's University Belfast, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269173.
Full textFernández, S. Alejandro D. "Modelling the temperature dependences of Silicon Carbide BJTs." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202754.
Full textPasadas, Cantos Francisco. "Modelling of field-effect transistors based on 2D materials targeting high-frequency applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405314.
Full textNew technologies are necessary for the unprecedented expansion of connectivity and communications in the modern technological society. The specific needs of wireless communication systems in 5G and beyond, as well as devices for the future deployment of the Internet of Things has caused that the International Technology Roadmap for Semiconductors, which is the strategic planning document of the semiconductor industry, considered since 2011, graphene and related materials (GRMs) as promising candidates for the future of electronics. Graphene, a one-atom-thick of carbon, is considered a promising material for high-frequency applications due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that GRM based field-effect transistors can potentially outperform other technologies. This thesis presents a body of work on the modelling, performance prediction and simulation of GRM based field-effect transistors and circuits. The main goal of this work is to provide models and tools to ease the following issues: (i) gaining technological control of single layer and bilayer graphene devices and, more generally, devices based on 2D materials, (ii) assessment of RF performance and microwave stability, (iii) benchmarking against other existing technologies, (iv) providing guidance for device and circuit design, (v) simulation of circuits formed by GRM based transistors. In doing so, a key contribution of this thesis is the development of a small-signal model suited to 2D-material based field-effect transistors (2D-FETs) that guarantees charge conservation. It is also provided a parameter extraction methodology that includes both the contact and access resistances, which are of upmost importance when dealing with low dimensional FETs. Taking it as a basis, an investigation of the GFET RF performance scalability is provided, together with an analysis of the device stability. The presented small-signal model is potentially very useful for fast prototyping, which is of relevance when dealing with the first stages of any new technology. To complete the modelling task, an intrinsic physics-based large-signal compact model of graphene field-effect transistors (GFETs) has been developed, ready to be used in conventional electronic design automation tools. That is considered to be a big step towards the design of complex monolithic millimetre-wave integrated circuits (MMICs). Most of the demonstrated circuits based on GRMs so far are not integrated circuits (ICs), so requiring external circuitries for operation. At mm-wave frequencies, broadband circuits can practically only be realized in IC technology. The compact model presented in this thesis is the starting point towards the design of complex MMICs based on graphene. It has been benchmarked against high-performance and ambipolar electronics’ circuits such as a high-frequency voltage amplifier, a high-performance frequency doubler, a radio-frequency subharmonic mixer and a multiplier phase detector. The final part of the thesis is devoted to the bilayer graphene based FET. Bilayer graphene is a promising material for RF transistors because its energy bandgap might result in a better current saturation than the single layer graphene. Because the great deal of interest in this technology, especially for flexible applications, gaining control of it requires the formulation of appropriate models. A numerical large-signal model of bilayer graphene field-effect transistors has been realized, which allows for (i) understanding the electronic properties of bilayer graphene, in particular the tunable bandgap, (ii) evaluating the impact of the bandgap opening in the RF performance, (iii) benchmarking against other existing technologies, and (iv) providing guidance for device design. The model has been verified against measurement data reported, including DC electrical behaviour and RF figures of merit.
Goguet, Johnny. "Contribution à la modélisation physique et électrique compacte du transistor à nanotube." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2009. http://tel.archives-ouvertes.fr/tel-00585836.
Full textHelme, John Peter. "Analytical charge control modelling of the speed response of heterojunction bipolar phototransistor and PIN-diode/heterojunction bipolar transistor photoreceivers." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425610.
Full textMurillo, Carrasco Luis. "Modelling, characterisation and application of GaN switching devices." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/modelling-characterisation-and-application-of-gan-switching-devices(a227368d-1029-4005-950c-2a098a5c5633).html.
Full textGomes, José Miguel Alves Faria. "Characterization and modelling of long-term memory effects in GaN HEMTs." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18456.
Full textGallium nitride (GaN) high electron mobility transistor (HEMT) technology has been revolutionizing the RF power amplifier (PA) market. Its potential, versus existing technologies, such as Silicon (Si) Laterally-Diffused MOS(LDMOS), is yet to be completely explored. However, the lack of good characterization and modelling of charge carrier trapping related phenomena has been hampering PA designers from extracting this technology’s promised performance. Hence, GaN HEMT trapping has been given a great amount of attention by the scientific and industrial worlds. This is mainly because the overall linearity of the PA built with this technology is affected, to a great extent, by the trapping state dependence on the device’s drain peak voltage. Circuit computer-aided design (CAD) tools are almost ubiquitous at research and development labs. However, these tools rely, not only on their simulation algorithms, but also on their built-in device models. This makes the development of accurate models a fundamental task. This work reports a multi-bias small-signal equivalent circuit (SSEC) model extraction procedure of a 3.3 W GaN HEMT from pulsed S-parameters as well as the development of a pulsed DC I-V measurement system and its use in the characterization of trapping-effects. This system, which is based on two pulser circuits, designed specifically for gate and drain pulsed measurements, was then automated through a MATLAB/PC controller. The pulser circuits allowed pulse widths on the microsecond scale at very low duty cycles as well as high peak voltages - close to 50 V - and currents - up to 4 A. With the developed system, isothermal standard pulsed I-V curves, as well as trapping-state dependent, isodynamic, pulsed I-V curves were obtained from a 15 W GaN HEMT device. In order to obtain the latter, the so-called double-pulse measurement technique was used. The expected asymmetric time constants associated with drain-lag were clearly observed: on the ns scale for the trapping and on the hundreds of milliseconds for the de-trapping. The predicted relatively reduced impact of gate-lag phenomena in more recent GaN HEMT technologies was also verified.
A tecnologia GaN HEMT tem revolucionado o mercado dos amplificadores de potência para RF. O seu potencial, comparado com tecnologias anteriores, como a Si LDMOS, continua por ser completamente explorado. Contudo, a falta de uma boa caracterização e modelação dos efeitos de memória lenta causados pelo armadilhamento de cargas têm impedido o total aproveitamento desta tecnologia no desenho de amplificadores de potência. Consequentemente, estes fenómenos de armadilhamento têm sido alvo de um amplo estudo tanto a nível científico como industrial. Isto deve-se, sobretudo, porque a linearidade dos amplificadores baseados nesta tecnologia é bastante afectada pelo estado de armadilhamento de cargas no dispositivo, que, por sua vez, é definido pela tensão de pico na saída, drain, do transístor. As ferramentas de desenho de circuitos auxiliado por computador estão presentes na maioria dos laboratórios de investigação. No entanto, estas dependem não só dos seus algoritmos de simulação mas também, em larga medida, dos modelos nelas utilizados, tornando fundamental o desenvolvimento de melhores modelos. O presente documento descreve a extracção de um modelo de circuito equivalente de pequeno signal dependente da polarização, de um transístor GaN HEMT de 3.3 W, a partir de medidas de parâmetros-S pulsadas, assim como a construcção de um sistema de medidas pulsadas DC I-V e a utilização deste último na caracterização de efeitos de armadilhamento. O sistema desenvolvido, baseado em dois circuitos pulsadores desenhados para medidas pulsadas quer no terminal de entrada, gate, quer no de saída, drain, foi automatizado através do software MATLAB instalado num PC. Os circuitos pulsadores permitem larguras de pulso na escala dos microsegundos com duty-cycles tão pequenos como 0.001%, assim como, elevadas tensões de saída - perto de 50 V - e correntes - pelo menos até 4 A. Com o sistema desenvolvido, obtiveram-se curvas I-V iso-térmicas e também curvas I-V iso-dinâmicas, dependentes do estado de armadilhamento, de um transístor GaN HEMT de 15 W. De modo a obter as últimas, foram utilizadas medidas de duplo-pulso. A assimetria esperada nas constantes de tempo associadas com o drain-lag foram claramente observadas: na escala dos ns para o armadilhamento e das centenas de milisegundos para o desarmadilhamento. Tal como a literatura prevê para tecnologias mais recentes de GaN HEMTs, o impacto dos fenónemos de gate-lag que foi observado revelou-se bastante reduzido.
Ramirez-garcia, Eloy. "Analyse expérimentale et modélisation du bruit haute fréquence des transistors bipolaires à hétérojonctions SiGe et InGaAs/InP pour les applications très hautes fréquences." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112082/document.
Full textIn order to fulfil the roadmap for the development of telecommunication and information technologies (TIC), low noise level and very fast semiconductor devices are required. Heterojunction bipolar transistor has demonstrated excellent high frequency performances and becomes a candidate to address TIC roadmap. This work deals with experimental analysis and high frequency noise modelling of Si/SiGe:C HBT (STMicroelectronics tech.) and InP/InGaAs HBT (III-V Lab Alcatel-Thales).Chapter I introduces the basic concepts of HBTs operation and the characterization at high-frequency. This chapter summarizes the high frequency performances of many state-of-the-art HBT technologies. The first part of chapter II describes the two HBT sets, with paying attention on the impact of the base composition (SiGe:C) or the lateral reduction of the device (InGaAs) on static and dynamic performances. Based on TCAD modelling, the second part shows that a 15-25% germanium composition profile in the base is able to reach highest dynamic performances. Chapter III summarizes the static and dynamic results at low temperature, giving a separation of the intrinsic transit times and charging times involved into the performance limitation. Chapter IV presents noise measurements and the derivation of high frequency noise analytical models. These models highlight the impact of the current crowding and the self-heating effects, and the influence of the base-emitter heterojunction on the high frequency noise. According to these models the high frequency noise performances are estimated at low temperature for both HBT technologies
Weststrate, Marnus. "LC-ladder and capacitive shunt-shunt feedback LNA modelling for wideband HBT receivers." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/26615.
Full textThesis (PhD(Eng))--University of Pretoria, 2011.
Electrical, Electronic and Computer Engineering
unrestricted
Hamieh, Youness. "Caractérisation et modélisation du transistor JFET en SiC à haute température." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00665817.
Full textBaniahmad, Ata. "QUANTUM MECHANICAL Study and Modelling of MOLECULAR ELECTRONIC DEVICES." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13193/.
Full textSoubercaze-Pun, Geoffroy. "De l’étude de bruit basse fréquence à la conception d’oscillateur en bande X à partir de transistor AlGaN/GaN HEMT." Toulouse 3, 2007. http://www.theses.fr/2007TOU30081.
Full textThis work is dedicated to the study in the field of low frequency noise characterization of Gallium Nitride High Electron Mobility Transistors (HEMT) and to the design of an X-Band low phase noise oscillator. First of all, we describe the Gallium Nitride intrinsic properties, the HEMT structure and the associated noise sources that can occur in such device. The low frequency noise (LFN) measurement methodology is also presented. Then, a comparative study is exposed using low frequency noise measurement between devices grown on different substrate (Si, SiC, Al2O3). Finally, an investigation on the 1/fg noise and the frequency index g is performed, indicating a correlation between the frequency index g and the transport mechanism of the carriers in the two dimensional electron gas (2DEG) or in a parasitic AlGaN channel between drain and gate. This study makes use of both LFN measurements and physical simulations. The second part focuses on HEMT grown on SiC substrate: low frequency noise spectra are investigated, and a mathematical extraction procedure is presented. Then, an accurate study is lade thanks to the mathematical extraction of the noise sources versus biasing and under different thermal stress conditions to find the origin of G-R centers. A correlation between this study and SIMS measurements is presented. The last section of this work deals with large signal modelling and X-band oscillator: an original, accurate and fast modelling technique is proposed as an alternative to the usually time consuming traditional techniques. Thus the oscillator is designed, and its performances are discussed (POUT=20dBm, Lf(100kHz)=-105 dBc/Hz at 10 GHz)
Ndiaye, Ndèye Saly. "Modélisation des phénomènes de piégeage/dépiégeage dans les semi-conducteurs organiques et développement d’un dispositif de caractérisation de pièges dans les transistors organiques." Thesis, Reims, 2019. http://www.theses.fr/2019REIMS035.
Full textThis thesis aims to study the reliability of organic transistors. The main limitation of organic transistors is their instability due to the presence of traps able to lower their electrical performances. Our work is about the modelling of trapping/detrapping processes in organic semiconductors and the implementation of a trap characterization experiment on organic transistors. Our model takes into account adapted energetic distributions of both free and trapped carriers in emission and capture processes. It was used on some trap determination measurements on organic semiconductors from the literature using the Deep Level Transient Spectroscopy (DLTS). Our results show that considering relevant DOS for the HOMO/LUMO and for the trap distribution is not only more relevant for organic semiconductors but also allows one to better fit the measures with less contributions. A new model is then proposed to describe defect states in organic semiconductors considering relevant distributions for both free and trapped carriers. Good agreement with experimental defect data is obtained by the DLTS technique. The second theme of our study is about the implementation of a trap characterization experiment on organic transistors. To do so, we studied bias stress effects on the electrical characteristics of our P3HT based transistors. The principal effect observed in our transistors is a shift of the threshold voltage with the bias stress. We found that three trap contributions are responsible of instabilities noticed in our tested transistor, they are confirmed by other authors in the literature. Hence the interest of our experiment in the study of organic transistors reliability
Ahmad, Norhawati Binti. "Modelling and design of Low Noise Amplifiers using strained InGaAs/InAlAs/InP pHEMT for the Square Kilometre Array (SKA) application." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/modelling-and-design-of-low-noise-amplifiers-using-strained-ingaasinalasinp-phemt-for-the-square-kilometre-array-ska-application(b2b50fd8-0a13-4f71-b3f0-616ee4b2a82b).html.
Full textNajari, Montassar. "Modélisation compacte des transistors à nanotube de carbone à contacts Schottky et application aux circuits numériques." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00560346.
Full textZhang, Yongjian. "Investigation of electrical and optical characterisation of HBTs for optical detection." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/investigation-of-electrical-and-optical-characterisation-of-hbts-for-optical-detection(3c47e08f-9201-4465-b2b5-268aa0360309).html.
Full textAzoff, Eitan Michael. "Computer modelling of heterojunction bipolar transistors." Thesis, University of Sheffield, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420290.
Full textShirinskaya, Anna. "Physical modelling of bio sensors based on Organic Electrochemical Transistors." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX055/document.
Full textOrganic Electrochemical Transistors are widely used as transducers for sensors in bioelectronics devices. Although these devices have been extensively studied in the last years, there is a lack of fundamental understanding of their working mechanism, especially concerning the de-doping mechanism.This thesis is dedicated to Organic Electrochemical Transistors modelling. First of all, a numerical steady state model was established. This model allows implementing the Poisson-Boltzmann, Nernst-Planck and Nernst equations to describe the de-doping process in the conductive PEDOT:PSS layer, and ions and holes distribution in the device. Two numerical models were proposed. In the first, Local Neutrality model, the assumption of electrolyte ions trapping in PEDOT:PSS layer was taken into consideration, thus the local neutrality was preserved. In the second model the ions were allowed to move freely under applied electric field inside conductive polymer layer, thus only global electroneutrality was kept. It was experimentally proven that the Global Neutrality numerical model is valid to explain the global physics of the device, the origin and the result of the de-doping process. The transition from totally numerical model to analytical model was performed by fitting the parametric analytical Boltzmann logistic function to numerically calculated conductivity profiles. As a result, an analytical equation for the Drain current dependence on applied voltage was derived. By fitting this equation to experimentally measured Drain current- applied voltage profiles, we could obtain the maximum conductivity of a fully doped PEDOT:PSS layer. The maximum conductivity is shown to be dependent not only on the material, but also on device channel size. Using the maximum conductivity value together with the Conventional Semiconductor model it is possible to extract the other parameters for the full description of the OECT: intrinsic charge carrier density, initial holes density, initial PSS- concentration and conductive polymer layer volumetric capacitance. Having a tool to make easy parameters extraction and characterization of any OECT, permits not only to increase the level of device description, but most importantly to highlight the correlation between external and internal device parameters.Finally it is shown how to make the whole description of the real OECT device, all the models were validated by fitting the modeled and experimentally measured data profiles.As a result, not only the purely theoretical model was presented in this thesis to describe the device physics, but also the prominent step was made on simple real device characterization
Camuso, Gianluca. "LIGBT design, physics and modelling." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708803.
Full textHong, Y. "Characterization and modelling of organic thin film transistors." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604202.
Full textHolder, David John. "Characterisation and modelling of Heterostructure Bipolar Junction Transistors." Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305433.
Full textDrury, Robert. "The physical modelling of heterojunction field effect transistors." Thesis, University of Leeds, 1994. http://etheses.whiterose.ac.uk/21149/.
Full textGonçalves, Cristiano Ferreira. "GaN HEMT transistors characterization for non–linear modelling." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/21677.
Full textUltimamente, as redes de telecomunicações móveis estão a exigir cada vez maiores taxas de transferência de informação. Com este aumento, embora sejam usados códigos poderosos, também aumenta a largura de banda dos sinais a transmitir, bem como a sua frequência. A maior frequência de operação, bem como a procura por sistemas mais eficientes, tem exigido progressos no que toca aos transístores utilizados nos amplificadores de potência de radio frequência (RF), uma vez que estes são componentes dominantes no rendimento de uma estação base de telecomunicações. Com esta evolução, surgem novas tecnologias de transístores, como os GaN HEMT (do inglês, Gallium Nitride High Electron Mobility Transistor). Para conseguir prever e corrigir certos efeitos dispersivos que afetam estas novas tecnologias e para obter o amplificador mais eficiente para cada transístor usado, os projetistas de amplificadores necessitam cada vez mais de um modelo que reproduza fielmente o comportamento do dispositivo. Durante este trabalho foi desenvolvido um sistema capaz de efetuar medidas pulsadas e de elevada exatidão a transístores, para que estes não sejam afetados, durante as medidas, por fenómenos de sobreaquecimento ou outro tipo de fenómenos dispersivos mais complexos presentes em algumas tecnologias. Desta forma, será possível caracterizar estes transístores para um estado pré determinado não só de temperatura, mas de todos os fenómenos presentes. Ao longo do trabalho vai ser demostrado o projeto e a construção deste sistema, incluindo a parte de potência que será o principal foco do trabalho. Foi assim possível efetuar medidas pulsadas DC-IV e de parâmetros S (do inglês, Scattering) pulsados para vários pontos de polarização. Estas últimas foram conseguidas á custa da realização de um kit de calibração TRL. O interface gráfico com o sistema foi feito em Matlab, o que torna o sistema mais fácil de operar. Com as medidas resultantes pôde ser obtida uma primeira análise acerca da eficiência, ganho e potência máxima entregue pelo dispositivo. Mais tarde, com as mesmas medidas pôde ser obtido um modelo não linear completo do dispositivo, facilitando assim o projeto de amplificadores.
Lately, the wireless networks should feature higher data rates than ever. With this rise, although very powerful codification schemes are used, the bandwidth of the transmitted signals is rising, as well as the frequency. Not only caused by this rise in frequency, but also by the growing need for more efficient systems, major advances have been made in terms of Radio Frequency (RF) Transistors that are used in Power Amplifiers (PAs), which are dominant components in terms of the total efficiency of base stations (BSS). With this evolution, new technologies of transistors are being developed, such as the Gallium Nitride High Electron Mobility Transistor (GaN HEMT). In order to predict and correct some dispersive effects that affect these new technologies and obtain the best possible amplifier for each different transistor, the designers are relying more than ever in the models of the devices. During this work, one system capable of performing very precise pulsed measurements on RF transistors was developed, so that they are not affected, during the measurements, by self-heating or other dispersive phenomena that are present in some technologies. Using these measurements it was possible to characterize these transistors for a pre-determined state of the temperature and all the other phenomena. In this document, the design and assembly of the complete system will be analysed, with special attention to the higher power component. It will be possible to measure pulsed Direct Current Current-Voltage (DC-IV) behaviour and pulsed Scattering (S) parameters of the device for many different bias points. These latter ones were possible due to the development of one TRL calibration kit. The interface with the system is made using a graphical interface designed in Matlab, which makes it easier to use. With the resulting measurements, as a first step analysis, the maximum efficiency, gain and maximum delivered power of the device can be estimated. Later, with the same measurements, the complete non-linear model of the device can be obtained, allowing the designers to produce state-of-art RF PAs.
Lin, Jyi Tsong. "Modelling of small geometry SOI MOSFETs for use in simulators." Thesis, University of Southampton, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239897.
Full textHsieh, Pei-Shan. "IGBT design, modelling and novel devices." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708993.
Full textBunting, Jeremy. "The modelling and measurement of noise in microwave FET oscillators." Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254670.
Full textRussell, P. C. "The modelling and excess noise of VMOS power transistors." Thesis, Lancaster University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374644.
Full textsingh, Ranjit. "Characterisation and modelling of microwave high electron mobility transistors." Thesis, University of Leeds, 1995. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702130.
Full textAl-Ameri, Talib. "Modelling and simulation study of NMOS Si nanowire transistors." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30651/.
Full textLee, Soon Peng. "Modelling the DC performance of GAAS Homojunction bipolar transistors." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/26306.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Allen, Richard M. "Investigation and modelling of dual gate MESFET mixers." Thesis, Leeds Beckett University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282776.
Full textLee, J. H. "Two-dimensional modelling and harmonic distortion analysis of bipolar transistors." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356585.
Full textGaddi, Roberto. "On the characterisation and modelling of silicon RF LDMOS transistors." Thesis, Cardiff University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397144.
Full textAynul, Islam. "Monte Carlo device modelling of electron transport in nanoscale transistors." Thesis, Swansea University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678562.
Full textJung, Sungyeop. "Physically-Based Compact Modelling of Organic Electronic Devices." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX115/document.
Full textIn spite of a remarkable improvement in the performance of organic electronic devices, there is still a lack of rigorous theoretical understanding on the device operation. This thesis is dedicated to establishing practical models of organic electronic devices with a full physical basis, namely a physically-based compact model. A physically-based compact model of a circuit element is a mathematical equation that describes the device operation, and is generally assessed by three criteria: whether it is sufficiently simple to be incorporated in circuit simulators, accurate to make the outcome of the simulators useful to circuit designers, and rigorous to capture physical phenomena occuring in the device. In this context, distinctive features of charge carrier injection and transport in organic semiconductors are incorporated in the models with a particular effort to maintain mathematical simplicity. The concomitant effect on the current-voltage characteristics of prototypical organic diodes and transistors are studied. Parameter extraction methods consistent to the models are presented which enable unambiguity determination of device parameters used for modeling device operation and assessing device performance and properties of organic thin-films and interfaces. The approaches encompass analytical developement of physical equations, two-dimensional numerical simulation based on finite-element method and experimental validation. The original and fully analytical compact models and parameter extraction methods provide fundamental understanding on how energetic disorder in an organic semiconductor thin-film, described by the Gaussian density of states, affects the observable current-voltage characteristics of the devices.Keywords : Organic electronics, device physics, analytical modeling, diodes, field-effect transistors, Gaussian density-of-states
Beye, Mamadou Lamine. "Etude et contribution à l’optimisation de la commande des HEMTs GaN." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI102.
Full textThis thesis is part of the sustainable development context where the energy challenges rely on designing numerous and lumped power converters with good power density and high efficiency. New power semiconductor devices, namely wide band semiconductors (GaN, SiC) are used in designing the converters. The high frequency control of these converters makes the system more sensitive to parasitic elements. The latter elements disrupt the switching behavior of the transistors and generate additional losses. In this context this work was carried out in a cotutelle partnership between Ampère Laboratory in Villeurbanne and LN2 laboratory at the University of Sherbrooke; the aim being to make a contribution in optimizing the switching conditions of GaN HEMTs. The first work axis consists in managing the voltage and current switching speed through gate control strategies in order to improve the conducted EMI. Firstly, most of the proposed control circuits are developed in open-loop and then secondly in closed-loop in order to compensate the effects of non-linearities (with respect to temperature, load current and operating voltage). Concerning the development of control systems, it can be done first by the use of available discrete components, then by the alternative of the monolithic GaN integration which is considered in order to bring more speed and efficiency. Monolithic integration would also solve the problem of parasitic inductances. To facilitate the design of integrated circuits and control systems, the development of a behavioral model of HEMT GaN will serve as a modeling tool. The second axis of the work consists in experimentally validating well-adapted control system for the gate of the power transistor in order to master the transient behaviors of the power transistors. Namely it is necessary to allow a satisfying management of losses during dead time in a half bridge converter. At the end of this work, the control systems developed in open loop made it possible to slow the switching speeds by at least 30 % but causing an increase in switching losses up to 50% in some cases. Due to the fast switching speed of HEMT GaNs and the limitations of discrete components on the market, the reduction rate of switching speeds obtained with the closed loop (reduction rate less than 20%) is less attractive than that of the open loop. Using a monolithic circuit can be an alternative to increase the rate of reduction of closed loop switching speeds. SPICE simulation toward monolithic circuit are the basis of this hypothesis. Concerning the second axis, the application of multilevel gate voltage control of the transistors of half bridge made it possible to reduce the losses of reverse conduction and the losses due to the phenomena of Cross Talk by at least by 30 %
Zamanillo, Sáinz de la Maza José María. "Metodología para la extracción lineal y no-lineal de modelos circuitales para dispositivos MESFET y HEMT de media-alta potencia." Doctoral thesis, Universidad de Cantabria, 1996. http://hdl.handle.net/10803/10677.
Full textIn this thesis a new methodology for the "intelligent" parameter extraction of linear and non-linear model for GaAs MESFET and HEMT devices is shown, besides numerous contributions in the field of Scattering and DC measurements of this kind of devices by means of hardware design and necessary software for the automation of the same have been done. On the other hand a novel Great Signal model for HEMT devices is presented. This model is capable to model the transconductance compression phenomenon and it is easily to built in commercial non-linear simulators like MDS, LIBRA, Microwave HARMONICA, etc. This work has also increased the frequency range for the usual small-signal models by means of calculate "exact" expressions of them. Another novelty contribution of this thesis is to apply for first time these linear models to HEMT transistors, avoiding the lacking of physical meaning values like it occurred up to now. To make possible the validation of non-linear HEMT model, simulations with MDS software and comparisons with experimental measurements made in our laboratory (Scattering, DC, Pulsed and Pin/ Pout) have been carried out and there was very good agreement between measured and simulated data. To validate small-signal models referred before, simulations with MMICAD software and comparisons between simulated and experimental scattering measurements using transistors of different sizes from several foundries and technological processes have been made.
Truksa, Jan. "Modelování prvků pro bioelektroniku." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-376789.
Full textDideban, Daryoosh. "Statistical modelling of nano CMOS transistors with surface potential compact model PSP." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3257/.
Full textBalaraman, Pradeep A. "Design, simulation and modelling of InP/GaAsSb/InP double heterojunction bipolar transistors." Cincinnati, Ohio : University of Cincinnati, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1069275786.
Full text