Contents
Academic literature on the topic 'Transition Combustion-Déflagration-Détonation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Transition Combustion-Déflagration-Détonation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Transition Combustion-Déflagration-Détonation"
Charignon, Camille. "Transition Déflagration-Détonation dans les Supernovae Thermonucléaires." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00874701.
Full textQuintens, Hugo. "L’auto-inflammation dans le mécanisme de transition de régime de combustion de la déflagration vers la détonation." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2019. http://www.theses.fr/2019ESMA0014/document.
Full textTo meet the current environmental challenges, breakthrough solutions compared to existing turbomachines are currently under development.They rely on the use of more efficient thermodynamic cycles.The objective of this thesis is to study experimentally the mechanisms of transition of combustion regime using a kerosene surrogate, n-decane.For this purpose, a deflagration is initiated in a closed chamber and compresses the fresh gases. The pressure and the temperature of the endgas increase until reaching the conditions favorable to the appearance of the autoignition in the chamber.3 successive combustion regimes are characterized in the combustion chamber by means of fast optical diagnostics. A first heat release,associated with the cool flame phenomenon, pre-oxidizes the fresh gases, it is followed by the Main Heat Release (MHR). For the highest initial temperatures, a detonation is observed at the end of the process. Two different transition paths are highlighted: the Deflagration-Autoignition Transition (DAIT) and the Deflagration-Autoignition-Detonation Transition (DAIDT).The sensitivity of regime transitions to the initial conditions of pressure, temperature and mixture composition was characterized by means of several parametric studies. For this purpose, the conditions of temperature, pressure and composition of the mixture are calculated at the onset of the different reactive fronts (cool flame, MHR and detonation). In particular, it has been observed that the successive heat releases of theauto-ignition start at the same temperatures (740 K for the cool flame and 1050 K for the MHR) whatever the initial conditions. The study, then, focused on the analysis of a particular operating point. During the study of this operating point different self-ignition front velocities were observed, highlighting the mechanism of SWACER during the transition.A regime transition criterion proposed by Zander et al. based on numerical studies has been tested in our experimental setup. A modified criterion has been developed to take into account compressibility effects in the reactive flow. The application of this criterion to all the dataset makes possible to predict the appearance of the detonation under the conditions where 0 and 100% of DAIDT are observed. The different regime transition domains have also been positioned on the Bradley diagram (ξ, ε). The modes of combustion predicted by the diagram are consistent with those reached in the chamber.The influence of the initial temperature distribution on the combustion modes achievable in the chamber has been studied. Three topologies of autoignition have been demonstrated for three initial temperature distributions in the chamber. These topologies are separated into two categories, those favoring a particular direction during sequential self-ignition and that exhibiting a three-dimensional behavior.Three-dimensional tests show a very high propensity for DAIDT but a slow spread of autoignition fronts. In this case, another mechanism of transition to detonation is evidenced: the self-ignition of an homogeneous gas pocket generates shock waves and triggers successive autoinflammations during their propagation. The shock coupling / reactive front causes the formation of the detonation. Different transition mechanisms to detonation have been observed and studied over a wide range of pressure, temperature, equivalence ratio and thermal gradient conditions. The obtained results will be useful to support the numerical studies carried out on the subject, which lacks experimental data in academic conditions
Hamon, Émilien. "Endommagement, fragmentation et combustion d’un matériau explosif comprimé." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2025. http://www.theses.fr/2025ISAB0003.
Full textIn the context of the safety of pyrotechnic structures, it is important to evaluate by simulation the level of reaction reached during thermal or mechanical aggressions (impact). Nowadays, there is no unified approach approved by the international scientific community to describe the complex process leading to violent reactions such as the Combustion-Deflagration-Detonation transition (CoDDT). The objective of this thesis is to study the influence of the damage, resulting from low velocity impact damage on the combustion of a pressed explosive.First, we will study the influence of mechanical loading on the combustion behavior of our material. We will show that the burning surface plays an important role in the TCoDD phenomenon, and we will seek to determine this surface from manometer bomb tests. Next, we will quantify the damage within the microstructure (crack density, porosity, etc.) following mechanical loading. Finally, we will model the mechanical behavior of our material and relate its damage to the crack density influencing material combustion
Bodard, Sébastien. "Expérimentations et approche numérique de la transition combustion-déflagration-détonation dans les milieux pulvérulents initiée par un impact à faible vitesse." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4743/document.
Full textThe first part of the present PhD focuses on the conception and the validation of an experimental set up. The aim of the experiments is to generate one-dimensional compaction waves and to observe the media at the grains scale. Two type of powder are used : polypropylene powder and an explosive powder (RDX).The experimental apparatus uses ultra-fast cameras (50 000 images/s) to record the tests. Image correlation is used to compute the displacement and velocity fields.A multiphasic compaction model is then coded. Grain/wall friction is added as the experimental work underlined its importance. Additional work has been provided concerning the granular equation of state and its experimental determination.Numerical results are in good agreement with the experimenations, as long as the experimental set up is not deformed because of the grains' pressure.A few experiments have been done with explosive powders. The experimental set up still needs some improvement but it proved its usefullness for deflagration to detonation studies
Nicoloso, Julien. "Combustion confinée d'explosif condensé pour l'accélaration de projectile. Application en pyrotechnie spatiale." Phd thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2014. http://tel.archives-ouvertes.fr/tel-01060036.
Full text